首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Poly(ADP-ribose) polymerase (PARP) is a DNA-binding protein that is activated by nicks in the DNA molecule. It regulates the activity of various enzymes, including itself, that are involved in the control of DNA metabolism. Evidence obtained with both benzamide and isoquinolinone PARP inhibitors and the PARP-1(-/-) phenotype, clearly indicate that PARP plays an important role in NO/ROS-induced cell damage during inflammation, ischaemia and neurodegeneration. PARP is involved in the maintenance of genomic stability and PARP inhibition may also potentiate the cytotoxic action of agents used in cancer therapy. Benzamides, although not very potent (IC50 ~ 20 – 50 μM) PARP inhibitors, have been widely used to probe PARP functions, because of their lack of toxicity both in vitro and in vivo, even at high doses. In the early 1990s, a new class of very potent PARP inhibitors (i.e., at least 100-fold more potent thatn benzamide), the dihydroisoquinolinones, benzamide derivatives with the carbamoyl group constrained into the antiorientation, was discovered. At the same time, a large structure–activity surevey identified over 13 chemical classes of PARP inhibitors, the most potent calss sharing a common structural feature, the presence of a carbonyl group built into a polyaromatic heterocyclic skeleton or a carbamoyl group attached to an aromatic ring. Recently, a better knowledge of the PARP catalytic domain and the use of its crystal structure have led to the design and synthesis of the tricyclic lactam indoles, active at low nanomolar concentrations, and with favourable physical properties and in vivo characteristics. In the last few years the interest in PARP as a therapeutic target has been rapidly growing. This article reviews the patents filed for new PARP inhibitors over the last three years, up to February 2002, and their development status.  相似文献   

3.
Nicotinamide (NAm) represents both a pharmacological agent known to express cell preserving and anti-inflammatory properties, and a useful investigational tool to elucidate cellular pathways regulating a wide range of cellular functions. We demonstrate in this study that exogenous NAm, when used at pharmacological doses, inhibits activation of primary murine B lymphocytes in response to multiple ligands. NAm appears to affect a membrane proximal event leading to MAPKs activation, a transduction pathway shared by multiple receptors including the antigen-specific B cell receptor, CD38, CD40 and TLR4 receptors. NAm inhibited phospho-ERK accumulation, and only marginally affected phospho-p38 and phospho-JNK induction upon BCR stimulation of naive B lymphocytes. Accordingly, NAm also affected the expression of known targets of the MAPK ERK pathway such as CD69 and cyclin D2. Based on a comparison with well-characterized pharmacological inhibitors, we suggest in this work that NAm may inhibit a post-translational modification mediated by a yet unidentified mono(ADP-ribose)transferase. Collectively, our observations indicate that in addition to its previously described effect on cells of the innate immune system, NAm is able to modulate the activity of B lymphocytes suggesting a potential role of this vitamin in regulating antibody-mediated autoimmune disorders.  相似文献   

4.
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a TNF superfamily member that is being considered as a new strategy in anticancer therapy because of its ability to induce apoptosis, alone or in combination with other stimuli, in many cancer cells. AMP-activated protein kinase (AMPK) is an evolutionarily conserved key regulator of cellular energy homeostasis that protects the cell from energy depletion and stress by activating several biochemical pathways that lead to the conservation, as well as generation, of ATP. Here we report that a number of AMPK activators, including the small molecule activator A-769662, markedly sensitize TRAIL-resistant breast cancer cells to TRAIL-induced apoptosis. However, silencing AMPKα1 expression with siRNA or over-expression of DN-AMPKα1 does not inhibit AICAR, glucose deprivation, phenformin or A-769662-induced sensitization to TRAIL. Furthermore, the expression of constitutively active AMPK subunits does not sensitize resistant breast cancer cells to TRAIL-induced apoptosis. The cellular FLICE-inhibitory proteins (cFLIPL and cFLIPS) were significantly down-regulated following exposure to AMPK activators through an AMPK-independent mechanism. Furthermore, in cells over-expressing cFLIPL, sensitization to TRAIL by AMPK activators was markedly reduced. In summary, our results indicate that AMPK activators facilitate the activation by TRAIL of an apoptotic cell death program through a mechanism independent of AMPK and dependent on the down-regulation of cFLIP levels.  相似文献   

5.
Background: During the last few years an increasing number of poly(ADP-ribose) polymerase (PARP) inhibitors have been appearing in the context of cancer therapy. This is mainly due to a better knowledge of the best-characterized member of the PARP family of enzymes, PARP-1, further reinforced by the recognition of the clinical benefits arising from its inhibition. Objective/method: The aim of this review is to give the reader an update on PARP inhibition in cancer therapy, by covering both the scientific (SciFinder® search) and the patent literature (Chemical Abstract®/Derwent® search) published recently (2005 – 2008). Conclusions: More patient-compliant orally available PARP-1 inhibitor clinical candidates, along with their possible use as single agents in specific, molecularly defined cancer indications, increase the expectations for this therapeutic approach. The growing understanding of the biological role of other PARPs, such as Tankyrase 1, may be of interest as new potential targets. Besides the classical NAD-mimicking pharmacophore, additional compounds, which either do not resemble nicotinamide or exploit different binding sites, are emerging.  相似文献   

6.
聚腺苷二磷酸核糖聚合酶抑制剂   总被引:2,自引:0,他引:2  
综述近年来聚腺苷二磷酸核糖聚合酶抑制剂的研究进展,重点评述新发现的该酶抑制剂的结构类型、生物活性、构效关系及其潜在的临床应用价值。聚腺苷二磷酸核糖聚合酶是人体重要的酶之一,参与多种生理病理过程。  相似文献   

7.

Background and purpose:

Maintenance of poly(ADP-ribose) (PAR) polymers at homoeostatic levels by PAR glycohydrolase (PARG) is central in cell functioning and survival. Yet the pharmacological relevance of PARG inhibitors is still debated. Gallotannin, a complex mixture of hydrolysable tannins from oak gall, inhibits PARG but which of its constituents is responsible for the inhibition and whether the pharmacodynamic properties are due to its antioxidant properties, has not yet been established.

Experimental approach:

A structure–activity relationship study was conducted on different natural and synthetic tannins/galloyl derivatives as potential PARG inhibitors, using a novel in vitro enzymic assay. Cytotoxicity was assayed in cultured HeLa cells.

Key results:

Mono-galloyl glucose compounds were potent inhibitors of PARG, with activities similar to that of ADP-(hydroxymethyl) pyrrolidinediol, the most potent PARG inhibitor yet identified. When tested on HeLa cells exposed to the PAR polymerase (PARP)-1-activating compound 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), 3-galloyl glucose weakly inhibited PAR degradation. Conversely, the more lipophilic, 3-galloyl-1,2-O-isopropylidene glucose, despite being inactive on the pure enzyme, efficiently prolonged the half-life of the polymers in intact HeLa cells. Also, PARG inhibitors, but not radical scavengers, reduced, in part, cell death caused by MNNG.

Conclusions and implications:

Taken together, our findings identify mono-galloyl glucose derivatives as potent PARG inhibitors, and emphasize the active function of this enzyme in cell death.  相似文献   

8.
9.
聚腺苷二磷酸核糖聚合酶(PARP)是人体重要的酶之一,参与染色质松弛、信号转录、DNA修复和细胞凋亡等生理过程。PABP过度激活则引起细胞坏死,从而介导多种病理过程。因此,抑制PARP可能会起到对某些疾病的治疗作用。本文综述了PARP的功能及PARP抑制剂的潜在临床应用。  相似文献   

10.
Poly (ADP-ribose) polymerase (PARP) plays a key role in DNA repair mechanisms by detecting and initiating repair after DNA strand breaks. Inhibition of PARP in DNA repair-defective tumors (like those with BRCA1 or BRCA2 mutations) can lead to gross genomic instability and cell death. Likewise, combining PARP inhibition with cytotoxic agents such as chemotherapy or radiation therapy is synergistic in many preclinical models. Several drugs designed to inhibit PARP are currently in clinical development, many following a development path different from that of typical anticancer agents. In this review we will focus on the early clinical data from PARP inhibitors that are entering clinical trials, the potential tumors they might target, their combination with other drugs and the different biomarkers that are being explored. Concepts such as ‘BRCAness’, synthetic lethality, Phase 0 trials and pharmacodynamic markers will be discussed in the context of the development of PARP inhibitors.  相似文献   

11.
12.
Poly(ADP-ribose) polymerase-1 (PARP-1), the most prominent member of the PARP family, is a DNA-binding protein that is activated by nicks in DNA occurring during inflammation, ischaemia, neurodegeneration or cancer therapy. Activated PARP-1 consumes NAD+ that is cleaved into nicotinamide and ADP-ribose and polymerises the latter onto nuclear acceptor proteins. This highly energy consuming process is pivotal for the maintenance of genomic stability although over-activation can culminate in cell dysfunction and necrosis. Therefore, PARP-1 is regarded as a promising target for the development of drugs useful in various forms of inflammation, ischaemia–reperfusion injury and as an adjunct in cancer therapy. This review summarises the structural classes of known PARP-1 inhibitors, with a focus on new inhibitors published for this target, between 2002 and July 2004. The chemistry and biological data disclosed in these patent applications are discussed in light of new structural knowledge of the catalytic domain of the PARP family and recent work with potent inhibitors demonstrating the effects of PARP inhibition in various animal disease models.  相似文献   

13.
Phytochemicals show promise as potential chemopreventive or chemotherapeutic agents against various cancers. Here we report the chemotherapeutic effects of berberine, a phytochemical, on human prostate cancer cells. The treatment of human prostate cancer cells (PC-3) with berberine induced dose-dependent apoptosis but this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apoptosis was associated with the disruption of the mitochondrial membrane potential, release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria and cleavage of caspase-9,-3 and PARP proteins. This effect of berberine on prostate cancer cells was initiated by the generation of reactive oxygen species (ROS) irrespective of their androgen responsiveness, and the generation of ROS was through the increased induction of xanthine oxidase. Treatment of cells with allopurinol, an inhibitor of xanthine oxidase, inhibited berberine-induced oxidative stress in cancer cells. Berberine-induced apoptosis was blocked in the presence of antioxidant, N-acetylcysteine, through the prevention of disruption of mitochondrial membrane potential and subsequently release of cytochrome c and Smac/DIABLO. In conclusion, the present study reveals that the berberine-mediated cell death of human prostate cancer cells is regulated by reactive oxygen species, and therefore suggests that berberine may be considered for further studies as a promising therapeutic candidate for prostate cancer.  相似文献   

14.
Azidothymidine (AZT) is known to decrease HIV virus replication and is one of the most frequently prescribed antiretroviral drugs used for AIDS treatment. Dose-limiting toxicities are the major curse associated with AZT therapy. Recently, we have reported that tannic acid; a PARG inhibitor prevents cisplatin induced nephrotoxicity. The present work was conceived to study the effect of tannic acid on AZT induced hepatotoxicity and genotoxicity. AZT induces increase in plasma levels of ALT, AST and alkaline phosphatase along with increase in micronucleus (MN) count in peripheral blood. Suggesting, AZT is hepatotoxic and genotoxic to mice. Treatment of tannic acid protects AZT induced hepatotoxicity by decreasing the ALT, AST and alkaline phosphatase levels. It also significantly reduces the oxidative damage by preventing reduction in glutathione and decreasing the level of malondialdehyde in liver of AZT treated mice. In addition, tannic acid decreases the PARG expression, PARP cleavage and histone H3 acetylation in liver of AZT treated mice. Moreover, treatment of tannic acid also decreases MN count in peripheral blood, suggesting its anti-mutagenic effect. In light of these findings we suggest the potential role of tannic acid treatment in preventing AZT induced toxicity.  相似文献   

15.
The plant-produced compound, resveratrol (3,5,4'-trihydroxy-trans-stilbene, 3,4,5-THS), induces apoptosis in various human leukemia cell types in vitro, and thus appears to be a promising anti-leukemia agent. In this study, we observed that treatment of resveratrol-resistant Jurkat cells with the resveratrol analogue, 3,4,5-trihydroxy-trans-stilbene (3,4,5-THS), rapidly induced extensive apoptosis, indicating that the apoptotic activity of the analogue differed from that of the parental compound resveratrol. Indeed, we found that treatment of Jurkat cells with 3,4,5-THS, unlike treatment with resveratrol, induced activation of caspase-8 and apoptosis by a Fas-associated death domain (FADD) protein-dependent mechanism without involving the known death ligands CD95 ligand (CD95L), tumor necrosis factor alpha (TNFalpha) and TNF-related apoptosis-inducing ligand (TRAIL). Therefore, 3,4,5-THS induced activation of a FADD-dependent apoptotic mechanism that was unresponsive to the parental compound resveratrol. Therefore, the ability of 3,4,5-THS, but not resveratrol, to induce apoptosis demonstrates a structure-associated apoptotic activity of the resveratrol analogue.  相似文献   

16.
目的 设计合成一系列苯并咪唑类衍生物,并测定其聚腺苷二磷酸核糖聚合酶(PARP)抑制活性.方法 以3-硝基邻苯二甲酸酐为基本原料,经开环、Hofmann重排、酰胺化或酯化、还原得到邻二氨基苯化合物,再与相应的苯甲醛及其衍生物环合得到目标分子;采用体外抑酶试验初步筛选目标分子的PARO抑制活性.结果与结论 合成了22个苯...  相似文献   

17.
Interactions between the topoisomerase I inhibitor irinotecan (CPT-11) and the platinum derivative oxaliplatin (L-OHP) were investigated in HT29 colon cancer cell line. Synergism was observed when cells were simultaneously exposed to drugs or when cells were first exposed to CPT-11. Flow cytometric studies showed a G(2)/M accumulation when cells were exposed to the simultaneous and CPT-11-->L-OHP combinations whereas a persistent S phase delay was observed when cells were first exposed to L-OHP. We characterised the cytotoxic effect by assessing the induction of apoptosis. Irinotecan induced substantial DEVDase activity and poly(ADP-ribose) polymerase cleavage while this activity was moderate and delayed after exposure to L-OHP. Combination experiments showed a sequence-dependent onset of apoptosis, the CPT-11-->L-OHP schedule being the earliest and the most effective; on the other hand the apoptotic signaling generated by CPT-11 was partly inhibited in the simultaneous combination and in the L-OHP-->CPT-11 sequence. Cell death studies using a dual staining technique showed a shift from apoptosis to necrosis when combining these drugs at high concentrations. Synergistic interactions observed using CPT-11 before L-OHP may be linked to an early apoptotic signaling while the L-OHP-induced S phase block could account for the observed additive effect in the reverse sequence. An additional phenomenon might work towards synergism for the simultaneous combination.  相似文献   

18.
尼拉帕尼(Niraparib,商品名ZejulaTM)是聚腺苷二磷酸-核糖聚合酶(PARP)的口服小分子抑制剂,PARP抑制是治疗由DNA修复基因(如BRCA1和BRCA2)特异性畸变引起的DNA修复机制缺陷的癌症的有效策略。尼拉帕尼于2017年3月在美国获批,维持治疗复发性上皮性卵巢癌、输卵管癌、原发性腹膜癌的成年患者,这些患者对铂类化疗有完全或部分反应,推荐剂量为口服300 mg/d,直到疾病发生恶化或产生无法接受的不良反应。临床研究结果表明该药可以延长患者的无恶化生存期,为治疗卵巢癌提供了有效和可靠的治疗手段。  相似文献   

19.
Poly(ADP-ribose) polymerase is a nucleic enzyme that promotes energy-dependent repair of DNA, thus helping to protect against DNA fragmentation. Overactivation of PARP, for example in the context of apoptosis, may contribute to neuronal cell death. This article briefly reviews claims for PARP inhibitors as agents for the prevention of neuronal cell death, registered in the period 1998 – December 2001. Biological data are sparse in these patents, few claims are backed by in vitro biochemical data and fewer still with in vivo animal model data. The latter have used animal models of ischaemia rather than of neurodegeneration. The place of PARP inhibitors as a clinical therapy to prevent neuronal cell death remains to be determined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号