首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xin X  Hussain M  Mao JJ 《Biomaterials》2007,28(2):316-325
Nanofibers have recently gained substantial interest for potential applications in tissue engineering. The objective of this study was to determine whether electrospun nanofibers accommodate the viability, growth, and differentiation of human mesenchymal stem cells (hMSCs) as well as their osteogenic (hMSC-Ob) and chondrogenic (hMSC-Ch) derivatives. Poly(d,l-lactide-co-glycolide) (PLGA) beads with a PLA:PGA ratio of 85:15 were electrospun into non-woven fibers with an average diameter of 760+/-210 nm. The average Young's modulus of electrospun PLGA nanofibers was 42+/-26 kPa, per nanoindentation with atomic force microscopy (AFM). Human MSCs were seeded 1-4 weeks at a density of 2 x 10(6)cells/mL in PLGA nanofiber sheets. After 2 week culture on PLGA nanofiber scaffold, hMSCs remained as precursors upon immunoblotting with hKL12 antibody. SEM taken up to 7 days after cell seeding revealed that hMSCs, hMSC-Ob and hMSC-Ch apparently attached to PLGA nanofibers. The overwhelming majority of hMSCs was viable and proliferating in PLGA nanofiber scaffolds up to the tested 14 days, as assayed live/dead tests, DNA assay and BrdU. In a separate experiment, hMSCs seeded in PLGA nanofiber scaffolds were differentiated into chodrogenic and osteogenic cells. Histological assays revealed that hMSCs continuously differentiated into chondrogenic cells and osteogenic cells after 2 week incubation in PLGA nanofibers. Taken together, these data represent an original investigation of continuous differentiation of hMSCs into chondrogenic and osteogenic cells in PLGA nanofiber scaffold. Consistent with previous work, these findings also suggest that nanofibers may serve as accommodative milieu for not only hMSCs, but also as a 3D carrier vehicle for lineage specific cells.  相似文献   

2.
Living tissues consist of groups of cells organized in a controlled manner to perform a specific function. Spatial distribution of cells within a three-dimensional matrix is critical for the success of any tissue-engineering construct. Fibers endowed with cell-encapsulation capability would facilitate the achievement of this objective. Here we report the synthesis of a cell-encapsulated fibrous scaffold by interfacial polyelectrolyte complexation (IPC) of methylated collagen and a synthetic terpolymer. The collagen component was well distributed in the fiber, which had a mean ultimate tensile strength of 244.6 ± 43.0 MPa. Cultured in proliferating medium, human mesenchymal stem cells (hMSCs) encapsulated in the fibers showed higher proliferation rate than those seeded on the scaffold. Gene expression analysis revealed the maintenance of multipotency for both encapsulated and seeded samples up to 7 days as evidenced by Sox 9, CBFA-1, AFP, PPARγ2, nestin, GFAP, collagen I, osteopontin and osteonectin genes. Beyond that, seeded hMSCs started to express neuronal-specific genes such as aggrecan and MAP2. The study demonstrates the appeal of IPC for scaffold design in general and the promise of collagen-based hybrid fibers for tissue engineering in particular. It lays the foundation for building fibrous scaffold that permits 3D spatial cellular organization and multi-cellular tissue development.  相似文献   

3.
Li WJ  Tuli R  Huang X  Laquerriere P  Tuan RS 《Biomaterials》2005,26(25):5158-5166
Functional engineering of musculoskeletal tissues generally involves the use of differentiated or progenitor cells seeded with specific growth factors in biomaterial scaffolds. Ideally, the scaffold should be a functional and structural biomimetic of the native extracellular matrix and support multiple tissue morphogenesis. We have previously shown that electrospun, three-dimensional nanofibrous scaffolds that morphologically resemble collagen fibrils are capable of promoting favorable biological responses from seeded cells, indicative of their potential application for tissue engineering. In this study, we tested a three-dimensional nanofibrous scaffold fabricated from poly(epsilon-caprolactone) (PCL) for its ability to support and maintain multilineage differentiation of bone marrow-derived human mesenchymal stem cells (hMSCs) in vitro. hMSCs were seeded onto pre-fabricated nanofibrous scaffolds, and were induced to differentiate along adipogenic, chondrogenic, or osteogenic lineages by culturing in specific differentiation media. Histological and scanning electron microscopy observations, gene expression analysis, and immunohistochemical detection of lineage-specific marker molecules confirmed the formation of three-dimensional constructs containing cells differentiated into the specified cell types. These results suggest that the PCL-based nanofibrous scaffold is a promising candidate scaffold for cell-based, multiphasic tissue engineering.  相似文献   

4.
The concept of a "biostructural unit" is presented as the combination of biological and structural building blocks to create scaffolds or constructs via a bottom-up approach. Three types of biostructural units were constructed using the process of fiber formation by interfacial polyelectrolyte complexation: protein-encapsulated fiber, ligand-immobilized fiber, and cell-encapsulated fiber units. Water-soluble chitin (WSC) and alginate were used as the polyelectrolyte combination to form fiber. Encapsulation and sustained release of bovine serum albumin from the fiber could be achieved, release profiles being dependent on the WSC/alginate concentration ratio. Released nerve growth factor (NGF) retained its bioactivity, as demonstrated on PC12 cells. Biotinylated fiber could be fabricated by biotinylating alginate before drawing fiber with WSC, enabling biotinylated NGF to be immobilized to fiber via an avidin bridge. The immobilized NGF induced the differentiation of PC12 cells seeded on the fiber. Bovine pulmonary endothelial cells, human dermal fibroblasts, and human mesenchymal stem cells were encapsulated, demonstrating good viability as determined by Live/Dead and WST-1 assays. The assembly of biostructural units into constructs was illustrated by using human mesenchymal stem cell-encapsulated fiber units. Cells in the resulting constructs could be induced to differentiate along chondrogenic and osteogenic lineages.  相似文献   

5.
Zhou J  Xu C  Wu G  Cao X  Zhang L  Zhai Z  Zheng Z  Chen X  Wang Y 《Acta biomaterialia》2011,7(11):3999-4006
Integrated, layered osteochondral (OC) composite materials and/or engineered OC grafts are considered as promising strategies for the treatment of OC damage. A novel biomimetic collagen-hydroxyapatite (COL-HA) OC scaffold with different integrated layers has been generated by freeze-drying. The capacity of the upper COL layer and the lower COL/HA layer to promote the growth and differentiation of human mesenchymal stem cells (hMSCs) into chondrocytes and osteoblasts respectively was evaluated. Cell viability and proliferation on COL and COL/HA scaffolds were assessed by the MTT test. The chondrogenic differentiation of hMSCs on both scaffolds was evaluated by glucosaminoglycan (GAG) quantification, alcian blue staining, type II collagen immunocytochemistry assay and real-time polymerase chain reaction in chondrogenic medium for 21 days. Osteogenic differentiation was evaluated by alkaline phosphatase activity assay, type I collagen immunocytochemistry staining, alizarin S staining and mRNA expression of osteogenic gene for 14 days in osteogenic medium. The results indicated that hMSCs on both COL and COL/HA scaffolds were viable and able to proliferate over time. The COL layer was more efficient in inducing hMSC chondrogenic differentiation than the COL/HA layer, while the COL/HA layer possessed the superiority on promoting hMSC osteogenic induction over either COL layer or pure HA. In conclusion, the layered OC composite materials can effectively promote cartilage and bone tissue generation in vitro and are potentially usable for OC tissue engineering.  相似文献   

6.
7.
Cell differentiation, adhesion, and orientation are known to influence the functionality of both natural and engineered tissues, such as articular cartilage. Several attempts have been devised to regulate these important cellular behaviors, including application of inexpensive but efficient electrospinning that can produce patterned extracellular matrix (ECM) features. Electrospun and oriented polycaprolactone (PCL) scaffolds (500 or 3000 nm fiber diameter) were created, and human mesenchymal stem cells (hMSCs) were cultured on these scaffolds. Cell viability, morphology, and orientation on the fibrous scaffolds were quantitatively determined as a function of time. While the fiber-guided initial cell orientation was maintained even after 5 weeks, cells cultured in the chondrogenic media proliferated and differentiated into the chondrogenic lineage, suggesting that cell orientation is controlled by the physical cues and minimally influenced by the soluble factors. Based on assessment by the chondrogenic markers, use of the nanofibrous scaffold (500 nm) appears to enhance the chondrogenic differentiation. These findings indicate that hMSCs seeded on a controllable PCL scaffold may lead to an alternate methodology to mimic the cell and ECM organization that is found, for example, in the superficial zone of articular cartilage.  相似文献   

8.
9.
10.
背景:关节软骨损伤往往并发软骨下骨损伤形成骨软骨复合缺损,其治疗仍为骨科急待解决的问题,利用组织工程学构建骨软骨复合体为治疗该类疾患提供了新思路。 目的:探讨利用自行设计制造的双腔搅拌式生物反应器构建一体化组织工程骨软骨复合体的可行性。 方法:在双腔搅拌式生物反应器内对复合于β-磷酸三钙支架材料的羊骨髓间充质干细胞同时进行成骨和成软骨诱导,并根据施加剪切应力分为动态培养组和静态培养组。利用MTT试验、RT-PCR和扫描电镜检测骨髓间充质干细胞体外增殖和诱导分化情况。 结果与结论:MTT试验和扫描电镜结果显示,骨髓间充质干细胞增殖良好。成骨和成软骨相关基因RT-PCR检测结果表明,骨髓间充质干细胞诱导分化良好,动态培养组要优于静态培养组。提示利用自行设计制作的双腔搅拌式生物反应器进行骨软骨复合体的体外构建是可行的,力学刺激环境下的构建效果要优于静态环境。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接:  相似文献   

11.
Thiol-ene photopolymerization offers a unique platform for the formation of peptide-functionalized poly(ethylene glycol) hydrogels and the encapsulation, culture and differentiation of cells. Specifically, this photoinitiated polymerization scheme occurs at neutral pH and can be controlled both spatially and temporally. Here, we have encapsulated human mesenchymal stem cells (hMSCs) in matrix metalloproteinase (MMP) degradable and cell-adhesive hydrogels using thiol-ene photopolymerization. We find that hMSCs survive equally well in this system, regardless of MMP-degradability. When hMSCs are encapsulated in these cell-degradable hydrogels, they survive and are able to proliferate. In classic hMSC differentiation medias, hMSCs locally remodel their microenvironment and take on characteristic morphologies; hMSCs cultured in growth or osteogenic differentiation media are less round, as measured by elliptical form factor, and are smaller than hMSCs cultured in chondrogenic or adipogenic differentiation media. In addition, hMSCs encapsulated in completely cell-degradable hydrogels and cultured in osteogenic, chondrogenic, or adipogenic differentiation media generally express increased levels of specific differentiation markers as compared to cells in hydrogels that are not cell-degradable. These studies demonstrate the ability to culture and differentiate hMSCs in MMP-degradable hydrogels polymerized via a thiol-ene reaction scheme and that increased cell-mediated hydrogel degradability facilitates directed differentiation of hMSCs.  相似文献   

12.
Electrospun silk-BMP-2 scaffolds for bone tissue engineering   总被引:24,自引:0,他引:24  
Li C  Vepari C  Jin HJ  Kim HJ  Kaplan DL 《Biomaterials》2006,27(16):3115-3124
  相似文献   

13.
Various biomaterial scaffolds have been investigated for cartilage tissue engineering, although little attention has been paid to the effect of scaffold microstructure on tissue growth. Non-woven, fibrous, bioabsorbable scaffolds constructed from a copolymer of glycolide and trimethylene carbonate with varying levels of porosity and pore size were seeded with mesenchymal stroma cells with a chondrogenic lineage. Scaffolds and media were evaluated for both cell and extracellular matrix organization and content after up to 28 days of culture in a spinner flask. Analysis of DNA and glycosaminoglycan contents showed that the most porous of the three scaffold types, with a porosity of 81% and a porometry determined mean flow pore diameter of 54 microm, supported the most rapid proliferation of cells and accumulation of extracellular matrix. Analysis of the high porosity scaffold system, using Western Blot and immunohistochemistry confirmed the presence of collagen type II and absence of collagen type I, and demonstrated cells with a chondrocyte morphology with aggrecan and collagen II accumulation attached to the scaffolds. It was concluded that the 3D-microstructural characteristics of the scaffold (interconnecting porosity and pore size) play an important role in proliferation and phenotype of chondrogenic cells and accumulation of extracellular matrix molecules.  相似文献   

14.
The deposition of a bonelike mineral on the surface of polymer scaffolds results in the formation of hybrid biomaterials, possessing enhanced osteoconductivity while retaining appropriate biodegradability. However, current methods of fabricating such composite scaffolds use a prolonged incubation process, which permits scaffold deformation and premature loss of incorporated macromolecules. We hypothesized that the fabrication of biomineralized polymer scaffolds could be achieved using premineralized polymer microspheres generated through incubation in a modified simulated body fluid (mSBF). We explored the material characteristics of these substrates and characterized the in vitro osteogenic differentiation of human mesenchymal stem cells (hMSCs) when cultured on these novel scaffolds. Unlike scaffolds prepared using the conventional approach, premineralized scaffolds maintained their initial conformation after fabrication, achieved improved mineral distribution throughout the substrate, and enabled significantly greater incorporation efficiency of a model protein. We did not detect differences in osteogenic differentiation as determined by alkaline phosphatase activity and osteopontin secretion. However, we did observe a significant increase in cell-secreted calcium by hMSCs seeded on scaffolds prepared from premineralized polymer. These results demonstrate that the use of premineralized polymeric materials to fabricate biodegradable polymer scaffolds is an improved method for composite scaffold formation and may have numerous advantages for use in bone tissue engineering.  相似文献   

15.
Bone generation by autogenous cell transplantation in combination with a biodegradable scaffold is one of the most promising techniques being developed in craniofacial surgery. The objective of this combined in vitro and in vivo study was to evaluate the morphology and osteogenic differentiation of bone marrow derived mesenchymal progenitor cells and calvarial osteoblasts in a two-dimensional (2-D) and three-dimensional (3-D) culture environment (Part I of this study) and their potential in combination with a biodegradable scaffold to reconstruct critical-size calvarial defects in an autologous animal model [Part II of this study; see Schantz, J.T., et al. Tissue Eng. 2003;9(Suppl. 1):S-127-S-139; this issue]. New Zealand White rabbits were used to isolate osteoblasts from calvarial bone chips and bone marrow stromal cells from iliac crest bone marrow aspirates. Multilineage differentiation potential was evaluated in a 2-D culture setting. After amplification, the cells were seeded within a fibrin matrix into a 3-D polycaprolactone (PCL) scaffold system. The constructs were cultured for up to 3 weeks in vitro and assayed for cell attachment and proliferation using phase-contrast light, confocal laser, and scanning electron microscopy and the MTS cell metabolic assay. Osteogenic differentiation was analyzed by determining the expression of alkaline phosphatase (ALP) and osteocalcin. The bone marrow-derived progenitor cells demonstrated the potential to be induced to the osteogenic, adipogenic, and chondrogenic pathways. In a 3-D environment, cell-seeded PCL scaffolds evaluated by confocal laser microscopy revealed continuous cell proliferation and homogeneous cell distribution within the PCL scaffolds. On osteogenic induction mesenchymal progenitor cells (12 U/L) produce significantly higher (p < 0.05) ALP activity than do osteoblasts (2 U/L); however, no significant differences were found in osteocalcin expression. In conclusion, this study showed that the combination of a mechanically stable synthetic framework (PCL scaffolds) and a biomimetic hydrogel (fibrin glue) provides a potential matrix for bone tissue-engineering applications. Comparison of osteogenic differentiation between the two mesenchymal cell sources revealed a similar pattern.  相似文献   

16.
The development of osteochondral tissue engineered interfaces would be a novel treatment for traumatic injuries and aging associated diseases that affect joints. This study reports the development of a bilayered scaffold, which consists of both bone and cartilage regions. On the other hand, amniotic fluid-derived stem cells (AFSCs) could be differentiated into either osteogenic or chondrogenic cells, respectively. In this study we have developed a bilayered scaffolding system, which includes a starch/polycaprolactone (SPCL) scaffold for osteogenesis and an agarose hydrogel for chondrogenesis. AFSC-seeded scaffolds were cultured for 1 or 2 weeks in an osteochondral-defined culture medium containing both osteogenic and chondrogenic differentiation factors. Additionally, the effect of the presence or absence of insulin-like growth factor-1 (IGF-1) in the culture medium was assessed. Cell viability and phenotypic expression were assessed within the constructs in order to determine the influence of the osteochondral differentiation medium. The results indicated that, after osteogenic differentiation, AFSCs that had been seeded onto SPCL scaffolds did not require osteochondral medium to maintain their phenotype, and they produced a protein-rich, mineralized extracellular matrix (ECM) for up to 2 weeks. However, AFSCs differentiated into chondrocyte-like cells appeared to require osteochondral medium, but not IGF-1, to synthesize ECM proteins and maintain the chondrogenic phenotype. Thus, although IGF-1 was not essential for creating osteochondral constructs with AFSCs in this study, the osteochondral supplements used appear to be important to generate cartilage in long-term tissue engineering approaches for osteochondral interfaces. In addition, constructs generated from agarose-SPCL bilayered scaffolds containing pre-differentiated AFSCs may be useful for potential applications in regeneration strategies for damaged or diseased joints.  相似文献   

17.
Cardiac tissue engineering is a promising technique to regenerate cardiac tissue and treat cardiovascular disease. Here we applied a modified method to generate ultrafine uniformly-aligned composite gelatin/polycaprolactone fibers that mimic functional heart tissue. We tested the physical properties of these fibers and analyzed how these composite fibrous scaffolds affected growth and cardiac lineage differentiation in rat adipose-derived stem cells (rADSCs). We found that uniformly aligned composite fiber scaffolds had an anisotropic arrangement, functional mechanical properties, and strong hydrophilicity. The anisotropic scaffolds improved cell attachment, viability, and proliferative capacity of ADSCs over randomly-aligned scaffolds. Furthermore, uniformly aligned composite fiber scaffolds increased the efficiency of cardiomyogenic differentiation, but might reduce the efficiency of cardiac conduction system cell differentiation in ADSCs compared to randomly-oriented scaffolds and tissue culture polystyrene. However, the randomly-oriented composite scaffolds showed no obviously facilitated effects over tissue culture polystyrene on the two cells’ differentiation process. The above results indicate that the scaffold fiber alignment has a greater effect on cell differentiation than the composition of the scaffold. Together, the uniformly-aligned composite fibers displayed excellent physical and biocompatible properties, promoted ADSC proliferation, and played distinct roles in the differentiation of cardiomyogenic cells and cardiac conduction system cells from ADSCs. These results provide new insight for the application of anisotropic fibrous scaffolds in cardiac tissue engineering for both in vitro and in vivo research.  相似文献   

18.
The utilization of 3D scaffolds and stem cells is a promising approach to solve the problem of bone and cartilage tissue shortage and to construct osteochondral (cartilage/bone composite) tissues. In this study, 3D highly porous nanofibrous (NF) poly(l-lactic acid) (PLLA) scaffolds fabricated using a phase separation technique were seeded with multi-potent human bone marrow-derived mesenchymal stem cells (hMSCs) and the constructs were induced along osteogenic and chondrogenic development routes in vitro. Histological analysis and calcium content quantification showed that NF scaffolds supported in vitro bone differentiation. SEM observation showed an altered shape for cells cultured on an NF matrix compared with those on smooth films. Consistent with the morphological change, the gene expression of early chondrogenic commitment marker Sox-9 was enhanced on the NF matrix. NF scaffolds were then used to support long-term in vitro 3D cartilaginous development. It was found that in the presence of TGF-β1, cartilage tissue developed on PLLA NF scaffolds, with the cartilage-specific gene expressed, glycosaminoglycan and type II collagen accumulated, and typical cartilage morphology formed. These findings suggest that NF scaffolds can support both bone and cartilage development and are excellent candidate scaffolds for osteochondral defect repair.  相似文献   

19.
As a contribution to the functionality of scaffolds in tissue engineering, here we report on advanced scaffold design through introduction and evaluation of topographical, mechanical and chemical cues. For scaffolding, we used silk fibroin (SF), a well-established biomaterial. Biomimetic alignment of fibers was achieved as a function of the rotational speed of the cylindrical target during electrospinning of a SF solution blended with polyethylene oxide. Seeding fibrous SF scaffolds with human mesenchymal stem cells (hMSCs) demonstrated that fiber alignment could guide hMSC morphology and orientation demonstrating the impact of scaffold topography on the engineering of oriented tissues. Beyond currently established methodologies to measure bulk properties, we assessed the mechanical properties of the fibers by conducting extension at breakage experiments on the level of single fibers. Chemical modification of the scaffolds was tested using donor/acceptor fluorophore labeled fibronectin. Fluorescence resonance energy transfer imaging allowed to assess the conformation of fibronectin when adsorbed on the SF scaffolds, and demonstrated an intermediate extension level of its subunits. Biological assays based on hMSCs showed enhanced cellular adhesion and spreading as a result of fibronectin adsorbed on the scaffolds. Our studies demonstrate the versatility of SF as a biomaterial to engineer modified fibrous scaffolds and underscore the use of biofunctionally relevant analytical assays to optimize fibrous biomaterial scaffolds.  相似文献   

20.
Herein we describe a bio-inspired, affinity binding alginate-sulfate scaffold, designed for the presentation and sustained release of transforming growth factor beta 1 (TGF-β1), and examine its effects on the chondrogenesis of human mesenchymal stem cells (hMSCs). When attached to matrix via affinity interactions with alginate sulfate, TGF-β1 loading was significantly greater and its initial release from the scaffold was attenuated compared to its burst release (>90%) from scaffolds lacking alginate-sulfate. The sustained TGF-β1 release was further supported by the prolonged activation (14 d) of Smad-dependent (Smad2) and Smad-independent (ERK1/2) signaling pathways in the seeded hMSCs. Such presentation of TGF-β1 led to hMSC chondrogenic differentiation; differentiated chondrocytes with deposited collagen type II were seen within three weeks of in vitro hMSC seeding. By contrast, in scaffolds lacking alginate-sulfate, the effect of TGF-β1 was short-term and hMSCs could not reach a similar differentiation degree. When hMSC constructs were subcutaneously implanted in nude mice, chondrocytes with deposited type II collagen and aggrecan typical of the articular cartilage were found in the TGF-β1 affinity-bound constructs. Our results highlight the fundamental importance of appropriate factor presentation to its biological activity, namely - inducing efficient stem cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号