首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Plasmodium falciparum, the protozoan parasite responsible for severe malaria infection, undergoes a complex life cycle. Infected red blood cells (iRBC) sequester in host cerebral microvessels, which underlies the pathology of cerebral malaria. Using immunohistochemistry on post mortem brain samples, we demonstrated positive staining for vascular endothelial growth factor (VEGF) on iRBC. Confocal microscopy of cultured iRBC revealed accumulation of VEGF within the parasitophorous vacuole, expression of host VEGF-receptor 1 and activated VEGF-receptor 2 on the surface of iRBC, but no accumulation of VEGF receptors within the iRBC. Addition of VEGF to parasite cultures had a trophic effect on parasite growth and also partially rescued growth of drug treated parasites. Both these effects were abrogated when parasites were grown in serum-free medium, suggesting a requirement for soluble VEGF receptor. We conclude that P. falciparum iRBC can bind host VEGF-R on the erythrocyte membrane and accumulate host VEGF within the parasitophorous vacuole, which may have a trophic effect on parasite growth.  相似文献   

4.
Binding of immunoglobulin M (IgM) antibodies from normal human serum to the surface of Plasmodium falciparum-infected red blood cells (iRBC) has previously been demonstrated only in parasites that form rosettes with uninfected red cells. We show that natural, nonspecific IgM but not IgG, IgA, IgD, or IgE also binds to the surface of iRBC selected for adhesion to chondroitin sulfate A (CSA), a placental receptor for parasites associated with malaria in pregnancy. The protease sensitivity of IgM-binding appears to match that of CSA binding, suggesting that the two phenotypes may be mediated by the same parasite molecule. We also show that a wide range of mouse monoclonal antibodies of the IgM class bind nonspecifically to CSA-selected iRBC, an important consideration in the interpretation of immunological assays performed on these parasite lines.  相似文献   

5.
6.
A Plasmodium falciparum polypeptide (46 kDa) associated with the infected erythrocytes of all asexual stages as well as immature gametocytes was identified by the monoclonal antibody (Mab) 30B8.3. The expression of this protein was not dependent upon the knobby phenotype and was detected in parasites grown either in human or Aotus erythrocytes. The antigen was heatstable, did not label with [14C]glucosamine, and was not sensitive to periodate oxidation. Immunofluorescent staining patterns of Mab 30B8.3 on in vitro cultured parasites varied from punctate (rings and trophozoites) to patchy (trophozoites and schizonts) fluorescence. The Mab 30B8.3 antigen was not detected on the infected erythrocyte surface by conventional wet-mount IFA procedure. However, when parasites were cultured in the presence of Mab 30B8.3, the epitope was detected by the monoclonal antibodies present in the culture medium. Differential extraction of the polypeptide from infected erythrocytes and immune electron microscopy of cryosectioned parasites localized the 30B8.3 epitope primarily on membranes of Maurer's clefts within the infected erythrocyte's cytosol. This 46 kDa polypeptide is unique because it seemed to be an integral membrane protein of the Maurer's clefts/vesicles and it was not secreted into the culture medium nor deposited on the infected erythrocyte membrane. Previous studies indicate that several parasite proteins, excreted extracellularly or deposited on infected erythrocyte membrane, are found to be associated with Maurer's cleft membranes and vesicles. The 46 kDa polypeptide described in this study may play an important role in the transport of the parasite antigens.  相似文献   

7.
8.
Over the past decade, advances in proteomic and mass spectrometry techniques and the sequencing of the Plasmodium falciparum genome have led to an increasing number of studies regarding the parasite proteome. However, these studies have focused principally on parasite protein expression, neglecting parasite-induced variations in the host proteome. Here, we investigated P. falciparum-induced modifications of the infected red blood cell (iRBC) membrane proteome, taking into account both host and parasite proteome alterations. Furthermore, we also determined if some protein changes were associated with genotypically distinct P. falciparum strains. Comparison of host membrane proteomes between iRBCs and uninfected red blood cells using fluorescence-based proteomic approaches, such as 2D difference gel electrophoresis revealed that more than 100 protein spots were highly up-represented (fold change increase greater than five) following P. falciparum infection for both strains (i.e. RP8 and Institut Pasteur Pregnancy Associated Malaria). The majority of spots identified by mass spectrometry corresponded to Homo sapiens proteins. However, infection-induced changes in host proteins did not appear to affect molecules located at the outer surface of the plasma membrane. The under-representation of parasite proteins could not be attributed to deficient parasite protein expression. Thus, this study describes for the first time that considerable host protein modifications were detected following P. falciparum infection at the erythrocyte membrane level. Further analysis of infection-induced host protein modifications will improve our knowledge of malaria pathogenesis.  相似文献   

9.
The occlusion of vessels by packed Plasmodium falciparum-infected (iRBC) and uninfected erythrocytes is a characteristic postmortem finding in the microvasculature of patients with severe malaria. Here we have employed immunocompetent Sprague-Dawley rats to establish sequestration in vivo. Human iRBC cultivated in vitro and purified in a single step over a magnet were labeled with 99mtechnetium, injected into the tail vein of the rat, and monitored dynamically for adhesion in the microvasculature using whole-body imaging or imaging of the lungs subsequent to surgical removal. iRBC of different lines and clones sequester avidly in vivo while uninfected erythrocytes did not. Histological examination revealed that a multiadhesive parasite adhered in the larger microvasculature, inducing extensive intravascular changes while CD36- and chondroitin sulfate A-specific parasites predominantly sequester in capillaries, inducing no or minor pathology. Removal of the adhesive ligand Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), preincubation of the iRBC with sera to PfEMP1 or preincubation with soluble PfEMP1-receptors prior to injection significantly reduced the sequestration. The specificity of iRBC binding to the heterologous murine receptors was confirmed in vitro, using primary rat lung endothelial cells and rat lung cryosections. In offering flow dynamics, nonmanipulated endothelial cells, and an intact immune system, we believe this syngeneic animal model to be an important complement to existing in vitro systems for the screening of vaccines and adjunct therapies aiming at the prevention and treatment of severe malaria.  相似文献   

10.
A subcellular fraction enriched in erythrocyte membranes has been isolated from rhesus monkey erythrocytes infected with Plasmodium knowlesi. Infected cells were lysed by centrifugation through a zone of hypotonic buffer and membranes isolated by equilibrium density gradient centrifugation in the same tube. The purified membrane fraction was shown to include the erythrocyte surface membrane by several methods: electron microscopy, identification of Coomassie Blue stained erythrocyte membrane proteins, identification of band 3 with a monoclonal antibody, and identification of radioiodinated cell surface proteins. The resulting ghosts were shown to be specifically reactive with monkey sera against the variant surface antigens of P. knowlesi by indirect immunofluorescence and membrane agglutination. No reactivity was seen with a monoclonal antibody (13C11) against the intracellular schizont surface. A number of metabolically labelled parasite proteins were enriched in this membrane function, including peptides of 277, 208, 173, 153, 134, 109, 80, 60 and 48 kDa and the variant surface antigens of variable molecular mass (180-207 kDa). These proteins were distinct from the major parasite proteins of total infected erythrocytes and isolated merozoites. The major glucosamine labelled glycoprotein of the internal schizont (230 kDa) was not found in this fraction. Moreover, no fragment of this parasite glycoprotein was found in this membrane fraction, indicating that no part of this molecule is transported to the erythrocyte surface. In contrast, the variant antigen of P. knowlesi, known to be on the erythrocyte surface, could be readily identified as peptides unique to specific cloned parasite lines. We propose that the other nine parasite proteins found within this membrane fraction represent a starting point for the identification of other parasite proteins transported to the surface membrane of the infected erythrocyte.  相似文献   

11.
Toxoplasma gondii is an obligate intracellular parasite that resides in the cytoplasm of its host in a unique membrane-bound vacuole known as the parasitophorous vacuole (PV). The membrane surrounding the parasite is remodeled by the dense granules, secretory organelles that release an array of proteins into the vacuole and to the PV membrane (PVM). Only a small portion of the protein constituents of the dense granules have been identified, and little is known regarding their roles in infection or how they are trafficked within the infected host cell. In this report, we identify a novel secreted dense granule protein, GRA14, and show that it is targeted to membranous structures within the vacuole known as the intravacuolar network and to the vacuolar membrane surrounding the parasite. We disrupted GRA14 and exploited the knockout strain to show that GRA14 can be transferred between vacuoles in a coinfection experiment with wild-type parasites. We also show that GRA14 has an unexpected topology in the PVM with its C terminus facing the host cytoplasm and its N terminus facing the vacuolar lumen. These findings have important implications both for the trafficking of GRA proteins to their ultimate destinations and for expectations of functional domains of GRA proteins at the host-parasite interface.  相似文献   

12.
A cDNA encoding a new Babesia bovis spherical body protein 4 (BbSBP-4) was reported to have no significant homology to other apicomplexan proteins or previously reported B. bovis spherical body proteins. In the present study, we further examined the molecular characteristics of BbSBP-4 including the expression and cellular localization of the BbSBP-4. An anti-rBbSBP-4 mouse serum specifically reacted to a 41-kDa native protein B. bovis in Western blot analysis. The immunoelectron microscopic examination confirmed the localization of BbSBP-4 in spherical bodies, but not in the nucleus, rhoptries, and micronemes. Interestingly, the protein was found to be localized not only in the spherical body of B. bovis but also in the cytoplasm of infected erythrocytes (iRBC) at the later stage of parasite development. The confocal laser microscopic examination and Western blot analysis demonstrated the increased accumulation of BbSBP-4 in the cytoplasm of iRBC and in the supernatant of cultivated B. bovis during the late developmental stage of the parasite. These results suggest that BbSBP-4 was secreted from spherical body into cytoplasm of iRBC during the late developmental stage of the parasite before the rupture of infected RBC. Taken together, BbSBP-4 might play an important role as a secreted protein in the intracellular development and/or survival of B. bovis.  相似文献   

13.
Malaria proteins expressed on the surface of Plasmodium falciparum infected erythrocytes (IE) mediate adhesion and are targeted by protective immune responses. During pregnancy, IE sequester in the placenta. Placental IE bind to the molecule chondroitin sulfate A (CSA) and preferentially transcribe the gene that encodes VAR2CSA, a member of the PfEMP1 variant surface antigen family. Over successive pregnancies women develop specific immunity to CSA-binding IE and antibodies to VAR2CSA. We used tandem mass spectrometry together with accurate mass and time tag technology to study IE membrane fractions of placental parasites. VAR2CSA peptides were detected in placental IE and in IE from children, but the MC variant of VAR2CSA was specifically associated with placental IE. We identified six conserved hypothetical proteins with putative TM or signal peptides that were exclusively expressed by the placental IE, and 11 such proteins that were significantly more abundant in placental IE. One of these hypothetical proteins, PFI1785w, is a 42kDa molecule detected by Western blot in parasites infecting pregnant women but not those infecting children.  相似文献   

14.
Trypanosoma congolense is an important pathogen of livestock in Africa. To study protein expression throughout the T. congolense life cycle, we used culture-derived parasites of each of the three main insect stages and bloodstream stage parasites isolated from infected mice, to perform differential protein expression analysis. Three complete biological replicates of all four life cycle stages were produced from T. congolense IL3000, a cloned parasite that is amenable to culture of major life cycle stages in vitro. Cellular proteins from each life cycle stage were trypsin digested and the resulting peptides were labeled with isobaric tags for relative and absolute quantification (iTRAQ). The peptides were then analyzed by tandem mass spectrometry (MS/MS). This method was used to identify and relatively quantify proteins from the different life cycle stages in the same experiment. A search of the Wellcome Trust's Sanger Institute's semi-annotated T. congolense database was performed using the MS/MS fragmentation data to identify the corresponding source proteins. A total of 2088 unique protein sequences were identified, representing 23% of the ~9000 proteins predicted for the T. congolense proteome. The 1291 most confidently identified proteins were prioritized for further study. Of these, 784 yielded annotated hits while 501 were described as "hypothetical proteins". Six proteins showed no significant sequence similarity to any known proteins (from any species) and thus represent new, previously uncharacterized T. congolense proteins. Of particular interest among the remainder are several membrane molecules that showed drastic differential expression, including, not surprisingly, the well-studied variant surface glycoproteins (VSGs), invariant surface glycoproteins (ISGs) 65 and 75, congolense epimastigote specific protein (CESP), the surface protease GP63, an amino acid transporter, a pteridine transporter and a haptoglobin-hemoglobin receptor. Several of these surface disposed proteins are of functional interest as they are necessary for survival of the parasites.  相似文献   

15.
We have isolated and characterized a gene encoding a novel GTP-binding protein of the GTPase superfamily in the filarial parasites Brugia malayi and Onchocerca volvulus. The deduced amino acid sequence of the cloned molecule has approximately 30% overall homology to ras proteins and approximately 90% homology to the 'ras-like' nuclear proteins TC4, ran and Spil. Rabbit antisera to bacterially expressed filarial protein detect a 24-22 kDa doublet in extracts of adult B. malayi and mature microfilariae, which is absent from immature microfilariae. Increased expression of the native parasite protein occurs when worms are cultured in the presence of epidermal growth factor.  相似文献   

16.
17.
Variant antigens appear on the surface of Plasmodium knowlesi-infected erythrocytes as the asexual parasite matures and are detected by antibody-mediated schizont-infected cell agglutination (SICA). We now show that cloned parasites can undergo antigenic variation in nonsplenectomized monkeys. In addition, we previously described a new P. knowlesi phenotype in which uncloned parasites passaged in splenectomized monkeys were no longer agglutinable by immune sera. We have designated this new phenotype SICA[-] and the one expressing the variant antigen SICA[+]. Cloned parasites can also switch from SICA[+] to SICA[-] in splenectomized monkeys. The switch from SICA[+] to SICA[-] is a gradual process that requires sequential subpassage in several monkeys. After passage in one monkey, the agglutination titer decreased 4- to 16-fold. Decreased agglutination was associated with decreased antibody binding on all infected erythrocytes as measured by fluorescein-conjugated anti-rhesus monkey immunoglobulin. The asexual malaria parasite can therefore alter its expression of variant antigen in response to the host environment (antivariant antibody or splenectomy). When cloned SICA[-] parasites were inoculated into intact monkeys, two courses of parasitemia were observed: fulminant parasitemia (greater than 20%) and parasitemia that was controlled. Fulminant infections were associated with conversion of the parasite from SICA[-] to SICA[+], i.e., from nonexpression to expression of the variant antigen on the erythrocyte surface. Parasitized erythrocytes remained SICA[-] in those infections that were controlled. It appears, therefore, that the expression of the variant antigen on the erythrocyte surface may influence parasite virulence.  相似文献   

18.
19.
A cDNA cloned from Trypanosoma brucei brucei codes for a putative membrane protein which is homologous to the erythrocyte glucose transporter and several other sugar transporters from Escherichia coli, yeast, algae and Leishmania. This cDNA hybridizes to a 2.3-kb mRNA that accumulates to a much higher degree in the bloodstream mammalian form than in the procyclic insect form of the parasite. The correlation between the expression of this gene and the hexose metabolism of Leishmania enriettii and T. brucei suggest that these 2 related genes probably encode hexose transporters. The gene encoding this mRNA is a member of a multigene family. The putative hexose transporter gene is highly conserved among Kinetoplastidae, indicating an important role for this protein in the parasite life cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号