首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synaptic inputs to motoneurons innervating the back and abdominal muscles in the lumbar part of the body from low-threshold hindlimb muscle afferents were studied in unanesthetized low-spinal cats. At a stimulus intensity of 1.2-1.5x threshold (T), which was sufficient to activate only group-I afferents, the incidence of post-synaptic potentials (PSPs) was higher when stimulating proximal muscle nerves than when stimulating distal muscle nerves (e.g., 52% versus 22% for motoneurons innervating m. iliocostalis lumborum: Ilio MNs; 38% versus 18% for motoneurons innervating m. obliquus externus: OEA MNs). At 2-5 T, at which group-II as well as group-I muscle afferents were presumably stimulated, the PSP incidence increased irrespective of nerves stimulated (e.g., 76% for Ilio MNs; 60% for OEA MNs). The minimal central latencies of EPSPs evoked at 1.2-1.5 T ranged 0.8-16.7 ms for Ilio motoneurons and 1.4 -14.2 ms for OEA motoneurons, indicating that the connection between back and abdominal motoneurons and low-threshold afferents from the hindlimb muscle include a monosynaptic one. The latencies of IPSPs were longer and ranged 1.9-18.8 ms for Ilio motoneurons and 2.4-15.8 ms for OEA motoneurons. Input patterns from various hindlimb muscles varied among individual motoneurons, even though they were within the same motoneuron pool. Such synaptic organization seems to differ from that for the leg motoneuron pool. The overall projection pattern of low-threshold afferents from leg muscles to lumbar back and abdominal motoneurons nevertheless suggests that group-I afferent inputs are related to lateral and vertical movements, and that group-II afferent inputs control the stiffness of the trunk.  相似文献   

2.
Previous studies (Wada and Kanda 2001, Exp Brain Res 136:263–263; Wada et al. 1999, Exp Brain Res 128:543–549) demonstrated that input patterns from hindlimb muscles and cutaneous afferents vary among individual trunk muscle motoneurons. The purpose of the present study was to examine the relationship between the synaptic pattern from hindlimb afferents and the area innervated by motoneurons. Histologic study of m. longissimus lumborum (Long) indicated that the distribution of different fiber types (slow-twitch oxidative, SO; fast-twitch oxidative glycolytic, FOG; fast-twitch glycolytic, FG) depends on the area of the Long cross-section. The ventromedial area and dorsolateral area of the cross-section possess a high content of SO and FG, respectively. The motoneurons innervating the dorsolateral area receive muscle afferent inputs mainly from the ipsilateral side, while the motoneurons innervating the ventromedial area often receive bilateral afferent inputs. The motoneurons innervating the dorsolateral area receive excitatory post-synaptic potentials from cutaneous nerves on both sides. These findings indicate that the effects of afferent inputs from the hindlimbs are related to motoneuron type or the area innervated by the motoneurons.  相似文献   

3.
(1) We studied the reflex actions of group I and II afferents to longissimus lumborum (Long) motoneurons in the L1–L5 spinal segments from the epaxial muscle, m. Long, and the hypaxial muscle, m. obliquus externus abdominus (OEA). (2) Postsynaptic potentials (PSPs) recorded from 140 Long motoneurons in 30 spinal cats were analyzed. Under the present experimental conditions, the stimulation of Long and OEA nerves at an intensity below 1.5 times threshold (T) activated only group I muscle afferents, while stimulations at 2–5T activated group II muscle afferents as well. (3) The incidence of PSPs was related to the proximity of the spinal segments of the nerves stimulated to the spinal segment of the motoneurons; the shorter the distance the larger the PSPs and higher incidence of PSPs. The Long motoneurons received group I afferent input mainly from the same and adjacent segments, and received group II afferent inputs from a wider range of segments. (4) A short (i.e., less than 1.0 ms) latency of excitatory PSPs (EPSPs) evoked by ipsilateral group I afferents of Long at the same or adjacent segment indicated a monosynaptic connection. In general, the central latencies became longer as the distance between spinal segments of stimulated nerves and motoneurons increased. Major PSP components were produced by polysynaptic neuronal pathways. The spatial facilitation between PSPs evoked by afferents of different nerves (i.e., ipsilateral Long (iLong) and contralateral Long (cLong) of the same segment; iLongs of different segments; and iLong and iOEA of the same segment) indicated that they shared common interneurons. (5) Although iLong and iOEA muscle afferents produced predominantly EPSPs, and contralateral muscle afferents elicited predominantly IPSPs in Long motoneurons at each spinal segment, the patterns of convergence from Long and OEA muscle afferents of different spinal segments and of different sides differed considerably among motoneurons. (6) These findings demonstrated various input patterns of individual motoneurons within the same motoneuron pool, which might reflect the complexity of neuronal control of the back muscles for various trunk movements, including lateral and dorsal bending, rotating, and fixation of the trunk. Electronic Publication  相似文献   

4.
The aims of the study were twofold: (1) to verify the hypothesis that neurons in the fastigial nucleus excite and inhibit hindlimb alpha-motoneurons and (2) to determine both the supraspinal and spinal relays of these actions. Axons of fastigial neurons were stimulated at the level of their decussation in the cerebellum, within the hook bundle of Russell, in deeply anesthetized cats with only the right side of the spinal cord intact. The resulting excitatory postsynaptic potentials and inhibitory postsynaptic potentials were analyzed in motoneurons on the left side of the lumbar enlargement. Postsynaptic potentials evoked by the first effective stimulus were induced at latencies <2 ms from descending volleys and <1 ms from interneuronally relayed volleys, indicating a trisynaptic coupling between the fastigial neurons and alpha-motoneurons, via commissural interneurons on the right side. Cerebellar stimulation facilitated the synaptic actions of both vestibulospinal and reticulospinal tract fibers. However, the study leads to the conclusion that trisynaptic fastigial actions are mediated via vestibulospinal rather than reticulospinal tract fibers [stimulated within the lateral vestibular nucleus (LVN) and the medial longitudinal fascicle (MLF), respectively]. This is indicated firstly by collision between descending volleys induced by cerebellar stimulation and volleys evoked by LVN stimuli but not by MLF stimuli. Second, similar cerebellar actions were evoked before and after a transection of MLF. Mutual facilitation between the fastigial and reticulospinal, as well as between the fastigial and vestibulospinal actions, could be due to the previously reported integration of descending vestibulospinal and reticulospinal commands by spinal commissural interneurons.  相似文献   

5.
6.
Summary The effects of two supraspinal systems on transmission through a short latency hindlimb cutaneous reflex pathway were studied in cats anesthetized with pentobarbital or -chloralose. Fleshman et al. (1984) described a mixed excitatoryinhibitory input from low threshold superficial peroneal (SP) afferents to flexor digitorum longus (FDL) motoneurons with central latencies so short as to suggest a disynaptic component in the initial excitatory phase of the PSP. In the present study, conditioning stimulation of either the red nucleus (RN) or the pyramidal tract (PT) caused a marked decrease in latency and increase in amplitude of both the excitatory and inhibitory components of the SP PSP in FDL motoneurons and several other motoneuron species. The minimal central latencies of the conditioned initial excitatory phase of the PSPs were on the order of 1.5 ms, consistent with the possibility of a disynaptic linkage. The facilitatory effects of RN and PT conditioning were observed in both anesthetic conditions, although preparation-specific differences in latency were observed. Lesion experiments suggested that the interneurons involved in this pathway are located caudal to the L5 segment, most likely in segments L6 and L7.  相似文献   

7.
Summary The pad and the plantar surface of the foot were stimulated electrically in thalamic cats. Weak stimulation evoked an extensor reflex in the animal at rest. The same stimuli in a spontaneously walking animal applied during the stance phase produced an increase both in amplitude and duration of the ongoing extensor activity. When given during the swing phase, the stimuli either prolonged the ongoing flexor activity and/or shortened the following extensor burst. These changes in flexor and extensor burst duration were reflected in changes in the step cycle duration.Similar results were seen with direct stimulation of the sural nerve. For the latter experiments the ipsilateral hindlimb was fixed and denervated except for the ankle extensors and flexors, which showed rhythmic contractions correlated normally with the walking movements of the three remaining limbs. At rest, threshold stimulation of the sural nerve evoked a reflex contraction in the triceps surae of the fixed leg. The same stimuli applied during the contraction phase of the fixed triceps surae during walking resulted in a larger and longer extensor contraction and a delay of the following flexion. Stimulation during the relaxation phase of the fixed triceps surae reduced the duration of the following contraction phase. The findings are discussed in relation to the possible role of cutaneous input during locomotion.  相似文献   

8.
Summary Cross-correlations between stimuli delivered to peripheral nerves and the discharges of single, voluntarily activated, motor units can provide information about facilitatory and inhibitory projections to single spinal motoneurons in man. The projection frequency, under the given circumstances, of a facilitatory or inhibitory pathway can be obtained from the proportion of the sampled motor units of a given muscle showing the facilitatory or inhibitory effect. Deductions about the shape and relative amplitude of the underlying post-synaptic potentials can be made from the profile of the changes in firing probability. This technique has been used to explore the projections of low threshold muscle afferents to motoneurons of various leg muscles in man. Homonymous facilitation was demonstrated to all the sampled motor units of soleus (SOL), medial gastrocnemius (MG), tibialis anterior (TA) and vastus medialis (VM) and is presumed to represent the effects of the composite muscle spindle group Ia EPSP. Heteronymous facilitation was demonstrated between certain synergists. The projection frequency was less and the magnitude of the change in firing probability was smaller than for homonymous facilitation. SOL motoneurons, however, were not facilitated from low threshold afferents in the medial gastrocnemius nerve. Reciprocal inhibition was demonstrated between certain antagonists. The majority of the sampled motor units of SOL, however, were facilitated from low threshold afferents in the common peroneal nerve. The threshold for this facilitation was higher than for the homonymous facilitation elicited from this nerve and thus a different class of afferents and/or intercalated interneurons may be involved. There are projections across the knee joint in man. Motor units in vastus medialis (VM) were facilitated from low threshold afferents in the common peroneal nerve. It is likely that these reflex connections, which differ from those in other species, reflect the functional relationships between various lower limb muscles in man.  相似文献   

9.
Summary Changes in the firing probability of single motor units in response to electrical stimulation of muscle nerves and to tendon taps were used to derive the projections of large muscle afferents to the motoneurons of various thigh muscles in man. Homonymous facilitation was demonstrated to virtually all of the sampled motor units of biceps (BI), semitendinosus (ST), vastus lateralis (VL) and vastus medialis (VM). Heteronymous facilitation was readily demonstrated between VM and VL but was never obtained from ST to BI and never unequivocally obtained from BI to ST. Reciprocal inhibition was demonstrated from femoral nerve afferents to all of the sampled units of BI, and ST but reciprocal inhibition of VM or VL was never obtained from BI afferents and infrequently from ST afferents. These projections of group I afferents in man show certain specific differences from those of the cat and baboon that may reflect the normal function of the limb.  相似文献   

10.
1. Recurrent collaterals of motoneurons innervating muscles that have a role in control of the hindlimb digits were studied with neuroanatomic tracing methods to determine whether these motoneurons have simple recurrent collateral arbors in comparison with those of hip, knee, and ankle muscles. 2. Motoneurons innervating the hindlimb muscles plantaris (Pln), flexor hallucis longus (FHL), or flexor digitorum longus (FDL) were injected with 10% horseradish peroxidase. Recurrent collaterals were reconstructed from serial transverse sections. 3. No recurrent collaterals were observed in a sample of 10 FDL motoneurons. 4. FHL motoneurons had simple recurrent collateral arbors as assessed by number of first-order collaterals, number of collateral swellings, number of end branches, and the highest-order branch of individual collateral trees. Recurrent collateral arbors of Pln motoneurons were more complex than those of FHL motoneurons. Pln and FHL recurrent collateral arbors were less complex than those described for gastrocnemius-soleus, anterior tibial, and posterior biceps motoneurons. 5. These anatomic findings correspond well with electrophysiological results indicating that the recurrent inhibition produced by FHL motoneurons is weak and that FDL motoneurons do not produce recurrent inhibition. In addition, Pln motoneurons are reported to produce stronger recurrent inhibition than FHL motoneurons in many motor pools. 6. Consideration of these results with respect to the mechanical actions and patterns of motor activity observed in FDL, FHL, and Pln suggests that the complexity of recurrent collaterals of a motoneuron pool and the extent of its contribution to recurrent inhibition diminish with its involvement in the individualized control of the digits.  相似文献   

11.
1. Reflex responses were elicited in muscles that act at the ankle by electrical stimulation of low-threshold afferents from the foot in human subjects who were reclining supine. During steady voluntary contractions, stimulus trains (5 pulses at 300 Hz) were delivered at two intensities to the sural nerve (1.2-4.0 times sensory threshold) or to the posterior tibial nerve (1.1-3.0 times motor threshold for the intrinsic muscles of the foot). Electromyographic (EMG) recordings were made from tibialis anterior (TA), peroneus longus (PL), soleus (SOL), medial gastrocnemius (MG), and lateral gastrocnemius (LG) muscles by the use of intramuscular wire electrodes. 2. As assessed by averages of rectified EMG, stimulation of the sural or posterior tibial nerves at nonpainful levels evoked a complex oscillation with onset latencies as early as 40 ms and lasting up to 200 ms in each muscle. The most common initial responses in TA were a decrease in EMG activity at an onset latency of 54 ms for sural stimuli, and an increase at an onset latency of 49 ms for posterior tibial stimuli. The response of PL to stimulation of the two nerves began with a strong facilitation of 44 ms (sural) and 49 ms (posterior tibial). With SOL, stimulation of both nerves produced early inhibition beginning at 45 and 50 ms, respectively. With both LG and MG, sural stimuli produced an early facilitation at 52-53 ms. However, posterior tibial stimuli produced different initial responses in these two muscles: facilitation in LG at 50 ms and inhibition in MG at 51 ms. 3. Perstimulus time histograms of the discharge of 61 single motor units revealed generally similar reflex responses as in multiunit EMG. However, different reflex components were not equally apparent in the responses of different single motor units: an individual motor unit could respond slightly differently with a change in stimulus intensity or background contraction level. The multiunit EMG record represents a global average that does not necessarily depict the precise pattern of all motor units contributing to the average. 4. When subjects stood erect without support and with eyes closed, reflex patterns were seen only in active muscles, and the patterns were similar to those in the reclining posture. 5. It is concluded that afferents from mechanoreceptors in the sole of the foot have multisynaptic reflex connections with the motoneuron pools innervating the muscles that act at the ankle. When the muscles are active in standing or walking, cutaneous feedback may play a role in modulating motoneuron output and thereby contribute to stabilization of stance and gait.  相似文献   

12.
Effects of noxious stimulation of the skin by radiant heat were tested on responses of first order interneurones in reflex pathways from group II muscle afferents in mid-lumbar, lower-lumbar and sacral segments of the spinal cord. In mid- and lower-lumbar segments both background discharges and monosynaptically evoked responses of intermediate zone interneurones were facilitated. Those of mid-lumbar dorsal horn interneurones were also facilitated suggesting that both these interneuronal populations contribute to the facilitation of flexion reflexes by nociceptors. In contrast, the dominating effects of noxious heat on sacral dorsal horn group II interneurones were inhibitory. The effects evoked by selective activation of C fibres, after A-delta fibres had been blocked by TTX, were similar to those obtained before TTX application.  相似文献   

13.
In high spinal paralyzed cats the effect of cutaneous nerve stimulation on lumbar motoneurons was investigated during fictive locomotion. EPSPs evoked from the cutaneous afferents were generally larger during the active phase of the motoneurones, while IPSPs tended to increase during the reciprocal phase. In some cases EPSPs occurred during the active phase, while IPSPs dominated during the reciprocal phase. Apparently, the transmission in the excitatory and inhibitory segmental reflex pathways from cutaneous afferents to α-motoneurones depends on the phase of the step cycle, but there is no general phase dependent alternating switching between these two pathways.  相似文献   

14.
15.
1. The aim of the present study was to identify the type of spinal afferents involved in the generation of the long-latency response in intrinsic human hand muscles. Position-controlled extensions were imposed on the index finger or on the wrist of healthy subjects who were exerting a steady voluntary flexion force at the relevant joint. Averaged surface electromyographic (EMG) responses of the first dorsal interosseus muscle (FDI) or of the wrist flexors were evaluated with respect to latency and size. 2. Small transient angular displacements of the index finger (1 degree, as measured at the metacarpophalangeal joint), which are supposed to excite primary rather than secondary afferents, evoked two clearly discernible EMG responses with mean latencies of 32.3 ms (M1 response) and 54.7 ms (M2 response), respectively. The size of the M2 response exceeded the size of the M1 response by 60%. In the wrist flexors, transient stretch (1 degree) gave rise to a large M1 response (latency 22.8 ms) and a small, inconstent M2 response. 3. Small-amplitude vibration of the index finger elicited EMG responses in the FDI that were qualitatively and quantitatively similar to those seen in response to small transient stretches of the index finger. This was also true for fast ramp-and-hold stretches (stretch velocity 400 degrees/s, amplitude 5 degrees), whereas slow ramp-and-hold stretches (125 degrees/s, 5 degrees) elicited predominantly M2 responses. 4. In the FDI, the mechanical threshold of the M1 and M2 response to the transient angular displacement was approximately 0.15 degrees, with a tendency for the M2 response to appear at a lower threshold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
Peroneal motoneurons were recorded intracellularly in anesthetized cats during sustained submaximal contractions of peroneus brevis muscle (PB) elicited by repetitive electrical stimulation of motor axons in the distal portion of cut ventral root filaments. Mechanical stimulation of the territory innervated by the superficial peroneal nerve (SP) was applied during contraction to assess the influence of afferents from this territory on the contraction-induced excitation of motoneurons. In 21 peroneal motoneurons in which PB contraction evoked excitatory potentials, a stimulation engaging mechanoreceptors located in the skin around toes was found to either enhance (in 12 motoneurons) or reduce (in 9 motoneurons) the contraction-induced excitatory potentials. Among positive effects, six showed simple summation of the responses to each individual stimulus, suggesting a convergence of afferent pathways on motoneurons. In six other motoneurons, complex interactions were observed, as may result from convergence at a premotoneuronal level. Among negative effects, a single instance was observed of inhibitory facilitation, as may result from convergence of cutaneous and muscular, possibly Ib, afferents on inhibitory interneurons. Several pathways, mediating either facilitory or inhibitory influences, are available for cooperation of muscle and cutaneous input, allowing flexibility of motoneuron activation in different tasks.  相似文献   

18.
The responses of 11 individual motoneurons, the muscle to which each projected, plus all other muscles in the anterior thigh of the cat, were recorded following single non-noxious electrical stimuli to cutaneous nerves while the intact animal walked on a treadmill. The various excitatory and/or inhibitory responses were qualitatively similar for stimuli within the range 1.1-10 times threshold for group I fibers in the stimulated nerve (usually saphenous). Monarticular knee extensor muscles in the vastus group and their motoneurons were usually inhibited in the period 10- to 25-ms poststimulus. The faster contracting vastus medialis and lateralis muscles tended to have an excitatory rebound at approximately 25- to 40-ms poststimulus that was confined to the stance phase of the step cycle when these muscles were normally active. Biarticular hip flexor muscles rectus femoris and both the anterior and medial parts of sartorius and their motoneurons all had similar bimodal excitatory responses, including an early period 3- to 18-ms poststimulus and a later period 20- to 35-ms poststimulus. The short-latency excitatory responses appeared to be proportional to the normal recruitment of the muscles in the step cycle, whereas the long-latency responses tended to be phase advanced with respect to normal recruitment. Motoneurons projecting to muscles with two excitatory peaks tended to have similar excitatory responses at both latencies and occasionally responded at both latencies to a single stimulus.  相似文献   

19.
Summary This study investigated the nature of synaptic inputs from the Forel's field H (FFH) in the medial mesodiencephalic junction to inferior oblique (IO) motoneurons in the oculomotor nucleus and superior oblique (SO) motoneurons in the trochlear nucleus in anesthetized cats, using intracellular recording techniques. Stimulation of the FFH induced monosynaptic EPSPs in IO motoneurons on both sides. Paired stimulation of the ipsilateral FFH and contralateral vestibular nerve substantiated that the FFH-induced EPSPs were caused mainly by direct excitatory fibers from the FFH to IO motoneurons and partly by axon collaterals of excitatory neurons in the vestibular nuclei. Among parts of the FFH, the medial part was most effective for producing the EPSPs. Systematic tracking with the stimulating electrode in and around the FFH revealed that effective sites of stimulation inducing negative field potentials in the IO subdivision of the oculomotor nucleus, identified as extracellular counterparts of the EPSPs in IO motoneurons, were also located in the interstitial nucleus of Cajal, nearby reticular formation and posterior commissure, besides within and near the medial part of the FFH. Areas far rostral, dorsal and ventral to the FFH were ineffective. EPSP-IPSPs or EPSPs were mainly induced in SO motoneurons on both sides by FFH stimulation. Latencies of these EPSPs and IPSPs were close to those of the EPSPs in IO motoneurons, indicating their monosynaptic nature. Effective stimulation sites for inducing these synaptic potentials overlapped those for the EPSPs in IO motoneurons. Based on these results, it was suggested that excitatory and inhibitory premotor neurons directly controlling IO and SO motoneurons were located within and near the medial part of the FFH.  相似文献   

20.
1. We previously demonstrated in the spinal cat that superficial peroneal cutaneous nerve stimulation produced strong reflex contraction in tibialis anterior (TA) and semitendinosus (St) muscles but unexpectedly produced mixed effects in another physiological flexor muscle, extensor digitorum longus (EDL). The goal of the present study was to further characterize the organization of ipsilateral cutaneous reflexes by examining the postsynaptic potentials (PSPs) produced in St, TA, and EDL motoneurons by superficial peroneal and saphenous nerve stimulation in decerebrate, spinal cats. 2. In TA and St motoneurons, low-intensity cutaneous nerve stimulation that activated only large (A alpha) fibers [i.e., approximately 2-3 times threshold (T)], typically produced biphasic PSPs consisting of an initial excitatory phase and subsequent inhibitory phase (EPSP, IPSP). Increasing the stimulus intensity to activate both large (A alpha) and small (A delta) myelinated cutaneous fibers supramaximally (15-45 T) tended to enhance later excitatory components in TA and St motoneurons. 3. In EDL motoneurons, 2-3 T stimulation of the superficial peroneal nerve evoked initial inhibition (of variable magnitude) in 7/10 EDL motoneurons tested, with either excitation (n = 2) or mixed effects (n = 1) observed in the remaining EDL motoneurons. Saphenous nerve stimuli produced excitation either alone, or preceded by an inhibitory phase in EDL. Increasing the stimulus intensity enhanced later inhibitory influences from superficial peroneal and excitatory influences both from superficial peroneal and saphenous nerve inputs in EDL motoneurons. 4. Short-latency (less than 1.8 ms) EPSPs were observed in a few motoneurons in all reflex pathways examined, except for EPSPs in EDL motoneurons evoked by saphenous stimulation. IPSPs with central latencies less than 1.8 ms were also produced by both saphenous (TA, n = 1; EDL, n = 2) and superficial peroneal (EDL, n = 4) nerve stimulation. 5. The results, in comparison with other reports employing spinal and nonspinal preparations, suggest that removal of influences from higher centers reveals inhibitory circuits from the superficial peroneal and saphenous nerves to EDL motoneurons in the spinal preparation. The inhibitory inputs observed are thought to reflect the activation of "specialized" reflex pathways. Additionally, the demonstration of short-latency EPSPs and IPSPs suggest that the minimal linkage in both the excitatory and inhibitory cutaneous reflex pathways examined is disynaptic. The results are discussed in relation to previous studies on classically conditioned flexion reflex facilitation in spinal cat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号