首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The development of transgenic mosquitoes that are refractory to the transmission of human diseases such as malaria, dengue, and yellow fever has received much interest due to the ability to transform a number of vector mosquito species with transposable elements. Transgenic strains of mosquitoes have been generated with molecular techniques that exhibit a reduced capacity to transmit pathogens. These advancements have led to questions regarding the fitness of transgenic mosquitoes and the ability of transformed mosquitoes to compete and effectively spread beneficial genes through nontransformed field populations, the core requirement of a genetically based control strategy aimed at reducing the spread of mosquito-borne human disease. Here we examine the impact of transgenesis on the fitness of Aedes aegypti, a mosquito that transmits yellow fever. Mosquitoes were altered with two types of transgene, the enhanced GFP gene and two transposase genes from the Hermes and MOS1 transposable elements. We examined the effects of these elements on the survivorship, longevity, fecundity, sex ratio, and sterility of transformed mosquitoes and compared results to the nontransformed laboratory strain. We show that demographic parameters are significantly diminished in transgenic mosquitoes relative to the untransformed laboratory strain. Reduced fitness in transgenic mosquitoes has important implications for the development and utilization of this technology for control programs based on manipulative molecular modification.  相似文献   

2.
蚊虫是一类重要的媒介生物,雌蚊可以通过吸血传播多种疾病,如疟疾、登革热、流行性乙型脑炎等。蚊虫嗅觉发生和雌雄性别的决定对蚊虫的生存繁衍、疾病传播至关重要,往往也是控制蚊虫种群密度、防治蚊媒传染病的关键所在。本文综述了媒介蚊虫的嗅觉发生和性别决定的基本功能、作用机制及研究进展,以期为蚊虫种群密度控制、蚊媒传染病防治等提供参考依据。  相似文献   

3.
Mosquitoes do senesce: departure from the paradigm of constant mortality   总被引:1,自引:0,他引:1  
Although variation in mortality is considered by virtually all vector-borne disease specialists to be one of the most important determinants of an arthropod's capacity to transmit pathogens, the operational assumption often is that insect vector mortality is independent of age. Acceptance of the non-senescence assumption leads to the erroneous conclusion that mosquito age is unimportant, results in misleading predictions regarding disease reductions after vector control, and represses study of other aspects of mosquito biology that change with age. We brought large-scale laboratory life table techniques (N > 100,000) to bear on the question of age-dependent mortality in the mosquito vector of dengue virus, Aedes aegypti. Mortality was highly age dependent in both sexes. Mortality was low at young ages (< 10 days old), steadily increased at middle ages, and decelerated at older ages. A newly derived age-dependent model of pathogen transmission shows the importance of young mosquitoes and population age structure to transmission dynamics. Departure from the age-independent mortality paradigm encourages research on overlooked complexities in mosquito biology, the need for innovative methods to study mosquito population dynamics, and the need to study age-dependent changes for an accurate understanding of mosquito biology and pathogen transmission.  相似文献   

4.
Microbial applications in malaria transmission control have drawn global attention. Mosquito midgut microbiota can modulate vector immunity and block Plasmodium development. Paratransgenic manipulation of bacterial symbionts and Wolbachia can affect reproductive characteristics of mosquitoes. Bacillus-based biolarvicides can control mosquito larvae in different breeding habitats, but their effectiveness differs according to the type of formulation applied, and the physical and ecological conditions of the environment. Entomopathogenic fungi show promise as effective and evolution-proof agents against adult mosquitoes. In addition, transgenic fungi can express anti-plasmodial effector molecules that can target the parasite inside its vector. Despite showing effectiveness in domestic environments as well as against insecticide-resistant mosquitoes, claims towards their deployability in the field and their possible use in integrated vector management programmes have yet to be investigated. Viral pathogens show efficacy in the interruption of sporogonic development of the parasite, and protozoal pathogens exert direct pathogenic potential on larvae and adults with substantial effects on mosquito longevity and fecundity. However, the technology required for their isolation and maintenance impedes their field application. Many agents show promising findings; however, the question remains about the epidemiologic reality of these approaches because even those that have been tried under field conditions still have certain limitations. This review addresses aspects of the microbial control of malaria between proof-of-concept and epidemiologic reality.  相似文献   

5.
6.
House-to-house human movement drives dengue virus transmission   总被引:2,自引:0,他引:2  
Dengue is a mosquito-borne disease of growing global health importance. Prevention efforts focus on mosquito control, with limited success. New insights into the spatiotemporal drivers of dengue dynamics are needed to design improved disease-prevention strategies. Given the restricted range of movement of the primary mosquito vector, Aedes aegypti, local human movements may be an important driver of dengue virus (DENV) amplification and spread. Using contact-site cluster investigations in a case-control design, we demonstrate that, at an individual level, risk for human infection is defined by visits to places where contact with infected mosquitoes is likely, independent of distance from the home. Our data indicate that house-to-house human movements underlie spatial patterns of DENV incidence, causing marked heterogeneity in transmission rates. At a collective level, transmission appears to be shaped by social connections because routine movements among the same places, such as the homes of family and friends, are often similar for the infected individual and their contacts. Thus, routine, house-to-house human movements do play a key role in spread of this vector-borne pathogen at fine spatial scales. This finding has important implications for dengue prevention, challenging the appropriateness of current approaches to vector control. We argue that reexamination of existing paradigms regarding the spatiotemporal dynamics of DENV and other vector-borne pathogens, especially the importance of human movement, will lead to improvements in disease prevention.  相似文献   

7.
The generalized hematopathology frequently found in animals infected with vector-borne pathogens may maximize transmission by enhancing the ability of vectors to locate blood in infected hosts. We tested this idea of mutualism between parasite and vector by comparing duration of probing of mosquitoes feeding on noninfected and on malaria-(Plasmodium chabaudi) or arbovirus-(Rift Valley fever virus) infected animals. We found that median duration of probing (blood location) on infected rodents was reduced by at least 1 min as compared to noninfected rodents. This enhanced ability of vectors to locate blood, possibly caused by parasite-disrupted hemostasis, may be a common feature of vector-borne diseases.  相似文献   

8.
The feeding behavior of vectors influences the likelihood of pathogen invasion and the exposure of humans to vector-borne zoonotic pathogens. We used multilocus microsatellite genetic typing of an introduced mosquito vector and DNA sequencing of mosquito blood meals to determine the impact of hybrid ancestry on feeding behavior and the emergence of West Nile virus (WNV). The probability of ancestry of Culex pipiens mosquitoes from two bionomically divergent forms, form molestus and form pipiens, influenced the probability that they fed on humans but did not explain a late summer feeding shift from birds to humans. We used a simple model to show that the occurrence of pure form molestus mosquitoes would have decreased the likelihood of WNV invasion (R(0) in bird populations) 3- to 8-fold, whereas the occurrence of pure forms pipiens mosquitoes would have halved human exposure compared with the hybrids that are present. Data and modeling suggest that feeding preferences may be influenced by genetic ancestry and contribute to the emergence of vector-borne pathogens transmitted by introduced species, including malaria, and dengue, Chikungunya, yellow fever, and West Nile viruses.  相似文献   

9.
Mosquito-borne arthropod-borne viruses (arboviruses) such as the dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV) are important human pathogens that are responsible for significant global morbidity and mortality. The recent emergence and re-emergence of mosquito-borne viral diseases (MBVDs) highlight the urgent need for safe and effective vaccines, therapeutics, and vector-control approaches to prevent MBVD outbreaks. In nature, arboviruses circulate between vertebrate hosts and arthropod vectors; therefore, disrupting the virus lifecycle in mosquitoes is a major approach for combating MBVDs. Several strategies were proposed to render mosquitoes that are refractory to arboviral infection, for example, those involving the generation of genetically modified mosquitoes or infection with the symbiotic bacterium Wolbachia. Due to the recent development of high-throughput screening methods, an increasing number of drugs with inhibitory effects on mosquito-borne arboviruses in mammalian cells were identified. These antivirals are useful resources that can impede the circulation of arboviruses between arthropods and humans by either rendering viruses more vulnerable in humans or suppressing viral infection by reducing the expression of host factors in mosquitoes. In this review, we summarize recent advances in small-molecule antiarboviral drugs in mammalian and mosquito cells, and discuss how to use these antivirals to block the transmission of MBVDs.  相似文献   

10.
Technical advances in mosquito biology are enabling the development of new approaches to vector control. Absent are powerful forward-genetics technologies, such as enhancer and gene traps, that permit determination of gene functions from the phenotypes arising from transposon insertion mutations. We show that the piggyBac transposon is highly active in the germline of the human malaria vector Anopheles stephensi. Up to 6% of the progeny from transgenic A. stephensi containing a single 6-kb piggyBac element with a marker gene expressing EGFP had the vector in new genomic locations when piggyBac transposase was provided in trans from a second integrated transgene. The active transposition of piggyBac resulted in the efficient detection of enhancers, with ~10% of the progeny with piggyBac in new locations with novel patterns of EGFP expression in third and fourth instar larvae and in adults. The availability of advanced transgenic capabilities such as efficient transposon-based forward-genetics technologies for Anopheles mosquitoes not only will accelerate our understanding of mosquito functional genomics and the development of novel vector and disease transmission control strategies, but also will enable studies by evolutionary developmental biologists, virologists, and parasitologists.  相似文献   

11.
Malaria ranks among the deadliest infectious diseases that kills more than one million persons every year. The mosquito is an obligatory vector for malaria transmission. In the mosquito, Plasmodium undergoes a complex series of developmental events that includes transformation into several distinct morphological forms and the crossing of two different epithelia--midgut and salivary gland. Circumstantial evidence suggests that crossing of the epithelia requires specific interactions between Plasmodium and epithelial surface molecules. By use of a phage display library we have identified a small peptide-SM1--that binds to the surfaces of the mosquito midgut and salivary glands. Transgenic Anopheles stephensi mosquitoes expressing a SM1 tetramer from a blood-inducible and gut-specific promoter are substantially impaired in their ability to sustain parasite development and transmission. A second effector gene, phospholipase A2, also impairs parasite transmission in transgenic mosquitoes. These findings have important implications for the development of new strategies for malaria control.  相似文献   

12.
13.
Climate models suggest the strong possibility of range increase of the diseases transmitted by parasitic arthropods, mostly mosquitoes. In predicting processes of malaria and Dengue diseases dispersion the estimation of risk is based mostly on reproduction rate of vector species. These models allow to calculate the critical threshold of host density which is necessary to maintain parasites and pathogens transmission. Such studies based on integrated mathematical modelling indicate widespread increase of risk due to expansion of the areas suitable for mosquito-borne diseases transmission. This predicted increase is the most pronounced at the borders of the endemic areas and at higher altitudes within malaria and Dengue areas. The simulated change in mosquito-borne diseases risk must be interpreted on the basis of local environmental conditions as well as the effects of socio-economic developments and control disease programs. Apart from mathematical models the sequencing of proteins and DNA of vectors and their pathogens as well as satellite technology (GIS) are taken into consideration. It is supposed that potential impact of global climate change on malaria and Dengue risk can be reduced by constant warning system based on biological monitoring of mosquito vector species and their pathogens. Efficient care system connected with full diagnosis, treatment and prophylaxis of transmission diseases are also required.  相似文献   

14.
Malaria transmission intensity is modeled from the starting perspective of individual vector mosquitoes and is expressed directly as the entomologic inoculation rate (EIR). The potential of individual mosquitoes to transmit malaria during their lifetime is presented graphically as a function of their feeding cycle length and survival, human biting preferences, and the parasite sporogonic incubation period. The EIR is then calculated as the product of 1) the potential of individual vectors to transmit malaria during their lifetime, 2) vector emergence rate relative to human population size, and 3) the infectiousness of the human population to vectors. Thus, impacts on more than one of these parameters will amplify each other's effects. The EIRs transmitted by the dominant vector species at four malaria-endemic sites from Papua New Guinea, Tanzania, and Nigeria were predicted using field measurements of these characteristics together with human biting rate and human reservoir infectiousness. This model predicted EIRs (+/- SD) that are 1.13 +/- 0.37 (range = 0.84-1.59) times those measured in the field. For these four sites, mosquito emergence rate and lifetime transmission potential were more important determinants of the EIR than human reservoir infectiousness. This model and the input parameters from the four sites allow the potential impacts of various control measures on malaria transmission intensity to be tested under a range of endemic conditions. The model has potential applications for the development and implementation of transmission control measures and for public health education.  相似文献   

15.
The mosquito midgut plays a central role in the sporogonic development of malaria parasites. We have found that polyclonal sera, produced against mosquito midguts, blocked the passage of Plasmodium falciparum ookinetes across the midgut, leading to a significant reduction of infections in mosquitoes. Anti-midgut mAbs were produced that display broad-spectrum activity, blocking parasite development of both P. falciparum and Plasmodium vivax parasites in five different species of mosquitoes. In addition to their parasite transmission-blocking activity, these mAbs also reduced mosquito survivorship and fecundity. These results reveal that mosquito midgut-based antibodies have the potential to reduce malaria transmission in a synergistic manner by lowering both vector competence, through transmission-blocking effects on parasite development, and vector abundance, by decreasing mosquito survivorship and egg laying capacity. Because the intervention can block transmission of different malaria parasite species in various species of mosquitoes, vaccines against such midgut receptors may block malaria transmission worldwide.  相似文献   

16.
The Incompatible Insect Technique (IIT) strategy involves the release of male mosquitoes infected with the bacterium Wolbachia. Regular releases of male Wolbachia-infected mosquitoes can lead to the suppression of mosquito populations, thereby reducing the risk of transmission of vector-borne diseases such as dengue. However, due to imperfect sex-sorting under IIT, fertile Wolbachia-infected female mosquitoes may potentially be unintentionally released into the environment, which may result in replacement and failure to suppress the mosquito populations. As such, mitigating Wolbachia establishment requires a combination of IIT with other strategies. We introduced a simple compartmental model to simulate ex-ante mosquito population dynamics subjected to a Wolbachia-IIT programme. In silico, we explored the risk of replacement, and strategies that could mitigate the establishment of the released Wolbachia strain in the mosquito population. Our results suggest that mitigation may be achieved through the application of a sterile insect technique. Our simulations indicate that these interventions do not override the intended wild type suppression of the IIT approach. These findings will inform policy makers of possible ways to mitigate the potential establishment of Wolbachia using the IIT population control strategy.  相似文献   

17.
Mosquitoes act as vectors for a wide range of viral and parasitic infectious diseases such as malaria, dengue, Chickungunya, lymphatic filariasis, Japanese encephalitis and West Nile virus in humans as well as in animals. Although a wide range of insecticides are used to control mosquitoes, it has only resulted in development of resistance to such insecticides. The evolution of insecticide resistance and lack of vaccines for many mosquito-borne diseases have made these arthropods highly harmful vectors. Recently, a novel approach to control mosquitoes by transinfection of life shortening maternally transmitted endo-symbiont Wolbachia wMelPop strain from fruitfly Drosophila into mosquito population has been developed by researchers. The wMelPop strain up-regulated the immune gene expression in mosquitoes thereby reducing the dengue and Chickungunya viral replication in Aedes aegypti, and also it significantly reduced the Plasmodium level in Anopheles gambiae. Here, we discuss the strategy of using Wolbachia in control of vector-borne diseases of mosquitoes.  相似文献   

18.
The introduction of genes that impair Plasmodium development into mosquito populations is a strategy being considered for malaria control. The effect of the transgene on mosquito fitness is a crucial parameter influencing the success of this approach. We have previously shown that anopheline mosquitoes expressing the SM1 peptide in the midgut lumen are impaired for transmission of Plasmodium berghei. Moreover, the transgenic mosquitoes had no noticeable fitness load compared with nontransgenic mosquitoes when fed on noninfected mice. Here we show that when fed on mice infected with P. berghei, these transgenic mosquitoes are more fit (higher fecundity and lower mortality) than sibling nontransgenic mosquitoes. In cage experiments, transgenic mosquitoes gradually replaced nontransgenics when mosquitoes were maintained on mice infected with gametocyte-producing parasites (strain ANKA 2.34) but not when maintained on mice infected with gametocyte-deficient parasites (strain ANKA 2.33). These findings suggest that when feeding on Plasmodium-infected blood, transgenic malaria-resistant mosquitoes have a selective advantage over nontransgenic mosquitoes. This fitness advantage has important implications for devising malaria control strategies by means of genetic modification of mosquitoes.  相似文献   

19.
Progress in molecular genetics makes possible the development of alternative disease control strategies that target the competence of mosquitoes to transmit pathogens. We tested the regulatory region of the vitellogenin (Vg) gene of Aedes aegypti for its ability to express potential antipathogen factors in transgenic mosquitoes. Hermes-mediated transformation was used to integrate a 2.1-kb Vg-promoter fragment driving the expression of the Defensin A (DefA) coding region, one of the major insect immune factors. PCR amplification of genomic DNA and Southern blot analyses, carried out through the ninth generation, showed that the Vg-DefA transgene insertion was stable. The Vg-DefA transgene was strongly activated in the fat body by a blood meal. The mRNA levels reached a maximum at 24-h postblood meal, corresponding to the peak expression time of the endogenous Vg gene. High levels of transgenic defensin were accumulated in the hemolymph of bloodfed female mosquitoes, persisting for 20-22 days after a single blood feeding. Purified transgenic defensin showed antibacterial activity comparable to that of defensin isolated from bacterially challenged control mosquitoes. Thus, we have been able to engineer the genetically stable transgenic mosquito with an element of systemic immunity, which is activated through the blood meal-triggered cascade rather than by infection. This work represents a significant step toward the development of molecular genetic approaches to the control of vector competence in pathogen transmission.  相似文献   

20.
The ability of vector mosquitoes to transmit the microfilariae (mff) of Wuchereria bancrofti, especially when the levels of microfilaraemia in the humans on which the mosquitoes are feeding are very low, is very important for understanding the transmission dynamics of lymphatic filariasis. Data on the correlation between vector competence and the microfilarial load in the human host are also relevant to those trying to improve transmission models for this disease. The majority of the relevant studies have involved culicine rather than anopheline vectors. The competence of populations of Anopheles mosquitoes to transmit W. bancrofti in a district in the Upper East region of Ghana has now been investigated. The wild mosquitoes that fed on 20 volunteers under natural conditions were collected hourly during the night, from 21.00 hours on one day to 06.00 hours on the next. Overall, 1348 fed female mosquitoes--665 Anopheles, 662 Culex and 21 Aedes--were collected. Approximately 50% of the mosquitoes caught were killed immediately post-collection and dissected so that the number of W. bancrofti mff each had ingested could be counted. The remaining mosquitoes where dissected when they died (if this was within 12 days of collection) or when they were killed on day 12 post-collection. With the exception of one Culex mosquito that harboured one microfilaria, none of the Culex and Aedes mosquitoes were found infected with W. bancrofti. All of the other mosquitoes found infected were An. gambiae s.l. or An. funestus. When fingerprick samples of blood, collected hourly from the volunteers during the mosquito infection, were used to estimate the microfilaraemias in the blood on which these mosquitoes had fed, microfilarial uptake and the number of developing larvae were found to vary considerably even when the microfilaraemias in the bloodmeal source were similar. The results of a regression analysis on the pooled data for the Anopheles mosquitoes indicated the process of limitation, although larger samples need to be investigated to determine whether this process occurs only in An. gambiae s.l. or An. funestus or in both of these taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号