首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic acidosis increases urine calcium excretion without an increase in intestinal calcium absorption, resulting in a net loss of bone mineral. In vitro, metabolic acidosis has been shown to initially induce physicochemical mineral dissolution and then enhance cell-mediated bone resorption. Acidic medium stimulates osteoblastic prostaglandin E(2) production, which mediates the subsequent stimulation of osteoclastic bone resorption. Glucocorticoids are also known to decrease bone mineral density, and metabolic acidosis has been shown to increase glucocorticoid production. This study tested the hypothesis that glucocorticoids would exacerbate acid-induced net calcium efflux from bone. Neonatal mouse calvariae were cultured in acid (Acid; pH = 7.06 +/- 0.01; [HCO(3)(-)] = 10.6 +/- 0.3 mM) or neutral (Ntl; pH = 7.43 +/- 0.01; [HCO(3)(-)] = 26.2 +/- 0.5 mM) medium, with or without 1 microM cortisol (Cort), and net calcium efflux and medium prostaglandin E(2) (PGE(2)) levels and osteoclastic beta-glucuronidase activity were determined. Compared with Ntl, Cort alone decreased calcium efflux, medium PGE(2), and osteoclast activity; Acid led to an increase in all three parameters. The addition of Cort to Acid led to a reduction of calcium efflux, medium PGE(2) levels and beta-glucuronidase activity compared with Acid alone. There was a significant direct correlation between medium PGE(2) concentration and net calcium efflux (r = 0.944; n = 23; P < 0.0001), between osteoclastic beta-glucuronidase activity and net calcium efflux (r = 0.663; n = 40; P < 0.001), and between medium PGE(2) concentration and beta-glucuronidase activity (r = 0.976; n = 4; P < 0.01). Thus, in vitro cortisol inhibits acid-induced, cell-mediated osteoclastic bone resorption through a decrease in osteoblastic PGE(2) production. These results suggest that the osteopenia observed in response to metabolic acidosis in vivo is not due to an increase in endogenous cortisol production.  相似文献   

2.
Metabolic acidosis increases urine calcium excretion without an increase in intestinal calcium absorption, resulting in a net loss of bone mineral. In vitro metabolic acidosis induces bone calcium efflux initially by physicochemical dissolution and subsequently by cell-mediated mechanisms involving inhibition of osteoblasts and stimulation of osteoclasts. In bone, prostaglandins (PGs) are important mediators of bone resorption and we have recently determined that acid-induced bone resorption is mediated by PGs. Utilizing neonatal mouse calvariae in culture, we found that decreasing pH by a reduction in bicarbonate concentration, a model of metabolic acidosis, induced an increase in net calcium efflux and in medium prostaglandin E2 (PGE2) levels, both of which were inhibited in the presence of indomethacin. There was a direct correlation between calcium flux and medium PGE2. If pH is lowered to a comparable degree by an increase in pCO2 to model respiratory acidosis, there was no significant stimulation of net calcium efflux from the calvariae and no stimulation of PGE2 production. We have also shown that metabolic acidosis alters osteoblastic expression of a specific osteoclastogenic factor, RANKL, and this response is also PG dependent. Incubation of calvariae in acid medium stimulated expression of RANKL RNA in parallel with the increased calcium flux. Both responses were inhibited in the presence of indomethacin. Thus metabolic, but not respiratory, acidosis induces production of bone PGE2, which mediates acid-induced bone resorption.  相似文献   

3.
4.
Fibroblast growth factor 2 (FGF-2 or basic FGF) is known to show variable actions on bone formation and bone resorption. This study was undertaken to elucidate the mechanisms whereby FGF-2 affects bone metabolism, especially bone resorption, using three different culture systems. FGF-2 at 10(-9) M and higher concentrations induced osteoclastic cell formation in the coculture system of mouse osteoblastic cells and bone marrow cells, and this induction was abrogated by nonsteroidal anti-inflammatory drugs (NSAIDs). 45Ca release from prelabeled cultured mouse calvariae stimulated by FGF-2 (10(-8) M) was also inhibited by NSAIDs, and the inhibition was stronger by NSAIDs, which are more selective for inhibition of cyclooxygenase 2 (COX-2) than COX-1, suggesting the mediation of COX-2 induction. COX-2 was highly expressed and its messenger RNA (mRNA) level was stimulated by FGF-2 in osteoblastic cells whereas it was undetectable or not stimulated by FGF-2 in cells of osteoclast lineage. To further investigate the direct actions of FGF-2 on osteoclasts, resorbed pit formation was compared between cultures of purified osteoclasts and unfractionated bone cells from rabbit long bones. FGF-2 (> or = 10(-12) M) stimulated resorbed pit formation by purified osteoclasts with a maximum effect of 2.0-fold at 10(-11) M, and no further stimulation was observed at higher concentrations. However, FGF-2 at 10(-9) M - 10(-8) M stimulated resorbed pit formation by unfractionated bone cells up to 9.7-fold. NS-398, a specific COX-2 inhibitor, did not affect the FGF-2 stimulation on purified osteoclasts but inhibited that on unfractionated bone cells. We conclude that FGF-2 at low concentrations (> or =10(-12) M) acts directly on mature osteoclasts to resorb bone moderately, whereas at high concentrations (> or = 10(-9) M) it acts on osteoblastic cells to induce COX-2 and stimulates bone resorption potently.  相似文献   

5.
PURPOSE OF REVIEW: This review presents our current understanding of the way metabolic acidosis induces calcium efflux from bone, and in the process, buffers additional systemic hydrogen ions associated with acidosis. RECENT FINDINGS: Acid-induced changes in bone mineral are consistent with a role for bone as a proton buffer. In response to metabolic acidosis in an in-vitro bone organ culture system, we observed a fall in mineral sodium, potassium, carbonate and phosphate, which each buffer protons and in vivo should increase systemic pH towards the physiologic normal. Initially, metabolic acidosis stimulates physicochemical mineral dissolution and subsequently cell-mediated bone resorption. Acidosis suppresses the activity of bone-resorbing cells, osteoblasts, decreasing gene expression of specific matrix proteins and alkaline phosphatase activity. There is concomitant acid stimulation of prostaglandin production by osteoblasts, which acting in a paracrine manner increases synthesis of the osteoblastic receptor activator of nuclear factor kappa B ligand (RANKL). The acid induction of RANKL then stimulates osteoclastic activity and recruitment of new osteoclasts to promote bone resorption and buffering of the proton load. Both the regulation of RANKL and acid-induced calcium efflux from bone are mediated by prostaglandins. SUMMARY: Metabolic acidosis, which occurs during renal failure, renal insufficiency or renal tubular acidosis, results in decreased systemic pH and is associated with an increase in urine calcium excretion. The apparent protective function of bone to help maintain systemic pH, which has a clear survival advantage for mammals, will come partly at the expense of its mineral stores.  相似文献   

6.
7.
Strontium ranelate is a new anti-osteoporosis treatment. This study showed that strontium ranelate stimulated PGE(2) production and osteoblastic differentiation in murine marrow stromal cells, which was markedly reduced by inhibition of COX-2 activity or disruption of COX-2 gene expression. Hence, some anabolic effects of strontium ranelate may be mediated by the induction of COX-2 and PGE(2) production. INTRODUCTION: Strontium ranelate is an orally active drug that reduces vertebral and hip fracture risk by increasing bone formation and reducing bone resorption. Strontium ranelate effects on bone formation are the result of increased osteoblastic differentiation and activity, but the mechanisms governing these effects are unknown. Based on previous work, we hypothesized that strontium ranelate increases cyclooxygenase (COX)-2 expression and that, consequently, the prostaglandin E(2) (PGE(2)) produced could mediate some effects of strontium ranelate on osteoblasts. MATERIALS AND METHODS: Marrow stromal cells (MSCs) from COX-2 wildtype (WT) and knockout (KO) mice were cultured with and without low-dose dexamethasone. Osteoblastic differentiation was characterized by alkaline phosphatase (ALP) activity, real-time PCR for ALP and osteocalcin (OCN) mRNA expression, and alizarin red staining for mineralization. Medium PGE(2) was measured by radioimmunoassay or enzyme immunoassay. RESULTS AND CONCLUSIONS: In MSCs from COX-2 WT mice, strontium ranelate significantly increased ALP activity, ALP and OCN mRNA expression, and mineralization after 14 or 21 days of culture. A short treatment at the beginning of the culture (0-7 days) with strontium ranelate was as effective as continuous treatment. Strontium ranelate (1 and 3 mM Sr(+2)) dose-dependently increased PGE(2) production, with maximum PGE(2) production occurring during the first week of culture. NS-398, a selective COX-2 inhibitor, blocked the strontium ranelate stimulation of PGE(2) production and significantly inhibited the strontium ranelate stimulation of ALP activity. In MSCs from COX-2 KO mice, the strontium ranelate stimulation of ALP and OCN mRNA expression and mineralization were markedly reduced compared with COX-2 WT cultures. Similar effects of strontium ranelate on osteoblastic markers and on PGE(2) production were seen when MSCs were cultured with or without low-dose dexamethasone (10 nM). We conclude that PGE(2) produced by the strontium ranelate induction of COX-2 expression plays a role in strontium ranelate-induced osteoblastic differentiation in MSCs in vitro.  相似文献   

8.
We have reported that cadmium (Cd) stimulates bone resorption via prostaglandin E2 (PGE2), which is mainly produced in osteoblasts. Prostaglandin (PGs) is regulated by arachidonic acid (AA) release by phospholipase A2 (PLA2) and its conversion to PGs by cyclooxygenase (COX). In the present study, we investigated the possibility that Cd-induced PGE2 synthesis was mediated through PLA2 or COX or both using primary mouse osteoblastic cells in serum-free medium. Cd at 1 microM and above stimulated 14C-AA release from 14C-AA-prelabeled osteoblastic cells. PLA2 activity of cytosolic fraction in Cd-treated cells preferentially hydrolyzed AA at the Sn2 position of phospholipids and was inhibited by arachidonyltrifluoromethyl ketone (AACOCF3), an inhibitor of cytosolic PLA2 (cPLA2). Cd at 1 microM and above increased cPLA2 activity and the level of constitutive cPLA2 mRNA. Secretory PLA2 mRNA was not detected. On the other hand, Cd at 1 microM and above stimulated PGE2 production and its production was inhibited by an inhibitor of COX-2 (NS-398). Cd at 1 microM and above markedly stimulated COX-2 mRNA expression and slightly increased the level of COX-1 mRNA. An inhibitor of COX-1 (varelylsalicylic acid) did not affect Cd-induced PGE2 production. In addition, Cd-induced PGE2 synthesis was inhibited by AA-COCF3, On the other hand, IL-1 alpha, an inducer of COX-2, did not stimulated PGE2 production in present culture system. When IL-1 alpha- or Cd-treated cells were incubated with AA for 10 minutes, IL-1 alpha-treated cells as well as Cd-treated ones caused an increase in PGE2 production. This suggests that the mechanism of Cd-induced PGE2 production is different from that of IL-1 alpha, which may require an activation of cPLA2. From these results, it was found that Cd by itself stimulated PGE2 production by two successive steps that Cd increased cPLA2 activity and then COX-2 induction.  相似文献   

9.
Cyclooxygenase-2 (COX-2) is highly expressed in osteoblasts, and COX-2 produced prostaglandins (PGs) can increase osteoblastic differentiation in vitro. The goal of this study was to examine effects of COX-2 expression on calvarial osteoblastic proliferation and apoptosis. Primary osteoblasts (POBs) were cultured from calvariae of COX-2 wild-type (WT) and knockout (KO) mice. POB proliferation was evaluated by (3)H-thymidine incorporation and analysis of cell replication and cell cycle distribution by flow cytometry. POB apoptosis was evaluated by annexin and PI staining on flow cytometry. As expected, PGE(2) production and alkaline phosphatase (ALP) activity were increased in WT cultures compared to KO cultures. In contrast, cell numbers were decreased in WT compared to KO cells by day 4 of culture. Proliferation, measured on days 3-7 of culture, was 2-fold greater in KO than in WT POBs and associated with decreased Go/G1 and increased S cell cycle distribution. There was no significant effect of COX-2 genotype on apoptosis under basal culture conditions on day 5 of culture. Cell growth was decreased in KO POBs by the addition of PGE(2) or a protein kinase A agonist and increased in WT POBs by the addition of NS398, a selective COX-2 inhibitor. In contrast, differentiation and cell growth in marrow stromal cell (MSC) cultures, evaluated by ALP and crystal violet staining respectively, were increased in MSCs from WT mice compared to MSCs from KO mice, and exogenous PGE(2) increased cell growth in KO MSC cultures. We conclude that PGs secondary to COX-2 expression decrease osteoblastic proliferation in cultured calvarial cells but increase growth of osteoblastic precursors in MSC cultures.  相似文献   

10.
Metabolic acidosis induces calcium efflux from bone and in the process buffers the additional hydrogen ions. Initially metabolic acidosis stimulates physicochemical mineral dissolution and then cell-mediated bone resorption. Acidosis increases activity of the bone resorbing cells, the osteoclasts, and decreases activity of the bone forming cells, the osteoblasts. Osteoblastic immediate early response genes are inhibited as are genes controlling matrix formation.  相似文献   

11.
12.
Prostaglandins E (especially PGE(2)) stimulate bone formation and increase bone mass in several species including man. The mechanism for this effect, the target cells, and the receptors involved are not known. Specific cell-surface receptors for PGE(2) (EP(1-4)) have been cloned and characterized. EP(4) was reported to be the major receptor in embryonic and neonatal bone tissue in mice, especially in preosteoblasts; however, no data are available regarding its expression in adult bone. This study examines the expression of EP(4) in bone tissue of young adult rats, in which PGE(2) is markedly anabolic, and in various osteoblastic cell lines. Using northern blot analysis, we found that osteoblastic cell lines RCT-1, RCT-3, TRAB-11, and RP-1, primary osteoblastic cells harvested from fetal rat calvaria, as well as tibiae and calvariae of 5-week-old rats express 3.8 kb EP(4) messenger RNA (mRNA). Treatment of periosteal cells (RP-1) in vitro with 10(-6) mol/L PGE(2) increased the levels of both EP(4) mRNA and EP(4) protein, peaking at 1-2 h. Similarly, systemic administration of an anabolic dose of PGE(2) (3-6 mg/kg) to young adult rats upregulated the expression of EP(4) in the tibia and calvaria, also peaking at 1-2 h. Using in situ hybridization, we found increased expression of EP(4) in bone marrow cells of the tibial metaphysis in response to systemic PGE(2) treatment. The preosteoblastic nature of these EP(4)-expressing cells was suggested by the fact that dexamethasone-treated bone marrow stromal cells in culture express EP(4) mRNA, which is upregulated by PGE(2). Northern blot analysis failed to detect both basal and PGE(2)-induced EP(2) mRNA in the bone samples or cell lines tested. Taken together, these data implicate EP(4) as the major cyclic AMP-related PGE(2) receptor subtype expressed in bone tissue and osteoblastic cells and indicate that this receptor is upregulated by its ligand, PGE(2).  相似文献   

13.
Involvement of IL-8 in COX-2-mediated bone metastases from breast cancer   总被引:7,自引:0,他引:7  
BACKGROUND: Cyclooxygenase-2 (COX-2) overexpression by a primary tumor correlates with poor prognosis in breast cancer, including early spread to bone. Interleukin-8 (IL-8) stimulates osteoclastogenesis and resorption of bone, and elevated IL-8 levels predict early metastatic spread of breast cancer. The purpose of this study was to test our hypothesis that tumors that overexpress COX-2 induce IL-8 production. MATERIALS AND METHODS: We cotransfected MCF-10A (nonmalignant breast epithelial) cells, as well as MDA-231 (highly metastatic human breast cancer) cell lines with a pSG5-COX-2 vector and pEF1a-Luc-IRES-Neo vector (luciferase reporter). COX-2 overexpression was confirmed by Western blot and PGE2 (a product of the COX-2 pathway) immunoassay. IL-8 production was measured by immunoassay. In vivo testing used a nude mouse model to measure COX-2 and IL-8 production from breast cancer cells that had metastasized to bone (bone-seeking clones (BSCs)). Long bone metastases were localized and quantified by luciferase imaging (Xenogen IVIS system) and X-ray. BSCs were isolated and cultured and then tested for the production of PGE2 and IL-8. RESULTS: COX-2 overexpression caused a 4- to 5-fold increase in IL-8 production in both MCF-10A and MDA-231 cells in vitro. In vivo, we observed that the MDA-231-BSC (metastatic cells isolated from bone metastases) produced significantly greater levels of both PGE2 and IL-8 compared to the parental MDA-231 cells (P < 0.01). In contrast to the results obtained with these estrogen receptor-negative cell lines, COX-2 expression failed to induce IL-8 in the MCF-7 estrogen receptor-positive breast cancer cell line. Treatment with the COX-2 inhibitor NS-398 at a low 1-mu[scap]M dose reduced the production of IL-8 in COX-2-transfected MDA-231 cells by 30%, thus confirming the involvement of COX-2 in IL-8 induction. CONCLUSION: COX-2 expression induced formation of PGE2 and IL-8 in breast cancer cells. Since PGE2 and IL-8 stimulate osteoclasts to resorb bone, COX-2 inhibition is a potential target for treatment to prevent bone metastases.  相似文献   

14.
15.
Amphotericin B is a polyene antifungal agent that binds to membrane sterols, creating aqueous pores that permit ion fluxes sufficient to cause cell lysis. It has also been shown to alter ion transport in mammalian cells, including proton secretion from renal tubular cells. The latter effect can lead to distal renal tubular acidosis in patients treated for systemic fungal infections. Based on the understanding that osteoclast-mediated bone resorption is dependent on proton secretion, we examined the effect of amphotericin B on calcium efflux from neonatal mouse calvariae in organ culture. Amphotericin B (5 micrograms/ml) stimulated net calcium efflux from calvariae within 24 h to a level almost as great as that produced by a maximally effective concentration of parathyroid hormone. The stimulated calcium efflux was completely inhibited by both 10 ng/ml salmon calcitonin, a physiologic inhibitor of osteoclast activity, and 4 x 10(-4) M acetazolamide, a specific inhibitor of carbonic anhydrase, the enzyme necessary for substantial proton generation by osteoclasts. These results indicate a direct effect of amphotericin B on bone in vitro to stimulate osteoclast-mediated calcium efflux.  相似文献   

16.
The mechanism of bone resorption induced by interleukin 1 (IL-1) was examined in mice using three different in vitro assay systems: a fetal long bone organ culture system, a bone marrow culture system, and a coculture system of primary osteoblastic cell populations and spleen cells. In the organ culture system, recombinant human IL-1 alpha (rhIL-1 alpha) increased both bone resorption and osteoclast number. Both were partially suppressed in the presence of indomethacin. In the marrow culture, both rhIL-1 alpha and rhIL-1 beta stimulated osteoclastlike cell formation, which was completely inhibited by adding indomethacin concurrently. Furthermore, there was a good correlation between the number of osteoclastlike cells formed and the amount of prostaglandin E2 (PGE2) released into the culture media. This indicates that PGE2 is involved in the mechanism of IL-1-mediated osteoclastlike cell formation. In the coculture of primary osteoblastic cell populations and spleen cells, rhIL-1 again stimulated osteoclastlike cell formation, which was inhibited by adding indomethacin. In the cocultures in which direct interaction between osteoblastic cells and spleen cells was inhibited, PGE2 synthesis was similarly increased but no osteoclastlike cells were formed. These results indicate that IL-1 induces osteoclast formation by a mechanism involving PG (most likely PGE2). Furthermore, direct interaction between osteoclast progenitors and osteoblastic cells is required in the osteoclast recruitment induced by IL-1.  相似文献   

17.
Cyclooxygenase-2 (COX-2) knockout (KO) mice in inbred strains can have renal dysfunction with secondary hyperparathyroidism (HPTH), making direct effects of COX-2 KO on bone difficult to assess. COX-2 KO mice in an outbred CD-1 background did not have renal dysfunction but still had two-fold elevated PTH compared to wild type (WT) mice. Compared to WT mice, KO mice had increased serum markers of bone turnover, decreased femoral bone mineral density (BMD) and cortical bone thickness, but no differences in trabecular bone volume by μCT or dynamic histomorphometry. Because PTH is a potent inducer of COX-2 and prostaglandin (PG) production, we examined the effects of COX-2 KO on bone responses after 3 weeks of intermittent PTH. Intermittent PTH increased femoral BMD and cortical bone area more in KO mice than in WT mice and increased trabecular bone volume in the distal femur in both WT and KO mice. Although not statistically significant, PTH-stimulated increases in trabecular bone tended to be greater in KO mice than in WT mice. PTH increased serum markers of bone formation and resorption more in KO than in WT mice but increased the ratio of osteoblastic surface-to-osteoclastic surface only in KO mice. PTH also increased femoral mineral apposition rates and bone formation rates in KO mice more than in WT mice. Acute mRNA responses to PTH of genes that might mediate some anabolic and catabolic effects of PTH tended to be greater in KO than WT mice. We conclude that (1) the basal bone phenotype in male COX-2 KO mice might reflect HPTH, COX-2 deficiency or both, and (2) increased responses to intermittent PTH in COX-2 KO mice, despite the presence of chronic HPTH, suggest that absence of COX-2 increased sensitivity to PTH. It is possible that manipulation of endogenous PGs could have important clinical implications for anabolic therapy with PTH.  相似文献   

18.
Aseptic loosening is a major complication of prosthetic joint surgery and is manifested as chronic inflammation, pain, and osteolysis at the bone implant interface. The osteolysis is believed to be driven by a host inflammatory response to wear debris generated from the implant. In our current study, we use a selective inhibitor (celecoxib) of cyclo-oxygenase 2 (COX-2) and mice that lack either COX-1 (COX-1-/-) or COX-2 (COX-2-/-) to show that COX-2, but not COX-1, plays an important role in wear debris-induced osteolysis. Titanium (Ti) wear debris was implanted surgically onto the calvaria of the mice. An intense inflammatory reaction and extensive bone resorption, which closely resembles that observed in patients with aseptic loosening, developed within 10 days of implantation in wild-type and COX-1-/- mice. COX-2 and prostaglandin E2 (PGE2) production increased in the calvaria and inflammatory tissue overlying it after Ti implantation. Celecoxib (25 mg/kg per day) significantly reduced the inflammation, the local PGE2 production, and osteolysis. In comparison with wild-type and COX-1-/- mice, COX-2-/- mice implanted with Ti had a significantly reduced calvarial bone resorption response, independent of the inflammatory response, and significantly fewer osteoclasts were formed from cultures of their bone marrow cells. These results provide direct evidence that COX-2 is an important mediator of wear debris-induced osteolysis and suggests that COX-2 inhibitors are potential therapeutic agents for the prevention of wear debris-induced osteolysis.  相似文献   

19.
The cortical collecting duct (CCD) is a major site of intrarenal prostaglandin E2 (PGE2) synthesis. This study examines the expression and regulation of the prostaglandin synthesizing enzymes cyclooxygenase-1 (COX-1) and -2 in the CCD. By indirect immunofluorescence using isoform-specific antibodies, COX-1 and -2 immunoreactivity was localized to all cell types of the murine M-1 CCD cell line. By immunohistochemistry, both COX-1 and COX-2 were localized to intercalated cells of the CCD on paraffin-embedded mouse kidney sections. When COX enzyme activity was measured in the M-1 cells, both indomethacin (COX-1 and -2 inhibitor) and the specific COX-2 inhibitor NS-398 effectively blocked PGE2 synthesis. These results demonstrate that COX-2 is the major contributor to the pool of PGE2 synthesized by the CCD. By Western blot analysis, COX-2 expression was significantly upregulated by incubation with either indomethacin or NS-398. These drugs did not affect COX-1 protein expression. Evaluation of COX-2 mRNA expression by Northern blot analysis after NS-398 treatment demonstrated that the COX-2 protein upregulation occurred independently of any change in COX-2 mRNA expression. These studies have for the first time localized COX-2 to the CCD and provided evidence that the intercalated cells of the CCD express both COX-1 and COX-2. The results also demonstrate that constitutively expressed COX-2 is the major COX isoform contributing to PGE2 synthesis by the M-1 CCD cell line. Inhibition of COX-2 activity in the M-1 cell line results in an upregulation of COX-2 protein expression.  相似文献   

20.
Recombinant human interleukin-6 (IL-6) was assessed for its ability to stimulate bone resorption in prelabeled mouse calvariae in vitro. IL-6 had no effect on bone resorption at concentrations ranging from 300 to 10,000 U/ml (3-1000 pg/ml). Neither the presence of indomethacin nor prolonged incubation periods (96 h) affected this result. IL-6 did not affect resorption stimulated by human recombinant IL-1 alpha (rIL-1 alpha) but inhibited resorption stimulated by parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3]. rIL-1 alpha, PTH, and 1,25-(OH)2D3 induced IL-6 release by calvariae. We conclude from these studies that IL-6 does not stimulate bone resorption in neonatal mouse calvariae. However, it may act as a locally produced inhibitor and therefore a paracrine regulator of bone resorption induced by osteotropic hormones. IL-6 could also function as a long-range stimulator of systemic reactions and acute-phase responses to local inflammatory and neoplastic lesions in bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号