首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 552 毫秒
1.
G protein-coupled receptors in natural killer cells   总被引:2,自引:0,他引:2  
Natural killer (NK) cells are capable of killing tumor as well as virally infected cells. How these cells migrate toward the infected sites in the body is not completely understood. Chemokine receptors that belong to the heptahelical family of receptors and characteristically bind heterotrimeric G proteins are present in most NK cells. Recent results showed that resting NK cells highly express constitutive chemokine receptors (CCR4, CCR7, CXCR4, and CX(3)CR1) with low expression of a limited repertoire of inflammatory chemokine receptors (CCR1 and CXCR3). However, only a subset of these cells expressing the CD56(dim) and adhesion molecule(high) phenotype is capable of in vivo binding to vascular endothelium. Under pathological conditions where inflammatory cytokines are present, these cells are induced to express inflammatory chemokine receptors. Resting as well as activated NK cells also express receptors for another member of the heptahelical family of receptors that bind phosphorylated or glycosylated lysolipids. These include sphingosine 1-phosphate (S1P)(1), S1P(4), and S1P(5), the receptors for S1P; lysophosphatidic acid (LPA)(1), LPA(2), and LPA(3), the receptors for LPA; and T cell death-associated gene 8, the receptor for psychosine. Similar to chemokines, S1P, LPA, and psychosine induce the chemotaxis of NK cells through heterotrimeric G proteins. However, in contrast to chemokines, which enhance the cytotoxicity of NK cells, lysolipids inhibit this function. We hope that gaining knowledge regarding the distribution of activated NK cells toward the sites of tumor growth or virally infected sites will give an advantage in designing strategies using these cells as tools for the prevention and treatment of immunodeficiencies.  相似文献   

2.
When naive T lymphocytes are activated and differentiate into memory/effector cells, they down-regulate receptors for constitutive chemokines such as CXCR4 and CCR7 and acquire receptors for inflammatory chemokines such as CCR3, CCR5 and CXCR3, depending on the Th1/Th2 polarization. This switch in chemokine receptor usage leads to the acquisition of the capacity to migrate into inflamed tissues. Using RNase protection assays, staining with specific antibodies, and response to recombinant chemokines, we now show that following TCR stimulation, memory/effector T cells undergo a further and transient switch in receptor expression. CCR1, CCR2, CCR3, CCR5, CCR6 and CXCR3 are down-regulated within 6 h, while CCR7, CCR4, CCR8 and CXCR5 are up-regulated for 2 to 3 days. Up-regulation of CCR7 following TCR stimulation was observed also among resting peripheral blood T cells and required neither co-stimulation nor exogenous IL-2. On the other hand IL-2 down-regulated CXCR5, up-regulated CCR8 and facilitated the recovery of CCR3 and CCR5. Upon TCR stimulation, Th1 and Th2 cells produced comparable sets of chemokines, including RANTES, macrophage inflammatory protein-1beta, I-309, IL-8 and macrophage-derived chemokine, which may modulate surface chemokine receptors and contribute to cell recruitment at sites of antigenic recognition. Altogether these results show that following TCR stimulation effector/memory T cells transiently acquire responsiveness to constitutive chemokines. As a result, T cells that are activated in tissues may either recirculate to draining lymph nodes or migrate to nearby sites of organized ectopic lymphoid tissues.  相似文献   

3.
Natural killer (NK) cells are highly motile cells that patrol lymphoid and non-lymphoid organs, and are poised to react to infectious or other inflammatory situations. Several NK cell subsets equipped with different sets of chemotactic G-protein-coupled receptors, and which display distinct distribution across lymphoid and non-lymphoid organs, have been described. These receptors detect various guidance cues including sphingosine-1-phosphate and chemokines that orchestrate NK cell trafficking. Here, we highlight recent advances regarding the receptors involved in NK cell migration, with a focus on bone marrow egress, entry into activated lymph nodes, extravasation into inflamed tissues, and motility within lymph nodes or tumors. Understanding NK cell migration could provide a rational basis for the design of novel therapies in various clinical conditions.  相似文献   

4.
In contrast to the remarkable chemokine responses of phagocytes and monocytes that were documented early on, lymphocytes have been considered for a long time to be poor targets for chemokine action. This view has changed dramatically with the discovery that peripheral blood T cells need to be activated before they can migrate in response to inflammatory chemokines. These chemokines do not act on the bulk of resting T cells that are in circulation. The identification of a new group of chemokines that selects resting, as opposed to effector, T and B cells was very exciting. These inflammation-unrelated chemokines affect transendothelial migration and localization of progenitor and mature lymphocytes in lymphoid and nonlymphoid tissues. Here, we summarize the current view of chemokine-mediated lymphocyte traffic and focus on the molecular mechanisms by which T cell responses to chemokines are modulated. Recent developments in this area justify the hypothesis that the distinct migration patterns of lymphocytes throughout their life cycle--that is, during lymphopoiesis, antigen-dependent priming, inflammation and immune surveillance--are finely tuned by changing sets of chemokines that are selective for developmentally regulated chemokine receptors. Thus, the chemokine system assures that cell traffic during inflammatory responses occurs in the proper spatial and temporal fashion and disturbance of this system, therefore, can lead to inflammatory disease.  相似文献   

5.
6.
The recruitment and trafficking of leukocytes are essential aspects of the inflammatory process. Although chemokines are thought to be the main regulators of cell trafficking, extracellular cyclophilins have been shown recently to have potent chemoattracting properties for human leukocytes. Cyclophilins are secreted by a variety of cell types and are detected at high levels in tissues with ongoing inflammation. CD147 has been identified as the main signaling receptor for cyclophilin A (CypA) on human leukocytes. It is interesting that the expression of CD147 is elevated on leukocytes from inflamed tissue, suggesting a correlation among the presence of extracellular cyclophilins, CD147 expression, and inflammatory responses. Thus, cyclophilin-CD147 interactions may contribute directly to the recruitment of leukocytes into inflamed tissues. In the current studies, we show that activated human T lymphocytes express elevated levels of CD147, compared with resting T cells and that these activated T cells migrate more readily to CypA than resting cells. Furthermore, we show that unlike resting CD4+ T cells, the cyclophilin-mediated migration of activated T cells does not require interaction with heparan sulfate receptors but instead, is dependent on CD147 interaction alone. Such findings suggest that cyclophilin-CD147 interactions will be most potent when leukocytes are in an activated state, for example, during inflammatory responses. Thus, targeting cyclophilin-CD147 interactions may provide a novel approach for alleviating tissue inflammation.  相似文献   

7.
8.
Chemokine production by natural killer cells from nonagenarians   总被引:1,自引:0,他引:1  
In this study we investigated whether purified NK cells, derived from a group of nonagenarian healthy subjects, were able to produce the chemokines MIP-1alpha, RANTES and IL-8, and also characterized the effect of IL-12 or IL-2 immunomodulatory cytokines (that are among the most effective inducers of NK lytic activity and soluble factor secretion) on the induction, in vitro, of these chemokines and on the modulation of the corresponding receptors. This study provides evidence that human NK cells from healthy subjects over 90 years old retain the ability to synthesize MIP-1alpha, Rantes and IL-8 chemotactic cytokines, that NK cells isolated from these subjects can be activated to significantly up-regulate the production of these chemokines in response to stimulation by IL-12 or IL-2 cytokines (even though production remains lower than that observed in young subjects), and that NK cells express the corresponding chemokine receptors.  相似文献   

9.
Stepping out of the flow: capillary extravasation in cancer metastasis   总被引:4,自引:1,他引:3  
In order for cancer cells to successfully colonize a metastatic site, they must detach from the primary tumor using extracellular matrix-degrading proteases, intravasate and survive in the circulation, evade the immune response, and extravasate the vasculature to invade the target tissue parenchyma, where metastatic foci are established. Though many of the steps of metastasis are widely studied, the precise cellular interactions and molecular alterations associated with extravasation are unknown, and further study is needed to elucidate the mechanisms inherent to this process. Studies of leukocytes localized to inflamed tissue during the immune response may be used to elucidate the process of cancer extravasation, since leukocyte diapedesis through the vasculature involves critical adhesive interactions with endothelial cells, and both leukocytes and cancer cells express similar surface receptors capable of binding endothelial adhesion molecules. Thus, leukocyte extravasation during the inflammatory response has provided a model for transendothelial migration (TEM) of cancer cells. Leukocyte extravasation is characterized by a process whereby rolling mediated by cytokine-activated endothelial selectins is followed by firmer adhesions with beta1 and beta2 integrin subunits to an activated endothelium and subsequent diapedesis, which most likely involves activation of Rho GTPases, regulators of cytoskeletal rearrangements and motility. It is controversial whether such selectin-mediated rolling is necessary for TEM of cancer cells. However, it has been established that similar stable adhesions between tumor and endothelial cells precede cancer cell transmigration through the endothelium. Additionally, there is support for the preferential attachment of tumor cells to the endothelium and, accordingly, site-specific metastasis of cancer cells. Rho GTPases are critical to TEM of cancer cells as well, and some progress has been made in understanding the specific roles of the Rho GTPase family, though much is still unknown. As the mechanisms of cancer TEM are elucidated, new approaches to study and target metastasis may be utilized and developed.  相似文献   

10.
《Seminars in immunology》1999,11(2):95-104
Most, if not all, chemokines bind to seven transmembrane spanning G protein-coupled receptors and activate cellular migration. Stimulated chemokine expression is essential for directing leukocyte emigration from the circulation into sites of inflammation and tissue damage. In contrast, constitutive chemokine expression plays a role in the development of lymphoid cells, organs, and tissues. The present review examines rheumatoid arthritis and transplantation rejection as two examples of pathological conditions where chemokine directed leukocyte infiltration aids in the pathogenesis of the disease. We further discuss insights into leukocyte trafficking gained by chemokine and chemokine receptor transgenic and null mutant mice.  相似文献   

11.
Actions of chemokines and the interaction with specific receptors go beyond their original, defined role of recruiting leukocytes to inflamed tissues. Chemokine receptor expression in peripheral elements and resident cells of the central nervous system (CNS) represents a relevant communication system during neuroinflammatory conditions. The following examples are described in this review: Chemokine receptors play important homeostatic properties by regulating levels of specific ligands in blood and tissues during healthy and pathological conditions; chemokines and their receptors are clearly involved in leukocyte extravasation and recruitment to the CNS, and current studies are directed toward understanding the interaction between chemokine receptors and matrix metalloproteinases in the process of blood brain barrier breakdown. We also propose novel functions of chemokine receptors during demyelination/remyelination, and developmental processes.  相似文献   

12.
In chronic inflammatory reactions such as rheumatoid arthritis and multiple sclerosis, T cells in the inflamed tissue express the chemokine receptors CXCR3 and CCR5, and the chemokine ligands (CCL) of these receptors are present in the inflammatory lesions. However, the contribution of these chemokines to T cell recruitment to sites of inflammation is unclear. In addition, the relative roles of the chemokines that bind CXCR3 (CXCL9, CXCL10, CXCL11) and CCR5 (CCL3, CCL4, CCL5) in this process are unknown. The in vitro chemotaxis and in vivo migration of antigen-activated T lymphoblasts and unactivated spleen T cells to chemokines were examined. T lymphoblasts migrated in vitro to CXCR3 ligands with a relative potency of CXCL10 > CXCL11 > CXCL9, but these cells demonstrated much less chemotaxis to the CCR5 ligands. In vivo, T lymphocytes were recruited in large numbers with rapid kinetics to skin sites injected with CXCL10 and CCL5 and less to CCL3, CCL4, CXCL9, and CXCL11. The combination of CCL5 with CXCL10 but not the other chemokines markedly increased recruitment. Coinjection of interferon-gamma, tumor necrosis factor alpha, and interleukin-1alpha to up-regulate endothelial cell adhesion molecule expression with CXCL10 or CCL5 induced an additive increase in lymphoblast migration. Thus, CXCR3 ligands are more chemotactic than CCR5 ligands in vitro; however, in vivo, CXCL10 and CCL5 have comparable T cell-recruiting activities to cutaneous sites and are more potent than the other CXCR3 and CCR5 chemokines. Therefore, in vitro chemotaxis induced by these chemokines is not necessarily predictive of their in vivo lymphocyte-recruiting activity.  相似文献   

13.
Rheumatoid arthritis is a chronic inflammatory disease where the synovial tissue is characterized by heavy infiltration of leukocytes. Chemokines and chemokine receptors play an important role in cell migration and positioning of leukocytes within the inflamed rheumatoid synovium. There is now much focus on the specific contribution and role of each chemokine and chemokine receptor in the chronic inflammatory process in the synovial tissue. Recent evidence indicates that interference with the chemokines released from the inflamed synovial cells or the chemokine receptors expressed on the cells infiltrating the synovial tissue may lead to discovery of new therapeutics for this disease.  相似文献   

14.
Adenoidectomy in children with otitis media with effusion reduces inflammation in the middle ear by an unknown mechanism. Potentially, the adenoids of these children may serve as a site for the differentiation of lymphocytes, which after entering blood circulation eventually extravasate in the middle ear mucosa and thereby contribute to excessive inflammation. During lymphocyte extravasation various adhesion molecules and chemokines play a crucial role. To evaluate possible connections between the adenoids and middle ear inflammation, the expression of the chemokine receptors CXCR4 and CCR5 and the lymphocyte homing receptor L-selectin were analyzed in adenoidal and middle ear lymphocytes. It was found that most CD4(+) T lymphocytes in the middle ear effusion express the memory phenotype marker CD45RO and the chemokine receptors CXCR4 and CCR5, but are negative for the lymphocyte homing receptor L-selectin. This cell phenotype was rare in peripheral blood but was found much more frequently in the adenoids. The results suggest that the adenoids provide a microenvironment for the generation for CD4(+), CD45RO(+), L-selectin(-), CXCR4(+) and CCR5(+) T lymphocytes. Further, these cells may include cells that have the capacity to home to the middle ear mucosa. As the adenoidal CD4(+) memory phenotype CD45RO(+) T cells expressed the activation antigen CD69 and included cells expressing the HIV co-receptors CXCR4 and CCR5 at a high level, they may be permissive for HIV infection.  相似文献   

15.
The phosphorylcholine-containing lipid lysophosphatidylcholine (LPC) is abundant in the bloodstream, whereas sphingosylphosphorylcholine (SPC) and platelet-activating factor (PAF) highly accumulate at inflamed sites. Utilizing RT-PCR, flow cytometry and immunoblot analyses, we show for the first time that ovarian cancer G protein-coupled receptor 1, the receptor for SPC, is expressed in IL-2-, IL-12- and IL-15-activated but not in resting CD16-, resting CD16+ or IFN-alpha-activated NK cells. Similarly, G2 accumulation and PAF receptor are variably expressed in these subsets of NK cells. SPC, LPC and PAF differentially induce the chemotaxis of resting and activated NK cells. In the chemotaxis assay, it is observed that resting CD16-CD56bright and CD16+CD56dim cells predominantly respond to LPC, whereas activated NK cells, regardless of the sort of stimulus, robustly respond to PAF. SPC is also a potent chemoattractant for IL-2-, IL-12- and IL-15- but not for IFN-alpha-activated NK cells. Further analysis shows that, depending on the cytokine pattern of NK cell activation, phosphorylcholine-containing lipids differentially affect IFN-gamma secretion by these cells. Our results provide one possible explanation for the tissue compartmentation of NK cells and their ability to secrete IFN-gamma. Furthermore, these results may provide novel information regarding NK cell regulation during inflammation.  相似文献   

16.
Natural killer (NK) cells are anti-tumor and anti-viral effector cells. Members of C, CC, CXC and CX3C chemokines induce the chemotaxis and enhance the cytotoxicity of NK cells, suggesting that these cells express receptors for chemokines. The ability of members of chemokines to inhibit the replication of HIV-1 strains, combined with the ability of the same chemokines to activate the anti-viral NK cells, provide compelling evidence for the role of NK cells in eradicating HIV-1 infection. In addition, chemokines induce various intracellular signaling pathways in NK cells, which include activation of the heterotrimeric, and perhaps the small guanine nucleotide binding (G) proteins, as well as the mobilization of intracellular calcium, among other activities. Further, chemokines induce the phosphorylation of chemokine receptors through the recruitment of G protein-coupled receptor kinases (GRKs) resulting in the desensitization and turning off the signals. In this review, I will update the knowledge of the effect of chemokines on NK cell motility and the signal transduction pathways induced by chemokines in these cells.  相似文献   

17.
Dendritic cells (DC) migrate into inflamed peripheral tissues where they capture antigens and, following maturation, to lymph nodes where they stimulate T cells. To gain insight into this process we compared chemokine receptor expression in immature and mature DC. Immature DC expressed CCR1, CCR2, CCR5 and CXCR1 and responded to their respective ligands, which are chemokines produced at inflammatory sites. Following stimulation with LPS or TNF-α maturing DC expressed high levels of CCR7 mRNA and acquired responsiveness to the CCR7 ligand EBI1 ligand chemokine (ELC), a chemokine produced in lymphoid organs. Maturation also resulted in up-regulation of CXCR4 and down-regulation of CXCR1 mRNA, while CCR1 and CCR5 mRNA were only marginally affected for up to 40 h. However, CCR1 and CCR5 were lost from the cell surface within 3 h, due to receptor down-regulation mediated by chemokines produced by maturing DC. A complete down-regulation of CCR1 and CCR5 mRNA was observed only after stimulation with CD40 ligand of DC induced to mature by LPS treatment. These different patterns of chemokine receptors are consistent with “inflammatory” and “primary response” phases of DC function.  相似文献   

18.
Cancer metastasis results from a non-random process, in which organ selectivity by the tumor cells is largely determined by factors that are expressed at the remote organs that eventually turn into preferred sites of metastasis formation. These factors support the consecutive steps required for metastasis formation, including tumor cell adhesion to microvessel walls, extravasation into target tissue and migration. Of the different components that regulate organ selectivity, instrumental roles were recently attributed to chemokines and their receptors. The present review presents the rationale standing behind the first studies looking at the potential involvement of chemokine-related components in organ selectivity. Based on these studies and many others that followed, the current paradigm is that chemokines that are expressed at specific organs determine to large extent organ specificity by promoting tumor cell adhesion to microvessel walls, by facilitating processes of extravasation into the target tissue and by inducing tumor cell migration. Moreover, chemokines can possibly support additional steps that are required for "successful" establishment of metastases, such as tumor cell proliferation and survival. The review focuses on the CXCL12-CXCR4 pair as the role model in our current understanding of chemokine involvement in organ selectivity. This review also describes the prominent roles played by CCR7 and its corresponding chemokine ligands (CCL21, CCL19) in lymph node metastasis, and of the CCR10-CCL27 axis in melanoma skin survival and metastasis. Overall, the present discussion describes chemokines as important constituents of the tumor microenvironment at metastatic sites, dictating directionality of chemokine receptor-expressing tumor cells, facilitating their adhesion and extravasation, and eventually contributing to organ selectivity.  相似文献   

19.
The homeostasis of the immune system is maintained by the recirculation of naive lymphocytes through the secondary lymphoid tissues, such as the lymph nodes, Peyer's patches and spleen. Upon antigen encounter in the secondary lymphoid tissues, lymphocytes become activated and undergo a reprogramming of their trafficking properties. Most antigen-experienced lymphocytes traffic through the secondary lymphoid organs, but they can also migrate to extralymphoid tissues, where they exert effector functions. Dendritic cells in the secondary lymphoid tissues are crucial for the reprogramming of trafficking properties of activated T-lymphocytes. The exquisite specificity of such lymphocyte trafficking is determined by tissue-specific guidance signals expressed by the vascular endothelial cells, combined with counter receptors expressed by circulating lymphocytes. The high endothelial venules can selectively recruit naive lymphocytes into the lymph nodes and Peyer's patches by expressing a unique combination of vascular addressins and chemoattractants. The inflamed postcapillary venules in extralymphoid tissues also use a distinct array of endothelial adhesion molecules and tissue selective chemokines to support the recruitment of effector and memory lymphocytes that express appropriate trafficking receptors. Exit of lymphocytes from lymphoid and extralymphoid tissues into circulation is actively regulated by signals through specific receptors for sphingosine-1-phosphate and a certain chemokine(s), respectively. This review summarizes the present understandings of the mechanisms regulating homeostatic recirculation of naive lymphocytes through the secondary lymphoid tissues and tissue-specific trafficking of antigen-experienced lymphocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号