首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis   总被引:2,自引:0,他引:2  
Type 2 diabetes (T2DM) is characterized by insulin resistance, defective insulin secretion, loss of beta-cell mass with increased beta-cell apoptosis and islet amyloid. The islet amyloid is derived from islet amyloid polypeptide (IAPP, amylin), a protein coexpressed and cosecreted with insulin by pancreatic beta-cells. In common with other amyloidogenic proteins, IAPP has the propensity to form membrane permeant toxic oligomers. Accumulating evidence suggests that these toxic oligomers, rather than the extracellular amyloid form of these proteins, are responsible for loss of neurons in neurodegenerative diseases. In this review we discuss emerging evidence to suggest that formation of intracellular IAPP oligomers may contribute to beta-cell loss in T2DM. The accumulated evidence permits the amyloid hypothesis originally developed for neurodegenerative diseases to be reformulated as the toxic oligomer hypothesis. However, as in neurodegenerative diseases, it remains unclear exactly why amyloidogenic proteins form oligomers in vivo, what their exact structure is, and to what extent these oligomers play a primary or secondary role in the cytotoxicity in what are now often called unfolded protein diseases.  相似文献   

2.
The islet in non-insulin-dependent diabetes mellitus (NIDDM) is characterized by loss of beta cells and large local deposits of amyloid derived from the 37-amino acid protein, islet amyloid polypeptide (IAPP). We have hypothesized that IAPP amyloid forms intracellularly causing beta-cell destruction under conditions of high rates of expression. To test this we developed a homozygous transgenic mouse model with high rates of expression of human IAPP. Male transgenic mice spontaneously developed diabetes mellitus by 8 weeks of age, which was associated with selective beta-cell death and impaired insulin secretion. Small intra- and extracellular amorphous IAPP aggregates were present in islets of transgenic mice during the development of diabetes mellitus. However, IAPP derived amyloid deposits were found in only a minority of islets at approximately 20 weeks of age, notably after development of diabetes mellitus in male transgenic mice. Approximately 20% of female transgenic mice spontaneously developed diabetes mellitus at 30+ weeks of age, when beta-cell degeneration and both amorphous and amyloid deposits of IAPP were present. We conclude that overexpression of human IAPP causes beta-cell death, impaired insulin secretion, and diabetes mellitus. Large deposits of IAPP derived amyloid do not appear to be important in this cytotoxicity, but early, small amorphous intra- and extracellular aggregates of human IAPP were consistently present at the time of beta-cell death and therefore may be the most cytotoxic form of IAPP.  相似文献   

3.
Amylin, also called islet amyloid polypeptide (IAPP), or diabetes-associated peptide (DAP) is a recently discovered 37 amino acid polypeptide which has been shown to be co-secreted with insulin from the pancreatic beta-cell. The peptide turned out to be the major constituent of pancreatic amyloid deposits which are frequently found in the pancreas of type II diabetic patients. Therefore, a role for amylin in the aetiology of type II diabetes was hypothesized. To investigate this possibility, several studies have been performed to elucidate whether amylin is able to impair insulin secretion and action, two characteristic features of type II diabetes mellitus. These studies suggest that it is unlikely that amylin has a direct inhibitory effect on insulin secretion. Amyloid deposits, however, which are derived from the in situ polymerization and precipitation of amylin, may impair beta-cell function during type II diabetes by damaging and covering beta-cells. Furthermore, it has been shown that amylin has the potential to antagonize the action of insulin on glucose metabolism by increasing hepatic glucose production and by decreasing muscle, but not adipocyte glucose uptake. For these reasons, it has been suggested that amylin might be involved in the pathophysiology of type II diabetes and obesity, disease states which are characterized by abnormal beta-cell function and insulin resistance. In addition, amylin was shown to induce hypocalcaemia by inhibiting osteoclast-mediated bone resorption in a calcitonin-like manner. Therefore, amylin is likely to be involved in both the modulation of glucose and calcium metabolism.  相似文献   

4.
Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes   总被引:12,自引:0,他引:12  
Islet amyloid deposition is a pathogenic feature of type 2 diabetes, and these deposits contain the unique amyloidogenic peptide islet amyloid polypeptide. Autopsy studies in humans have demonstrated that islet amyloid is associated with loss of beta-cell mass, but a direct role for amyloid in the pathogenesis of type 2 diabetes cannot be inferred from such studies. Animal studies in both spontaneous and transgenic models of islet amyloid formation have shown that amyloid forms in islets before fasting hyperglycemia and therefore does not arise merely as a result of the diabetic state. Furthermore, the extent of amyloid deposition is associated with both loss of beta-cell mass and impairment in insulin secretion and glucose metabolism, suggesting a causative role for islet amyloid in the islet lesion of type 2 diabetes. These animal studies have also shown that beta-cell dysfunction seems to be an important prerequisite for islet amyloid formation, with increased secretory demand from obesity and/or insulin resistance acting to further increase islet amyloid deposition. Recent in vitro studies suggest that the cytotoxic species responsible for islet amyloid-induced beta-cell death are formed during the very early stages of islet amyloid formation, when islet amyloid polypeptide aggregation commences. Interventions to prevent islet amyloid formation are emerging, with peptide and small molecule inhibitors being developed. These agents could thus lead to a preservation of beta-cell mass and amelioration of the islet lesion in type 2 diabetes.  相似文献   

5.
Islet amyloid polypeptide (IAPP, "amylin") has been proposed as having important roles in the pathogenesis of type 2 diabetes mellitus via its biological activity and by forming islet amyloid. The domestic cat develops a type of diabetes that closely resembles type 2 diabetes in humans, including the frequent formation of islet amyloid deposits in the impaired glucose tolerant (IGT) and diabetic state. With the aid of computerized image analysis and immunohistochemistry, we examined the IAPP and insulin content in pancreatic islets of normal, IGT and diabetic cats. IAPP immunoreactivity in beta cells from IGT cats was significantly stronger (p < 0.01) as compared with cells from normal cats, while the insulin labelling strength was unchanged. Overtly diabetic cats were usually almost devoid of beta cells. As in humans, cellular IAPP but not IAPP in islet amyloid deposits was labelled by the newly developed monoclonal antibody to IAPP 4A5, thus providing further evidence that IAPP is modified by a yet unknown mechanism during the amyloidogenic process. The study provides evidence that an increased beta cell storage of IAPP independent of insulin may be an important factor in the early phase of the development of islet amyloid in this form of diabetes.  相似文献   

6.
Summary To determine whether chronic overproduction of islet amyloid polypeptide alters beta-cell function, we studied a line of transgenic mice which overexpress islet amyloid polypeptide in their beta-cells. At 3 months of age, these transgenic mice had greater pancreatic content of both islet amyloid polypeptide and insulin. Further, basal and glucose-stimulated secretion of both islet amyloid polypeptide and insulin were also elevated in the perfused pancreas of the transgenic animals. These findings demonstrate that chronic overproduction and secretion of islet amyloid polypeptide are associated with increased insulin storage and enhanced secretion of insulin in vitro. This increase in insulin storage and secretion may be due to a direct effect of islet amyloid polypeptide on the beta-cell or a betacell adaptation to islet amyloid polypeptide-induced insulin resistance.Abbreviations IAPP Islet amyloid polypeptide - bp base pair - TFA trifluoroacetic acid - IRI immunoreactive insulin - SLI somatostatin-like immunoreactivity - IAPP-LI IAPP-like immunoreactivity  相似文献   

7.
Clark A  Nilsson MR 《Diabetologia》2004,47(2):157-169
The role of islet amyloidosis in the onset and progression of Type 2 diabetes remains obscure. Islet amyloid polypeptide is a 37 amino-acid, beta-cell peptide which is co-stored and co-released with insulin. Human islet amyloid polypeptide refolds to a -conformation and oligomerises to form insoluble fibrils; proline substitutions in rodent islet amyloid polypeptide prevent this molecular transition. Pro-islet amyloid polypeptide (67 amino acids in man) is processed in secretory granules. Refolding of islet amyloid polypeptide may be prevented by intragranular heterodimer formation with insulin (but not proinsulin). Diabetes-associated abnormal proinsulin processing could contribute to de-stabilisation of granular islet amyloid polypeptide. Increased pro-islet amyloid polypeptide secretion as a consequence of islet dysfunction could promote fibrillogenesis; the propeptide forms fibrils and binds to basement membrane glycosamino-glycans. Islet amyloid polypeptide gene polymorphisms are not universally associated with Type 2 diabetes. Transgenic mice expressing human islet amyloid polypeptide gene have increased islet amyloid polypeptide concentrations but develop islet amyloid only against a background of obesity and/or high fat diet. In transgenic mice, obese monkeys and cats, initially small perivascular deposits progressively increase to occupy 80% islet mass; the severity of amyloidosis in animal models is related to the onset of hyperglycaemia, suggesting that islet amyloid and the associated destruction of islet cells cause diabetes. In human diabetes, islet amyloid can affect less than 1% or up to 80% of islets indicating that islet amyloidosis largely results from diabetes-related pathologies and is not an aetiological factor for hyperglycaemia. However, the associated progressive beta-cell destruction leads to severe islet dysfunction and insulin requirement.Abbreviations IAPP islet amyloid polypeptide - hIAPP human islet amyloid polypeptide - T2DM Type 2 diabetes - TM transgenic mice expressing the human IAPP gene - UKPDS United Kingdom Prospective Diabetes Study - GAGs glycosamino glycans  相似文献   

8.
Islet amyloid polypeptide (IAPP/Amylin) is a novel peptide which was extracted from islet amyloid deposits in patients with non-insulin-dependent diabetes mellitus (NIDDM). However, its pattern of secretions and plasma concentrations under various conditions has not yet been made clear enough. In this study, we examined IAPP secretion from islet beta-cells in vitro using cultured islet cells of neonatal rat pancreas and plasma IAPP responses under various conditions in vivo in normal control subjects and patients with glucose intolerance. Our data revealed that (1) IAPP is co-secreted with insulin from islet cells of the rat pancreas by glucose and non-glucose stimuli; (2) fasting plasma IAPP levels in normal control subjects are 24.9 +/- 2.0 pg/ml and the molar ratio of IAPP/insulin is approximately 1/7; (3) fasting IAPP levels are high in obese patients and low in insulin-dependent diabetic patients, and the molar ratio of IAPP/C-peptide in NIDDM patients is lower than that in normal control subjects, suggesting the basal hyposecretion of IAPP relative to insulin in NIDDM; and (4) the obese patients who had a hyperresponsiveness of insulin relative to C-peptide had the hyperresponsiveness of IAPP relative to C-peptide during an oral glucose load, suggesting that IAPP may have some physiological effect in glucose metabolism.  相似文献   

9.

Aims/hypothesis  

In type 2 diabetes, aggregation of islet amyloid polypeptide (IAPP) into amyloid is associated with beta cell loss. As IAPP is co-secreted with insulin, we hypothesised that IAPP secretion is necessary for amyloid formation and that treatments that increase insulin (and IAPP) secretion would thereby increase amyloid formation and toxicity. We also hypothesised that the unique properties of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 to maintain or increase beta cell mass would offset the amyloid-induced toxicity.  相似文献   

10.
Islet amyloid polypeptide (IAPP), a putative polypeptide hormone, is a product of pancreatic beta-cells and the major constituent of the amyloid deposits seen mainly in islets of type 2 diabetic humans and diabetic cats. The connection between IAPP amyloid formation and diabetes is unknown, but a limited segment of the IAPP molecule, positions 20-29, seems responsible for the aggregation to fibrils. Differences in the amino acid sequence of this region probably determine whether or not islet amyloid can develop in a particular species. Amyloid fibril formation can be mimicked in vitro with the aid of synthetic peptides. With this technique we show that peptides corresponding to IAPP positions 20-29 of human and cat, species that develop IAPP-derived islet amyloid, form amyloid-like fibrils in vitro. The corresponding IAPP segment from three rodent species that do not develop IAPP-derived amyloid did not give rise to fibrils. Substitution of the human IAPP-(20-29) decapeptide with one or two amino acid residues from species without islet amyloid generally reduced the capacity to form fibrils. We conclude that the sequence Ala-Ile-Leu-Ser-Ser, corresponding to positions 25-29 of human IAPP, is strongly amyloidogenic and that a proline-for-serine substitution in position 28, as in several rodents, almost completely inhibits formation of amyloid fibrils.  相似文献   

11.
Islet amyloid polypeptide (IAPP; amylin) is a peptide hormone that is cosecreted with insulin from beta-cells. Impaired processing of proIAPP, the IAPP precursor, has been implicated in islet amyloid formation in type 2 diabetes. We previously showed that proIAPP is processed to IAPP by the prohormone convertases PC1/3 and PC2 at its carboxyl (COOH) and amino (NH(2)) termini, respectively. In this study, we investigated the role of carboxypeptidase E (CPE) in the processing of proIAPP using mice lacking active CPE (Cpe(fat)/Cpe(fat)) and NIT-2 cells, a beta-cell line derived from their islets. Western blot analysis demonstrated that an approximately 6-kDa NH(2)-terminally unprocessed form of proIAPP was elevated approximately 86% in islets from Cpe(fat)/Cpe(fat) mice, compared with wild type. This increase was independent of the development of hyperglycemia (8 wk male) or obesity (18 wk female). Impaired proIAPP processing was associated with a decrease in PC2 (but not PC1/3) and both the 21- and 27-kDa forms of the PC2 chaperone protein 7B2, suggesting that PC2-mediated processing of proIAPP at its NH(2) terminus was impaired in the absence of CPE. Formation of COOH-terminally amidated (pro)IAPP was reduced approximately 75% in NIT-2, compared with NIT-1 beta-cells, supporting a direct role for CPE in maturation of IAPP by removal of its COOH-terminal dibasic residues, the step essential for IAPP amidation. We conclude that lack of CPE in islet beta-cells results in a marked decrease in processing of proIAPP at its NH(2) (but not COOH) terminus that is associated with attenuated levels of PC2 and (pro)7B2 and a great reduction in formation of mature amidated IAPP.  相似文献   

12.
Islet (or insulinoma) amyloid polypeptide (IAPP) is a 37-residue peptide recently purified from amyloid deposits in the pancreas of patients with type 2 diabetes and from amyloid deposits of a human insulinoma. IAPP immunoreactivity has been identified in islet B cells of diabetic and nondiabetic humans. IAPP is structurally similar to calcitonin gene-related peptide (CGRP). The purpose of this study was to examine the effects of IAPP and CGRP on glucose- and carbachol-stimulated release of insulin and pancreatic polypeptide (PP) from the isolated perfused rat pancreas. IAPP and CGRP, at 10(-7) M, failed to inhibit glucose-stimulated (16.7 mM) release of insulin. At the same concentration, however, IAPP significantly (p less than 0.05) inhibited carbachol-stimulated (10(-7) M) release of insulin by 30%, and CGRP significantly inhibited carbachol-stimulated release of insulin by 33% when compared with the control group. IAPP also significantly decreased carbachol-stimulated release release of PP. IAPP and CGRP, at 10(-8) M, did not inhibit carbachol-stimulated release of insulin and PP. These results suggest that IAPP and CGRP may have roles in the regulation of secretion of insulin. IAPP may inhibit secretion of insulin, at least in part, by blocking cholinergic mechanisms.  相似文献   

13.
Elevated proinsulin secretion and islet amyloid deposition are both features of Type 2 diabetes but their relationship to beta-cell dysfunction is unknown. To determine if islet amyloid polypeptide (IAPP) secretion is disproportionate with other beta-cell products at any stage of glucose intolerance, 116 subjects were studied. Non-diabetic subjects with equivalent body mass index (BMI) were assigned to three groups, (i) normal fasting glucose, fpg<5.5 mmol l(-1); (ii) intermediate fasting glucose, fpg> or =5.5<6.15 mmol l(-1); (iii) impaired fasting glucose (IFG), fpg> or =6.1<7.0 mmol l(-1). Diabetic subjects were divided according to therapy (9 diet, 19 tablet, and 11 insulin). IAPP, C-peptide and proinsulin were measured fasting and at the end of a 1-h glucose infusion. Fasting C-peptide, IAPP and proinsulin were significantly elevated in the IFG group compared with the other non-diabetic groups (P<0.02); fasting IAPP/C-peptide and proinsulin/C-peptide were 1-2% in all non-diabetic groups. Fasting and 1-h proinsulin and proinsulin/C-peptide were higher in diabetic compared with non-diabetic subjects (P<0.01). IAPP and IAPP/C-peptide in diabetic groups were similar to that in non-diabetic subjects but reduced in the insulin-treated group (P<0.01). Proinsulin was disproportionately increased compared with C-peptide and IAPP in Type 2 diabetes particularly in severe beta-cell failure implying more than one concurrent beta-cell pathology.  相似文献   

14.
Islet amyloid polypeptide (amylin), cosecreted with insulin by the pancreatic beta-cells, has an important role in the regulation of islet cell hormone homeoastasis. Deposition of beta-sheet polypeptide fibrils into amyloid deposits is considered to be central to the pathology of a number of amyloidogenic disorders, including type-2 diabetes. Amyloid deposits comprised of beta-sheet fibrillar amylin observed in type-2 diabetics are cytotoxic and may have a prominent role in causing beta-cell dysfunction. The amyloidogenic process may impair beta-cell function before cell death and replacement by amyloid. Preservation of beta-cell viability and insulin secretion is a major objective in diabetic care. Using circular dichroism and Congo red absorption techniques we found that clinically relevant doses of aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDS) prevented and also reversed the beta-sheet conformation of human amylin. The specific COX-2 inhibitors were less effective. The anti-inflammatory steroid prednisolone or the analgesic acetaminophen had no effect on amylin fibrillogenesis. This action of NSAIDS was similar to their inhibition of beta-sheet conformation of the Alzheimer protein, amyloid-beta. Aspirin, currently recommended for the prevention of cardiovascular complications in diabetic patients, may also ameliorate the disease process in diabetes by preserving the beta-cell function.  相似文献   

15.
Ma Z  Westermark P  Westermark GT 《Pancreas》2000,21(2):212-218
Amyloid derived from the beta-cell product islet amyloid polypeptide (IAPP) has been implicated for a beta-cell lesion in Type II diabetes mellitus. The pathogenesis of islet amyloid is poorly understood, and in addition to an amyloidogenic IAPP molecule and possibly increased concentration of IAPP, other unknown factors seem to be included. It was shown previously that polyclonal rabbit IAPP antisera label beta cells close to amyloid only weakly. Whether this lack of immunoreactivity depends on lack of IAPP or on hidden epitopes is in question. In the present study, we show that the IAPP immunoreactivity of these beta cells is possible to retrieve. On the other hand, the monoclonal IAPP antibody 4A5, which labels IAPP in beta cells, does not label IAPP in its native amyloid form. We show evidence that this lack of immunoreactivity is not dependent on conformational change of the IAPP molecules in the amyloidogenesis but is likely owing to glycation of IAPP in human islet amyloid deposits.  相似文献   

16.
Islet amyloid, derived from islet amyloid polypeptide (IAPP or amylin), frequently occurs in type 2 diabetes. Availability of this peptide for amyloid formation may be enhanced by increased islet expression of IAPP. In the insulin resistant state, euglycemia is maintained by hypersecretion of insulin. Whether  相似文献   

17.
Twenty pancreata of non-diabetic patients and 17 pancreata of diabetic patients, including two patients with insulin-dependent diabetes mellitus, were immunohistochemically studied using antiserum against human islet amyloid polypeptide (IAPP). The islet beta cells in non-diabetic patients were immunoreactive for both IAPP and insulin. Amyloid deposition immunoreactive for IAPP was detected in six of 20 pancreata of non-diabetic patients. The plasma glucose level of three of these six patients was elevated to more than 200 mg/dl, and that of the other three ranged from 143 to 162 mg/dl; all six were receiving intravenous hyper-alimentation and had no history of diabetes prior to treatment. Amyloid deposition was present in all patients with non-insulin-dependent diabetes mellitus (NIDDM). The deposition was absent in the pancreata of two secondary diabetic patients, one of whom had received steroid hormone for bronchial asthma and the other of whom had liver cirrhosis with hepatocellular carcinoma; deposition was also absent in the pancreas of a patient with impaired glucose tolerance diagnosed on a 75-g oral glucose load. Heterogeneous expression of immunoreactivities of beta cells for insulin and for IAPP was present, suggesting independently regulated production and secretion of the peptides. Immunoreactivity of beta cells was more sensitively decreased for IAPP than for insulin in the islets of NIDDM patients. The decreased immunoreactivity for IAPP suggested an initial stage of disturbed beta-cell function, even if the immunoreactivity for insulin was apparently intact or the amyloid deposition in the islets was insignificant. The degree of amyloid deposition immunoreactivity for IAPP did not necessarily reflect the severity of diabetes mellitus. Amyloid deposits were seen at the narrow spaces beneath the insular capsule of connective tissues and the perivascular region or, in some cases, occupying the whole of the islet. The diabetogenic role of IAPP is unclear, but the deposition might be an accelerating factor which disturbs beta-cell function.  相似文献   

18.
《Islets》2013,5(3):223-232
Aims/hypothesis: Islet amyloid polypeptide (IAPP) is a chief constituent of amyloid deposits in pancreatic islets, characteristic histopathology for type 2 diabetes. The goal of this study was to analyze islet cell composition in diabetic islets for the process of transforming water-soluble IAPP in β-cells to water-insoluble amyloid deposits by Immunocytochemical staining using different dilutions of anti-IAPP antibody. IAPP in β-cell granules may initiate β-cell necrosis through apoptosis to form interstitial amyloid deposits in type 2 diabetic islets.

Results: Control islets revealed twice as much β-cells as α-cells whereas 15 of 18 type 2 diabetic cases (83%) revealed α- cells as major cells in larger islets. Diabetic islets consisted of more larger islets with more σ-cells than β-cells, which contribute to hyperglucagonemia. In control islets, percentage of IAPP-positive cells against β-cells was 40–50% whereas percentage for type 2 diabetic islets was about 25%. Amyloid deposits in diabetic islets were not readily immunostained for IAPP using 1: 800 diluted antibody, however, 1: 400 and 1: 200 diluted solutions provided stronger immunostaining in early stages of islet amyloidogenesis after treating the deparaffinized sections with formic acid.

Methods: Using commercially available rabbit antihuman IAPP antibody, immunocytochemical staining was performed on 18 cases of pancreatic tissues from type 2 diabetic subjects by systematically immunostaining for insulin, glucagon, somatostatin (SRIF) and IAPP compared with controls. Sizes of islets were measured by 1 cm scale, mounted in 10X eye piece.

Conclusions/Interpretation: α cells were major islet cells in majority of diabetic pancreas (83%) and all diabetic islets contained less IAPP-positive cells than controls, indicating that IAPP deficiency in pancreatic islets is responsible for decreased IAPP in blood. In diabetic islets, water-soluble IAPP disappeared in β-cell granules, which transformed to water-insoluble amyloid deposits. Amyloid deposits were not readily immunostained using IAPP 1: 800 diluted antibody but were stronger immunostained for IAPP in early stages of amyloid deposited islets using less diluted solutions after formic acid treatment. In early islet amyloidogenesis, dying β-cell cytoplasm was adjacently located to fine amyloid fibrils, supporting that IAPP in secretary granules from dying β cells served as nidus for islet β-sheet formation.  相似文献   

19.
Summary A novel peptide, islet amyloid polypeptide (IAPP), with structural resemblance to calcitonin gene-related peptide has recently been purified from amyloid deposits in an insulinoma and from islets of Langerhans. By immunohistochemical methods, using antisera to a synthetic undecapeptide of IAPP and to insulin, we show that freshly fixed islet B cells in man, guinea pig, rat, mouse and hamster exhibit strong IAPP-immunoreactivity while A cells are unreactive. In human autopsy material, all of 11 non-diabetic individuals had IAPP immunoreactivity of the islets. In comparison 8 of the 13 patients with Type 2 (non-insulin-dependent) diabetes had no IAPP immunoreactive cells. The proportion of islet cells having IAPP immunoreactivity exceeded 10% in only 1 of the 5 remaining diabetic patients while in all 13 patients substantially more than 10% of the islet cells contained immunoreactive insulin. IAPP-positive amyloid deposits were found in 20–99% of the islets in 12 of the Type 2 diabetic patients while 6 of 11 non-diabetic subjects had amyloid in 3–11% of their islets. In islets with IAPP-immunoreactive amyloid, very few IAPP-cells were seen despite a strong reaction of the B cells with antiserum to insulin. This study shows that IAPP is a normal islet B cell component and that IAPP immunoreactivity in B cells is diminished in Type 2 diabetes while IAPP is deposited as amyloid fibrils in the islets of Langerhans. Although the function of IAPP is unknown, its occurrence in the islet B cells and its structural relation to calcitonin gene-related peptide makes a hormonal nature probable. The present study indicates an altered expression or metabolic fate of IAPP in Type 2 diabetes.  相似文献   

20.
beta-cell failure in diabetes and preservation by clinical treatment   总被引:14,自引:0,他引:14  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号