首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The enantioselective sulfoxidation of a series of alkyl p-tolyl sulfides was compared using purified rabbit lung and mini-pig liver flavin-containing monooxygenase (FMO). Analysis was performed by chiral-phase high pressure liquid chromatography, which afforded baseline resolution of each pair of enantiomers. The extent of enantioselective sulfoxidation was found to be a function of (a) the isozyme employed, (b) the steric bulk of the alkyl substituent, and (c) pH. At pH 8.5, rabbit lung FMO catalyzed the oxidation of methyl, ethyl, propyl, and isopropyl sulfides to products with greater than 99, 91, 85, and 63% (R)-(+)-stereochemistry, respectively. Corresponding values for the mini-pig liver form were 91, 82, 72, and 41% (R)-(+)-sulfoxide. The stereochemical profile obtained with the isolated rabbit lung form could be duplicated exactly in microsomal preparations if precautions were taken to abolish the contribution that P-450 makes to net stereochemistry. It was noted that increasing the reaction mixture pH from 8.5 to 10 led to a decrease in the stereochemical purity of products obtained from the lung form. In contrast, the stereochemical profile obtained with the isolated mini-pig liver form could not be exactly duplicated in suitably treated microsomal preparations. No evidence for multiple forms of mini-pig liver FMO was obtained, and it was concluded that discrepancies between microsomal and purified FMO metabolic profiles were most consistent with a minor modification to active site geometry occurring during purification of the mini-pig form. These data show that the active site chirality of rabbit lung and mini-pig liver FMO is largely retained following removal from microsomal membranes. Qualitative similarities in the structure-activity relationships exhibited by microsomal or purified FMO from rabbit lung and mini-pig liver suggest some conservation of active site geometry between these two otherwise distinct FMOs. Quantitative differences in the structure-activity relationships exhibited by the two FMO forms indicate that analysis of product stereochemistry may be a useful method for the discrimination of catalytically distinct FMO isozymes.  相似文献   

2.
N-Deacetyl ketoconazole (DAK) is the major metabolite of orally administered ketoconazole. This major metabolite has been demonstrated to be further metabolized predominately by the flavin-containing monooxygenases (FMOs) to the secondary hydroxylamine, N-deacetyl-N-hydroxyketoconazole (N-hydroxy-DAK) by adult and postnatal rat hepatic microsomes. Our current investigation evaluated the FMO isoform specificity of DAK in a pyrophosphate buffer (pH 8.8) containing the glucose 6-phosphate NADPH-generating system. cDNA-expressed human FMOs (FMO1, FMO3, and FMO5) and cDNA-expressed rabbit FMOs (FMO1, FMO2, FMO3, and FMO5) were used to assess the metabolism of DAK to its subsequent FMO-mediated metabolites by HPLC analysis. Human and rabbit cDNA-expressed FMO3 resulted in extensive metabolism of DAK in 1 h (71.2 and 64.5%, respectively) to N-hydroxy-DAK (48.2 and 47.7%, respectively) and two other metabolites, metabolite 1 (11.7 and 7.8%, respectively) and metabolite 3 (10.5 and 10.0%, respectively). Previous studies suggest that metabolite 1 is the nitrone formed after successive FMO-mediated metabolism of N-hydroxy-DAK. Moreover, these studies display similar metabolic profiles seen with adult and postnatal rat hepatic microsomes. The human and rabbit FMO1 metabolized DAK predominately to the N-hydroxy-DAK in 1 h (36.2 and 25.3%, respectively) with minimal metabolism to the other metabolites (相似文献   

3.
Rat and human liver microsomes oxidized ranitidine to its N-oxide (66-76%) and S-oxide (13-18%) and desmethylranitidine (12-16%). N- and S-oxidations of ranitidine were inhibited by metimazole [flavin-containing monooxygenase (FMO) inhibitor] to 96-97% and 71-85%, respectively, and desmethylation of ranitidine was inhibited by SKF525A [cytochrome P450 (CYP) inhibitor] by 71-95%. Recombinant FMO isozymes like FMO1, FMO2, FMO3 and FMO5 produced 39, 79, 2180 and 4 ranitinine N-oxide and 45, 0, 580 and 280 ranitinine S-oxide pmol x min(-1) x nmol(-1) FMO, respectively. Desmethyranitinine was not produced by recombinant FMOs. Production of desmethylranitidine by rat and human liver microsomes was inhibited by tranylcypromine, a-naphthoflavon and quinidine, which are known to inhibit CYP2C19, 1A2 and 2D6, repectively. FMO3, the major form in adult liver, produced both ranitidine N- and S-oxides at a 4 to 1 ratio. FMO1, expressed primarily in human kidney, was 55- and 13-fold less efficient than the hepatic FMO3 in producing ranitidine N- and S-oxides, respectively. FMO2 and FMO5, although expressed slightly in human liver, kidney and lung, were not efficient producers of ranitidine N- and S-oxides. Thus, urinary contents of ranitidine N-oxide can be used as the in vivo probe to determine the hepatic FMO3 activity.  相似文献   

4.
Modification of the pharmacological profile of the vasodilating/beta-adrenergic blocking agent 2-[4-[3-(tert-butylamino)-2-hydroxypropoxy]phenyl]-4-(trifluoromethyl)imidazole (1) has been investigated. Introduction of selected substitutents onto the imidazole ring, in place of the trifluoromethyl group, has yielded highly cardioselective beta-adrenergic blocking agents such as 7, 17, and 18. The placement of alkyl or chloro groups onto the aryl ring of 1, as illustrated by 33, has produced a class of compounds characterized as antihypertensive beta-adrenergic blocking agents. In these examples, the acute antihypertensive activity does not appear to be due to either vasodilating or beta 2-agonist properties.  相似文献   

5.
An overview of the mechanism,substrate specificities,and structure of FMOs   总被引:3,自引:0,他引:3  
Kinetic studies carried out over the past three decades, primarily with purified pig liver flavin-containing monooxygenase (FMO1), demonstrated that the mechanism of this flavoenzyme was distinctly different from other widely studied flavin-dependent monooxygenases in that reduction of O2 by nicotinamide-adenine-dinucleotide-phosphate reduced (NADPH) occurred before the addition of the xenobiotic substrate. Compounds bearing a soft nucleophilic heteroatom show substrate activity provided they could contact the enzyme-bound 4a-hydroperoxy flavin. Structure-activity studies suggest that in addition to nucleophilicity, size and charge of potential substrates are important parameters limiting access to the enzyme-bound hydroxylating intermediate form of the enzyme. The mechanism of FMO 1, 2, 3, and 4 are similar and differences in the substrate specificities of these isoforms can be attributed almost entirely to differences in the dimensions of the cleft or channel limiting access to the 4a-hydroperoxy flavin. While this model provides a satisfactory mechanism for the FMO catalyzed oxidation of very soft nucleophiles, it does not address another very important element of the catalytic cycle. The amine nitrogen atom is not an especially soft nucleophile readily hydroxylated by peroxides or peracids. How the enzymes convert an amine substrate to a form readily attacked by the hydroperoxy flavin is presently unknown. A complete resolution of this problem will only be possible after the tertiary structures of these enzymes are solved.  相似文献   

6.
Effects of excessive nitric oxide (NO) produced in vivo by an i.p. injection of bacterial lipopolysaccharide (LPS) on hepatic microsomal drug oxidation catalyzed by flavin-containing monooxygenase (FMO) were determined. At 6 and 24 h after the LPS injection, liver microsomes were isolated and FMO activities were determined by using FMO substrates like thiobenzamide, trimethylamine, N,N-dimethylaniline, and imipramine. Liver microsomal FMO activities of LPS-treated rats were decreased significantly for all these substrates. Microsomal content of FMO1 (the major form in rat liver) in LPS-treated rats as determined by immunoblotting, was severely decreased as well. In support of this, hepatic content of FMO1 mRNA was decreased by 43.6 to 67.3%. However, the hepatic content of inducible NO synthase (iNOS) mRNA was increased by 2.6- to 5.4-fold and the plasma nitrite/nitrate concentration was increased by about 30-fold in the LPS-treated rats. When this overproduction of NO in the LPS-treated rats was inhibited in vivo by a single or repeat doses of either a general NOS inhibitor N(G)-nitro-L-arginine or a specific iNOS inhibitor aminoguanidine, the FMO1 mRNA levels were not severely depressed (70-85% of the control level). Attendant with the reduction of plasma nitrite/nitrate concentration by single and repeated doses of NOS inhibitors, activity and content of FMO1 in liver microsomes isolated from these NOS inhibitor cotreated rats were restored partially (in single-dose inhibitors) or completely (in repeat doses). In contrast to these NO-mediated in vivo suppressive effects on the mRNA and enzyme contents of FMO1 as well as the FMO activity, the NO generated in vitro from sodium nitroprusside did not inhibit the FMO activities present in microsomes of rat and rabbit liver as well as those present in rabbit kidney and lung. Combined, the excessive NO produced in vivo (caused by the LPS-dependent induction of iNOS) suppresses the FMO1 mRNA and enzyme contents as well as the FMO activities without any direct in vitro effect on the activities of premade FMO enzyme. These findings suggest that NO is an important mediator involved in the suppression of FMO1 activity in vivo. Thus, together with the previously reported suppression on the cytochrome P-450 activities, the overproduced NO in the liver caused by induction of iNOS under conditions of endotoxemia or sepsis suppresses FMO and appears to be responsible for the decreased drug oxidation function observed generally under conditions of systemic bacterial or viral infections.  相似文献   

7.
1. The flavin-containing monooxygenase (FMO) (EC 1.14.13.8) is a versatile enzyme that catalyses the monooxygenation of a large number of xenobiotic soft nucleophiles ranging from inorganic ions to organic compounds with nitrogen, sulphur, phosphorus or selenium heteroatoms. 2. The substrate specificity relative to agricultural chemicals is discussed and compared with that of the cytochrome P-450-dependent monooxygenase system. The relative activity of these two enzymes towards common substrates varies from substrate to substrate and from tissue to tissue as is shown in the case of the insecticide, phorate and the hepatotoxicant, thiobenzamide. 3. The products of FMO action may be chemically different (e.g. nicotine) to those from P-450, or the two enzymes may produce different isomers of the same product (e.g. phorate). 4. Recent studies have demonstrated that, in the rabbit, the FMOs from liver and lung are different gene products which differ not only in primary sequence but also in physical, catalytic and immunochemical properties. These studies are being extended to include other tissues such as skin and brain. 5. Immunocytochemical localization of FMO in lung and skin correlates well with measurements of the oxidation of methimazole, a specific FMO substrate.  相似文献   

8.
To characterize the contribution of amino acid 360 to the functional activity of the human flavin-containing monooxygenase form 3 (FMO3) and form 1 (FMO1) in the oxygenation of drugs and chemicals, we expressed four FMO3 variants (i.e., Ala360-FMO3, His360-FMO3, Gln360-FMO3, and Pro360-FMO3) and one FMO1 variant (i.e., Pro360-FMO1) and compared them to wild-type enzymes (Leu360-FMO3 and His360-FMO1, respectively). The amino acid substitutions were introduced into wild-type FMO3 or FMO1 cDNA by site-directed mutagenesis. The thermal stability of variants of Leu360 FMO3 was also studied, and the thermal stability was significantly different from that of wild-type FMO3. The influence of different substrates to modulate the catalytic activity of FMO3 variants was also examined. Selective functional substrate activity was determined with mercaptoimidazole, chlorpromazine, and 10-[(N,N-dimethylaminopentyl)-2-(trifluoromethyl)]phenothiazine. Compared with wild-type FMO3, the Ala360-FMO3 and His360-FMO3 variants were less catalytically efficient for mercaptoimidazole S-oxygenation. N-Oxygenation of chlorpromazine was significantly less catalytically efficient for His360-FMO3 compared with wild-type FMO3. Human Pro360-FMO1 was significantly more catalytically efficient at S-oxygenating mercaptoimidazole and chlorpromazine compared with wild-type FMO1. The data support the mechanism that the Pro360 loci affect thermal stability of FMO3. Because different amino acids at position 360 affect substrate oxygenation in a unique fashion compared with that of FMO3 stimulation, we conclude that the mechanism of stimulation of FMO3 is distinct from that of enzyme catalysis. A molecular model of human FMO3 was also constructed to help explain the results. The increase in catalytic efficiency observed for Pro360 in human FMO3 was also observed when the His of FMO1 was replaced by Pro at loci 360.  相似文献   

9.
Fish-odour syndrome is a highly unpleasant disorder of hepatic trimethylamine (TMA) metabolism characterized by a body odour reminiscent of rotting fish, due to excessive excretion of the malodorous free amine. Although fish-odour syndrome may exhibit as sequelae with other conditions (e.g. liver dysfunction), many patients exhibit an inherited, more persistent form of the disease. Ordinarily, dietary-derived TMA is oxidized to the nonodorous N-oxide by hepatic flavin-containing monooxygenase 3 (FMO3). Our previous demonstration that a mutation, P153L (C to T), in the FMO3 gene segregated with the disorder and inactivated the enzyme confirmed that defects in FMO3 underlie the inherited form of fish-odour syndrome. We have investigated the genetic basis of the disorder in two further affected pedigrees and report that the three propositi are all compound heterozygotes for causative mutations of FMO3. Two of these individuals possess the P153L (C to T) mutation and a novel mutation, N61S (A to G). The third is heterozygous for novel, M4341 (G to A), and previously reported, R492W (C to T), mutations. Functional characterization of the S61, 1434 and W492 variants, via baculovirus-mediated expression in insect cells, confirmed that all three mutations either abolished, or severely attenuated, the capacity of the enzyme to catalyse TMA N-oxidation. Although 1434 and W492 were also incapable of catalysing the S-oxidation of methimazole, S61 was fully active with this sulphur-containing substrate. Since an asparagine is conserved at the equivalent position to N61 of FMO3 in mammalian, yeast and Caenorhabditis elegans FMOs, the characterization of the naturally occurring N61S (A to G) mutation may have identified this asparagine as playing a critical role specifically in FMO-catalysed N-oxidation.  相似文献   

10.
Both guinea pig and rabbit express two variants of the 'lung' flavin-containing monooxygenase (FMO), observed as three distinct phenotypes based on mobility differences in SDS-PAGE. Samples of messenger RNA prepared from lungs of the two homozygous phenotypes of the guinea pig were used for the construction of two cDNA libraries. The libraries were screened with a cDNA encoding the rabbit lung FMO, and positive clones for each guinea pig lung FMO variant were isolated and sequenced. A full length clone from each library was found to encode a protein of 535 amino acids containing two pyrophosphate binding sites. Comparison of the sequences of the guinea pig and rabbit lung FMOs shows that their primary structures are 86% identical. The coding region sequences of the guinea pig variants differ at only two positions, and both differences result in amino acid substitutions. Sequence analysis has also been completed on a partially characterized variant of the rabbit lung FMO. As with the guinea pig, the nucleotide and amino acid sequences of the rabbit variants differ at only two positions. The cDNAs encoding the guinea pig variants were expressed in yeast. The activities of the enzymes are characteristic of the lung FMO, and the mobilities of the expressed enzymes are the same as those observed for the variants present in guinea pig pulmonary microsomal preparations. Similar to findings for the rabbit, analysis of genomic DNA indicates that the guinea pig lung FMO is associated with a single gene. The results of cDNA sequence analysis, expression in yeast, and analysis of genomic DNA indicate that the multiple lung FMOs in guinea pig and rabbit are allelic variants whose mobilities in SDS-PAGE are markedly altered by minimal changes in primary structure.  相似文献   

11.
1. The flavin-containing monooxygenase (FMO) (EC 1.14.13.8) is a versatile enzyme that catalyses the monooxygenation of a large number of xenobiotic soft nucleophiles ranging from inorganic ions to organic compounds with nitrogen, sulphur, phosphorus or selenium heteroatoms.

2. The substrate specificity relative to agricultural chemicals is discussed and compared with that of the cytochrome P-450-dependent monooxygenase system. The relative activity of these two enzymes towards common substrates varies from substrate to substrate and from tissue to tissue as is shown in the case of the insecticide, phorate and the hepatotoxicant, thiobenzamide.

3. The products of FMO action may be chemically different (e.g. nicotine) to those from P-450, or the two enzymes may produce different isomers of the same product (e.g. phorate).

4. Recent studies have demonstrated that, in the rabbit, the FMOs from liver and lung are different gene products which differ not only in primary sequence but also in physical, catalytic and immunochemical properties. These studies are being extended to include other tissues such as skin and brain.

5. Immunocytochemical localization of FMO in lung and skin correlates well with measurements of the oxidation of methimazole, a specific FMO substrate.  相似文献   

12.
AIMS To determine the FMO and P450 isoform selectivity for metabolism of benzydamine and caffeine, two potential in vivo probes for human FMO. METHODS Metabolic incubations were conducted at physiological pH using substrate concentrations of 0.01-10 mM with either recombinant human FMOs, P450s or human liver microsomes serving as the enzyme source. Products of caffeine and benzydamine metabolism were analysed by reversed-phase h.p.l.c. with u.v. and fluorescence detection. RESULTS CYP1A2, but none of the human FMOs, catalysed metabolism of caffeine. In contrast, benzydamine was a substrate for human FMO1, FMO3, FMO4 and FMO5. Apparent Km values for benzydamine N-oxygenation were 60 +/- 8 microM, 80 +/- 8 microM, > 3 mM and > 2 mM, for FMO1, FMO3, FMO4 and FMO5, respectively. The corresponding Vmax values were 46 +/- 2 min-1, 36 +/- 2 min-1, < 75 min-1 and < 1 min-1. Small quantities of benzydamine N-oxide were also formed by CYPs 1A1, 1A2, 2C19, 2D6 and 3A4. CONCLUSIONS: FMO1 and FMO3 catalyse benzydamine N-oxygenation with the highest efficiency. However, it is likely that the metabolic capacity of hepatic FMO3 is a much greater contributor to plasma levels of the N-oxide metabolite in vivo than is extrahepatic FMO1. Therefore, benzydamine, but not caffeine, is a potential in vivo probe for human FMO3.  相似文献   

13.
The title compounds were prepared to investigate their potential as thromboxane synthetase inhibitors as well as antihypertensive agents. Imidazoles VIII and triazoles X were prepared to examine the effects of aromatic substitution, chain length, and heterocycle substitution upon biological activity. Imidazoles VIII and triazoles X were thromboxane synthetase inhibitors that did not inhibit prostacyclin formation. The most interesting thromboxane synthetase inhibitors prepared were 4-chloro-, 4-(trifluoromethyl)-, and 4-bromobenzamide derivatives of (1H-imidazol-1-yl)alkylamines with C5-C8 alkyl chains separating the heterocycle from the amide moiety, while the most active antihypertensive agents were 3- or 4-chloro-, -bromo, or -(trifluoromethyl)benzamides with C3 alkyl chains. The best thromboxane synthetase inhibitors in this study were up to 10 times more potent than the standard, dazoxiben (UK 37,248).  相似文献   

14.
15.
16.
To characterize the contribution of the human flavin-containing monooxygenase form 3 (FMO3) in the metabolism and disposition of drugs and xenobiotics, we determined the single nucleotide polymorphisms in the coding region and adjacent splice junctions of FMO3 in 134 African Americans and 120 Caucasians from the United States. In the regions examined, DNA resequencing or high throughput MassEXTEND studies coupled with mass spectrometric genotyping showed that 12 sites of variation were present. Three variants encoding synonymous mutations and four polymorphisms were observed in the noncoding region. Another three variants, Lys158-FMO3, Met257-FMO3 and Gly308-FMO3, previously reported in similar populations, were prominent polymorphisms. Two new polymorphisms, His132-FMO3 and Pro360-FMO3, were identified in this study. Both variants were found only in African Americans. To evaluate the effect of the amino acid substitutions on the function of FMO3, each amino acid substitution was introduced by site-directed mutagenesis into a wild-type FMO3 cDNA. Selective functional activity was studied with methimazole, trimethylamine, and 10-(N,N-dimethylaminopentyl)-2-(trifluoromethyl) phenothiazine. Both His132-FMO3 and Pro360-FMO3 variants were able to metabolize the substrates examined. Compared with wild-type FMO3, the His132-FMO3 was less catalytically efficient. The His132-FMO3 variant moderately altered the catalytic efficiency of FMO3 (decrease of 30%, 60% and 6% with methimazole, trimethylamine and 10-(N,N-dimethylaminopentyl)-2-(trifluoromethyl)phenothiazine, respectively). The Pro360-FMO3 variant was more catalytically efficient than wild-type FMO3. Pro360-FMO3 oxygenated methimazole, trimethylamine and 10-(N,N-dimethylaminopentyl)-2-(trifluoromethyl)phenothiazine, respectively, 3-, 5- and 2-fold more efficiently than wild-type FMO3. Based on the functional activity of the variant FMO3 enzymes, it is likely that population differences exist for compounds primarily metabolized by FMO3.  相似文献   

17.
Flavin-containing monooxygenase (FMO) metabolizes a wide variety of nitrogen, sulfur, and phosphorous-containing xenobiotics. FMO2 is highly expressed in the lung of most mammals examined, but the protein has only recently been detected in humans, presumably due to a premature stop codon at AA472 in most individuals. In this study, full-length (mFMO2-535) and 3'-truncated (mFMO2-471) monkey FMO2 protein, produced by cDNA-mediated baculovirus expression, were characterized and compared with baculovirus-expressed rabbit FMO2 (rFMO2-535). Although baculovirus-expressed mFMO2-535 had properties similar to FMO in monkey lung microsomes and had catalytic properties similar to rFMO2-535, the expressed proteins differed in a number of properties in S-oxidation assays. Both enzymes had the same pH optima (pH 9.5); however, mFMO2-535 quickly lost activity at higher pH values whereas rFMO2-535 retained the majority of its activity. Also, mFMO2-535 was significantly less stable at elevated temperatures and in the presence of cholic acid but had greater activity in the presence of magnesium. mFMO2-535 had higher apparent K(m) and V(max)/K(m) values than rFMO2-535 did in N-oxygenation assays. mFMO2-471 was correctly targeted to the membrane fraction, but N- and S-oxygenation was not detected. Since the AA sequence identity of mFMO2 and human FMO2 is 97%, our results with mFMO2-535 suggest that individuals carrying the allele encoding full-length FMO2 are likely to have in vivo FMO2 activity. Such activity could result in marked differences in the metabolism, efficacy, and/or toxicity of drugs and xenobiotics for which lung is a portal of entry or target organ.  相似文献   

18.
Flavin-containing monooxygenase form 3 (FMO3) is one of the major enzyme systems that protect humans from the potentially toxic properties of drugs and chemicals. FMO3 converts nucleophilic heteroatom-containing chemicals and endogenous materials to polar metabolites, which facilitates their elimination. For example, the tertiary amine trimethylamine is N-oxygenated by human FMO3 to trimethylamine N-oxide, and trimethylamine N-oxide is excreted in a detoxication and deoderation process. In normal humans, virtually all trimethylamine is metabolized to trimethylamine N-oxide. In a few humans, trimethylamine is not efficiently metabolized to trimethylamine N-oxide, and those individuals suffer from trimethylaminuria, or fishlike odor syndrome. Previously, we identified mutations of the FMO3 gene that cause trimethylaminuria. We now report two prevalent polymorphisms of this gene (K158E and V257M) that modulate the activity of human FMO3. These polymorphisms are widely distributed in Canadian and Australian white populations. In vitro analysis of wild-type and variant human FMO3 proteins expressed from the cDNA for the two naturally occurring polymorphisms showed differences in substrate affinities for nitrogen-containing substrates. Thus, for polymorphic forms of human FMO3, lower k(cat)/K(m) values for N-oxygenation of 10-(N, N-dimethylaminopentyl)-2-(trifluoromethyl) phenothiazine, trimethylamine, and tyramine were observed. On the basis of in vitro kinetic parameters, human FMO1 does not significantly contribute to human metabolism of trimethylamine or tyramine. The results imply that prevalent polymorphisms of the human FMO3 gene may contribute to low penetrance predispositions to diseases associated with adverse environmental exposures to heteroatom-containing chemicals, drugs, and endogenous amines.  相似文献   

19.
20.
The stereoselective sulfoxidation of the pharmacologically active metabolite of sulindac, sulindac sulfide, was characterized in human liver, kidney, and cDNA-expressed enzymes. Kinetic parameter estimates (pH = 7.4) for sulindac sulfoxide formation in human liver microsomes (N = 4) for R- and S-sulindac sulfoxide were V(max) = 1.5 +/- 0.50 nmol/min/mg, K(m) = 15 +/- 5.1 microM; and V(max) = 1.1 +/- 0.36 nmol/min/mg, K(m) = 16 +/- 6.1 microM, respectively. Kidney microsomes (N = 3) produced parameter estimates (pH = 7.4) of V(max) = 0.9 +/- 0.29 nmol/min/mg, K(m) = 15 +/- 2.9 microM; V(max) = 0.5 +/- 0.21 nmol/min/mg, K(m) = 22 +/- 1.9 microM for R- and S-sulindac sulfoxide, respectively. In human liver and flavin-containing monooxygenase 3 (FMO3) the V(max) for R-sulindac sulfoxide increased 60-70% at pH = 8.5, but for S-sulindac sulfoxide was unchanged. In fourteen liver microsomal preparations, significant correlations occurred between R-sulindac sulfoxide formation and either immunoquantified FMO or nicotine N-oxidation (r = 0.88 and 0.83; P < 0.01). The R- and S-sulindac sulfoxide formation rate also correlated significantly (r = 0.85 and 0.75; P < 0.01) with immunoquantified FMO in thirteen kidney microsomal samples. Mild heat deactivation of microsomes reduced activity by 30-60%, and a loss in stereoselectivity was observed. Methimazole was a potent and nonstereoselective inhibitor of sulfoxidation in liver and kidney microsomes. n-Octylamine and membrane solubilization with lubrol were potent and selective inhibitors of S-sulindac sulfoxide formation. cDNA-expressed CYPs failed to appreciably sulfoxidate sulindac sulfide, and CYP inhibitors were ineffective in suppressing catalytic activity. Purified mini-pig liver FMO1, rabbit lung FMO2, and human cDNA-expressed FMO3 efficiently oxidized sulindac sulfide with a high degree of stereoselectivity towards the R-isomer, but FMO5 lacked catalytic activity. The biotransformation of the sulfide to the sulfoxide is catalyzed predominately by FMOs and may prove to be useful in characterizing FMO activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号