首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of delivering GDNF via an adenoviral vector (AdGDNF) 1 week after lesioning dopaminergic neurons in the rat substantia nigra (SN) with 6-hydroxydopamine (6-OHDA) were examined. Rats were unilaterally lesioned by injection of 6-OHDA into the striatum, resulting in progressive degeneration of dopaminergic neurons in the SN. One week later, when substantial damage had already occurred, AdGDNF or a control vector harboring beta-galactosidase (AdLacZ) was injected into either the striatum or SN (3.2 x 10(7) PFU/microl in 2 microl). Rats were examined behaviorally with the amphetamine-induced rotation test and for forelimb use for weight-bearing movements. On day 30 postlesion, the extent of nigrostriatal tract degeneration was determined by injecting a retrograde tracer (FluoroGold) bilaterally into the lesioned striatum. Five days later, rats were sacrificed within 2 h of amphetamine injection to examine amphetamine-induced Fos expression in the striatum, a measure of dopaminergic-dependent function in target neurons. AdGDNF injection in the SN rescued dopaminergic neurons in the SN and increased the number of dopaminergic neurons that maintained a connection to the striatum, compared to rats injected with AdLacZ. Further support that these spared SN cells maintained functional connections to the striatum was evidenced by increased Fos expression in striatal target neurons and a decrease in amphetamine-induced rotation. In contrast to the effects observed in rats injected with AdGDNF in the SN, rats injected with AdGDNF in the striatum did not exhibit significant ameliorative effects. This study demonstrates that experimentally increasing levels of GDNF biosynthesis near the dopaminergic neuronal soma is effective in protecting the survival of these neurons and their function even when therapy is begun after 6-OHDA-induced degeneration has commenced. Thus, GDNF gene therapy may ameliorate the consequences of Parkinson's disease through rescuing compromised dopaminergic neurons.  相似文献   

2.
Previously, we observed that injection of an adenoviral (Ad) vector expressing glial cell line-derived neurotrophic factor (GDNF) into the striatum, but not the substantia nigra (SN), prior to a partial 6-OHDA lesion protects dopaminergic (DA) neuronal function and prevents the development of behavioral impairment in the aged rat. This suggests that striatal injection of AdGDNF maintains nigrostriatal function either by protecting DA terminals or by stimulating axonal sprouting to the denervated striatum. To distinguish between these possible mechanisms, the present study examines the effect of GDNF gene delivery on molecular markers of DA terminals and neuronal sprouting in the aged (20 month) rat brain. AdGDNF or a control vector coding for beta-galactosidase (AdLacZ) was injected unilaterally into either the striatum or the SN. One week later, rats received a unilateral intrastriatal injection of 6-OHDA on the side of vector injection. Two weeks postlesion, rats injected with AdGDNF into either the striatum or the SN exhibited a reduction in the area of striatal denervation and increased binding of the DA transporter ligand [(125)I]IPCIT in the lesioned striatum compared to control animals. Furthermore, injections of AdGDNF into the striatum, but not the SN, increased levels of tyrosine hydroxylase mRNA in lesioned DA neurons in the SN and prevented the development of amphetamine-induced rotational asymmetry. In contrast, the level of T1 alpha-tubulin mRNA, a marker of neuronal sprouting, was not increased in lesioned DA neurons in the SN following injection of AdGDNF either into the striatum or into the SN. These results suggest that GDNF gene delivery prior to a partial lesion ameliorates damage caused by 6-OHDA in aged rats by inhibiting the degeneration of DA terminals rather than by inducing sprouting of nigrostriatal axons.  相似文献   

3.
We tested the effect of intrastriatal quinolinic acid (QA) injections 2 weeks before subsequent intrastriatal injections of 6-hydroxydopamine (6-OHDA). Levels of DA and its metabolites were measured 2 days and 21 days after lesioning the dopaminergic nigrostriatal system with 6-OHDA. Intrastriatal 6-OHDA injections in the absence of prior treatment of QA significantly decreased dopamine (DA) and its metabolite levels in striatum but not in substantia nigra at day 2, and in striatum and substantia nigra at day 21, a clear indication of a time-dependent retrograde axonal degeneration of substantia nigra cell bodies. Intrastriatal QA injections 2 weeks before subsequent intrastriatal injection of 6-OHDA partially prevented the 6-OHDA-depleting effect on DA and its metabolite levels in both striatum and substantia nigra 21 days after 6-OHDA injection. However, no statistically significant differences were found between QA + 6-OHDA- and 6-OHDA-treated animals at day 2. Our results suggest that intrastriatal QA injections partially prevent the naturally-occurring retrograde axonal degeneration of substantia nigra cell bodies caused by 6-OHDA, and illustrate a target-derived interaction between dopaminergic nerve endings and cell bodies. We suggest that the protective effect found in the QA-injected animals against the neurotoxic action of 6-OHDA is mediated by neurotrophic agents released by activated astroglia.  相似文献   

4.
Although, the mechanism of 2,4-dichlorophenoxyacetic acid (2,4-D) neurotoxicity remains unknown, the monoaminergic system appears to mediate some of its effects in rats as we previously reported. In this study; we examined the 2,4-D effects on locomotor activity, circling behavior and monoamine levels after the injection into the basal ganglia of male adult rats. These effects were compared with those induced after selective lesions of dopaminergic neurons with 6-hydroxydopamine (6-OHDA). 2,4-D-injected into one striatum (100 microg/rat) produced a marked depression in locomotor activity and elicited a moderate circling towards the ipsilateral side at 6 and 24 h postinjection. These behavioral changes were accompanied by a decrease and an increase of serotonin (5-HT) and homovanillic acid (HVA) levels, respectively. 2,4-D administration (100 microg/rat) into the nucleus accumbens, induced similar behavioral and neurochemical patterns to the intrastriatal 2,4-D injection, although rats did not present notorious turning. When 2,4-D was injected into one medial forebrain bundle (MFB, 50 microg/rat), animals presented ipsilateral circling, while locomotor activity was unchanged at 3 and 7 days post-injection. These last rats also exhibited diminished levels of striatal 5-HT, dopamine (DA) and their metabolites without changes in the substantia nigra (SN). Animals sacrificed 3 and 7 days after a 6-OHDA injection into one of the MFB, presented progressive depletion of dopamine in striatum and SN. 2,4-D as well as 6-OHDA-treated rats into one of the MFB were challenged with low dose (0.05 mg/kg s.c.) of apomorphine (only at 7 days post-injection) to evaluate a possible DA-receptor supersensitivity. Only 6-OHDA treated rats showing a vigorous contralateral rotation activity. These results indicate that 2,4-D induced a regionally-specific neurotoxicity in the basal ganglia of rats. The neurotoxic effects of 2,4-D on basal ganglia by interacting with the monoaminergic system depended not only on the exact location of the 2,4-D injection, but also on the dose and time period of post-injection. Toxicity produced by 2,4-D appears to be different in monoaminergic terminals, axonal fibers, and cell bodies.  相似文献   

5.
Repeated administration of amphetamine leads to enduring augmentation of its behavioral-activating effects, enhanced dopamine (DA) release in striatal regions, and morphological changes in DA target neurons. Here we show that exposure to a 2-week escalating-dose regimen of amphetamine prevents behavioral asymmetries of forelimb use and spontaneous (drug-independent) turning behavior following unilateral 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal pathway made 7-14 days after termination of amphetamine treatment (Experiments 1-3). Exposure to three nonescalating injections of amphetamine 7 days before 6-OHDA lesions had no effect (Experiment 2). Prelesion amphetamine treatment led to normalization of basal extracellular levels of striatal DA as measured by microdialysis on days 11-14 and 25-28 after lesioning (Experiment 3). However, there were no significant differences between treatment groups in postmortem tissue levels of DA and its metabolites, indicating a dissociation between the DA depletion and the extracellular levels of DA as measured by microdialysis. Finally, rats exposed to the escalating amphetamine regimen had reduced lesion-induced loss of TH-IR cells in the ipsilateral DA cell body regions (Experiment 3). Thus, prelesion exposure to the escalating doses of amphetamine may render the cells resistant to the consequences of damage after subsequent 6-OHDA lesions, possibly by accelerating the development of compensatory changes in the DA neurons that typically accompany behavioral recovery. The potential role of amphetamine-induced endogenous neurotrophic factors in the behavioral sparing and normalization of basal extracellular DA levels observed after subsequent 6-OHDA lesions is discussed.  相似文献   

6.
Experiments measuring behavior and immediate-early gene expression in the basal ganglia can reveal interactions between dopamine (DA) and glutamate neurotransmission. Nigrostriatal DA projections influence two striatal efferent pathways that, in turn, directly and indirectly influence the activity of the substantia nigra pars reticulata (SNr). This report tests the interactions between striatal DA receptors and nigral glutamate receptors on basal ganglia function by examining both contralateral turning and Fos immunoreactivity in striatum and pallidum following unilateral intranigral microinfusions of glutamate antagonists given to intact and 6-OHDA-lesioned rats. The NMDA antagonist AP5 (1 microg), or the AMPA/kainate antagonist DNQX (0.015-1.5 microg), injected into the SNr (0.5 microl) elicited contralateral turning as well as both striatal and pallidal Fos expression. Moreover, intranigral DNQX elicited more turning and greater numbers of Fos-positive striatal neurons in 6-OHDA-lesioned animals than in unlesioned controls, suggesting that the 6-OHDA injection induces functional changes in nigral glutamate transmission. In 6-OHDA-lesioned rats, systemic injections of the DA D1 receptor agonist SKF38393 (0.5 mg/kg, i.p.) increased striatal Fos expression due to intranigral DNQX. In contrast, the D2 agonist quinpirole (0.1 mg/kg, i.p.) decreased striatal Fos expression but increased the pallidal Fos arising from intranigral AP5. In additional experiments, both intact and 6-OHDA-lesioned rats were given simultaneous intranigral and intrastriatal infusions and turning and pallidal Fos expression were measured. 6-OHDA-lesioned rats given 5 microg of intrastriatal quinpirole exhibited both turning and pallidal Fos that was significantly increased by intranigral AP5. These results indicate that the opposing influences of D2 agonists and endogenous nigral glutamate transmission are mediated by striatal D2 receptors. Finally, the behavioral effects of intranigral glutamate antagonism can be dissociated from the effects on striatal or pallidal immediate-early gene expression.  相似文献   

7.
F Javoy  C Sotelo  A Herbet  Y Agid 《Brain research》1976,102(2):201-215
The neurotoxic specificity of injections of 6-hydroxydopamine (6-OHDA) into areas containing either dopamine (DA) cell bodies (substantia nigra) or DA axon terminals (striatum) was studied. This selective effect was compared to the unspecific effects of copper sulfate (CuSO4) injection and electrocoagulation. One to two days after unilateral nigral injection of 2 mug of either 6-OHDA or CuSO4 into the nigra the volume of the unspecific lesions around the tip of the cannula was very similar. Only the 6-OHDA-induced lesions were associated with elective degeneration of the nigral DA neurons. Ten days after the administration of the same compounds the gliosis in the substantia nigra was much more extensive in CuSO4-than in 6-OHDA-treated rats; however, the reduction of DA concentrations in the ipsilateral striatum was only noticeable after 6-OHDA (-62%). A somewhat similar decrease of striatal DA levels (-52%) was observed after large electrocoagulation of the substantia nigra. Ten days after 6-OHDA (8mug) or electrolytic lesion of the striatum the Km for DA, serotonin and choline uptakes were similar in the striata of both sides, suggesting that the uptake process in the non-damaged neurons of the lesioned side was functionally normal. Following electrolytic lesion of the striatum, serotonin and choline Vmax values were decreased to about the same extent as the striatal reduction in weight and DA levels. When directly administered into the striatum 6-OHDA also produced a decline in DA concentration and Vmax but in contrast did not affect serotonin and choline uptake (Vmax), suggesting that the drug specifically destroyed dopaminergic neurons. The present data confirm that selective DA denervation can be achieved when appropriate amounts of the drug are injected into brain tissue in order to limit the unspecific lesion.  相似文献   

8.
In animals with a large unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal dopamine (DA) system the traditional “rotational behavior model” states that amphetamine will induce circling behavior towards the denervated striatum (ipsiversive), that is, away from the side where there is greater amphetamine-stimulated DA release and greater DA receptor stimulation. It is puzzling, therefore, why amphetamine induces contraversive rotation in rats tested 4 days after a unilateral 6-OHDA lesion, despite a 90-95% loss of the dopaminergic input to the striatum by this time. Rats reverse their direction of amphetamine-induced rotation by 8 days post-lesion and turn in the ipsiversive direction thereafter. To try and resolve this paradox, bilateral striatal microdialysis was used to estimate the effects of amphetamine on DA neurotransmission on Day 4 and Day 8 following a large unilateral 6-OHDA lesion of the substantia nigra. On Day 4 post-lesion, amphetamine produced a moderate (around 50% of control) increase in the extracellular concentration of DA in the denervated striatum. This amphetamine-releasable pool of DA was exhausted by a single amphetamine challenge, because a second injection of amphetamine given 3 h after the first did not produce a comparable increase in DA. It is suggested that on Day 4 post-lesion the amount of DA released by amphetamine in the denervated striatum is sufficient to produce greater DA receptor stimulation on that side, because of DA receptor supersensitivity, and this leads to contraversive rotation. On Day 8 post-lesion, amphetamine induced DA release in the intact striatum but had no effect on extracellular DA in the denervated striatum (DA was nondetectable). On Day 8, therefore, DA receptor stimulation would be greatest in the intact striatum, leading to ipsiversive rotation. In conclusion, it is suggested that the seemingly paradoxical reversal in the direction of amphetamine-induced rotation that occurs over the first week following a unilateral 6-OHDA lesion is consistent with the traditional rotational model, and is due to time-dependent changes in the ability of amphetamine to release DA in the denervated striatum. © 1994 Wiley-Liss, Inc.  相似文献   

9.
Clostridial light chain (LC) inhibits synaptic transmission by digesting a vesicle-docking protein, synaptobrevin, without killing neurons. We here report the feasibility of creating a rat hemiparkinsonism model through LC gene expression in the substantia nigra (SN), inhibiting nigrostriatal transmission. 40 adult Sprague Dawley rats were divided into four groups for SN injections of PBS, 6-hydroxydopamine (6-OHDA), or adenoviral vectors for the expression of LC (AdLC), or GFP (AdGFP). Amphetamine and apomorphine induced rotations were assessed before and after SN injection, revealing significant rotational alterations at 8 or 10 days after injection in both AdLC and 6-OHDA but not PBS and AdGFP groups. Induced rotation recovered by one month in AdLC rats but persisted in 6-OHDA rats. Histological analysis of the SN revealed LC and GFP expression with corresponding synaptobrevin depletion in the LC, but not the GFP groups. Tyrosine hydroxylase (TH) and dopamine transporter (DAT) immunohistochemistry (IHC) showed markedly decreased staining in ipsilateral SN and striatum in 6-OHDA but not AdLC or AdGFP rats. Similarly, compared with contralateral, ipsilateral striatal dopamine level only decreased in 6-OHDA but not AdLC, AdGFP, or PBS treated rats. Thus, LC expression induces nigral synaptobrevin depletion with resulting inhibition of nigrostriatal synaptic transmission. Unlike 6-OHDA, LC expression inhibits synaptic activity without killing neurons. This approach, therefore, represents a potentially reversible means of nigrostriatal pathway inhibition as a model for Parkinson’s disease. Such a model might facilitate transient and controlled nigral inhibition for studying striatal recovery, dopaminergic re-innervation, and normalization of striatal receptors following the recovery of nigrostriatal transmission.  相似文献   

10.
The effect of sustained intrastriatal release of dopamine (DA) from polymer matrices on apomorphine-induced turning behavior in a 6-hydroxydopamine (6-OHDA) unilaterally lesioned rat model was analyzed. A biocompatible semipermeable tube was placed in a denervated striatum as a receptacle for DA-releasing polymer rods. In vitro kinetics showed sustained release of DA from a polymeric rod for 15 days. Implantation of a DA-releasing rod within the striatal receptacle significantly decreased apomorphine-induced rotational behaviour in lesioned animals. Upon removal of the DA-releasing system from the receptacle, rotational behaviour increased within 2 weeks and approached preimplant control values 4 weeks later. Acute microdialysis revealed that DA appeared in the extracellular space within 20 min after the implantation of a DA-releasing rod into a denervated striatum. Significant DA amounts were still measurable 7 days postimplantation, indicating sustained DA release from the polymer rod. Dopamine released from a polymer matrix through a semipermeable receptacle alleviates experimental parkinsonism in rats, suggesting that controlled intrastriatal release of DA from a polymer matrix may provide an alternative method for the treatment of Parkinson's disease.  相似文献   

11.
Intrastriatal transplantation of fetal ventral mesencephalon (VM) is currently explored as a potential clinical therapy in Parkinson's disease (PD). Although providing substantial benefit for the patient, behavioral recovery so far obtained with intrastriatal VM grafts is not complete. Using the 6-hydroxydopamine lesion model of PD, we show here that near-complete restoration of the striatal dopamine (DA) innervation can be achieved by multiple intrastriatal microtransplants of fetal DA cells; nevertheless, complete recovery in complex sensorimotor behaviors was not obtained in these animals. In line with the current model of basal ganglia function, this suggests that the lesion-induced overactivity of the basal ganglia output structures, i.e., the substantia nigra (SN) and the entopeduncular nucleus, may not be completely reversed by intrastriatal VM grafts. In the present study, we have transplanted fetal VM tissue or fetal striatal tissue, as a source of DA and GABA neurons, respectively, into the SN of DA-depleted rats. Intranigral VM grafts induced behavioral recovery in some sensorimotor behaviors (forelimb akinesia and balance tests), but the effect did not exceed the recovery observed after intrastriatal VM grafts. Intranigral grafts of striatal tissue induced a pattern of functional recovery which was distinctly different from that observed after intranigral VM grafts, and recovery in coordinated forelimb use in the paw-reaching test was even more pronounced than after intrastriatal transplantation of VM cells. Combined transplantation of DA neurons into the striatum and GABA-rich striatal neurons into the SN induced additive effects of behavioral recovery observed in the forelimb akinesia test. We propose that intranigral striatal transplants, by a GABA-mediated inhibitory action, can reduce the overactivity of the host SN projection neurons and can induce significant recovery in complex motor behavior in the rat PD model and that such grafts may be used to increase the overall functional efficacy of intrastriatal VM grafts.  相似文献   

12.
Previous studies have shown that fetal substantia nigra (SN) transplanted into a cavity overlying a dopamine (DA)-denervated caudate nucleus can reverse a number of the behavioral abnormalities induced by the denervation. While some histochemical and physiological evidence suggests that this reversal is the result of a functional DA input from the transplant to the host brain, there is little direct evidence for transmitter release from ingrowing graft-derived nerve fibers. In the present work in vivo electrochemistry was used to analyse the magnitude, time course and spatial distribution of neurotransmitter releases evoked by local application of potassium (K+) from DA-depleted, SN transplant-reinnervated striatum. Animals were injected unilaterally with 6-hydroxydopamine (6-OHDA) into the SN and screened by measuring apomorphine-induced rotation. Some were then given SN grafts, which were placed in a 'delayed cavity' just dorsal to the lesioned striatum. Nafion-coated graphite epoxy capillary (GEC) electrodes were employed for the electrochemistry to minimize signals derived from ascorbate or acidic DA metabolites. The GEC electrode was fixed to a K+-filled micropipette and this assembly was used to map the caudate nucleus of control, 6-OHDA-treated, and 6-OHDA-treated, grafted animals. The morphometric relationships between striatal recording sites and transplant location were subsequently verified histologically. Releases from striatal sites within 1.0 mm of the SN grafts were slightly, but not significantly, less than those obtained from control caudate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Parkinson's disease (PD) is characterized by a degeneration of the dopamine (DA) pathway from the substantia nigra (SN) to the basal forebrain. Prior studies in unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats have primarily concentrated on the implantation of fetal ventral mesencephalon (VM) into the striatum in attempts to restore DA function in the target. We implanted solid blocks of fetal VM or fetal striatal tissue into the SN to investigate whether intra-nigral grafts would restore motor function in unilaterally 6-OHDA-lesioned rats. Intra-nigral fetal striatal and VM grafts elicited a significant and long-lasting reduction in apomorphine-induced rotational behavior. Lesioned animals with ectopic grafts or sham surgery as well as animals that received intra-nigral grafts of fetal cerebellar cortex showed no recovery of motor symmetry. Subsequent immunohistochemical studies demonstrated that VM grafts, but not cerebellar grafted tissue expressed tyrosine hydroxylase (TH)-positive cell bodies and were associated with the innervation by TH-positive fibers into the lesioned SN as well as adjacent brain areas. Striatal grafts were also associated with the expression of TH-positive cell bodies and fibers extending into the lesioned SN and an induction of TH-immunolabeling in endogenous SN cell bodies. This finding suggests that trophic influences of transplanted fetal striatal tissue can stimulate the re-expression of dopaminergic phenotype in SN neurons following a 6-OHDA lesion. Our data support the hypothesis that a dopaminergic re-innervation of the SN and surrounding tissue by a single solid tissue graft is sufficient to improve motor asymmetry in unilateral 6-OHDA-lesioned rats.  相似文献   

14.
Extracellular dopamine (DA) and its main cerebral metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), were measured by bilateral striatal microdialysis in rats at different times (2, 7, 15 and 60 days) after unilateral administration into the right striatum of 1-methyl-4-phenylpyridinium ion (MPP+) or 6-hydroxydopamine (6-OHDA). In both cases the decrease in extracellular dopamine did not exceed 40% of control values. The response of DOPAC and HVA depended on the treatment: MPP+ caused a marked acute decrease in the dopamine metabolites but allowed a progressive recovery that was very evident after 60 days; 6-OHDA caused a progressive decrease in the dopamine metabolites throughout the two months of the study. Tyrosine hydroxylase immunostaining revealed severe neuronal loss in substantia nigra two months after striatal administration of 6-OHDA, whereas no significant neuronal loss was found at the same time after MPP+ administration. A bilateral challenge infusion of MPP+ through the microdialysis probe was used to assess the dopaminergic capacity of both striata: at all the times studied there was a sharp depletion of DA on the non-lesioned side; both MPP+- and 6-OHDA-treated striata were unresponsive after a short time (2 days); after 2 months the response in MPP+-lesioned rats was similar on both sides, whereas 6-OHDA-lesioned striata were still unresponsive to MPP+. In rats, then, the effects of MPP+ could be partly reversed whereas the effects of 6-OHDA were not. These results suggest that neurotoxins causing striatal dopamine loss may act through different mechanisms, which could be significant for the etiopathogenic development of Parkinson's disease.  相似文献   

15.
Previously, we observed that an adenoviral (Ad) vector encoding human glial cell line-derived neurotrophic factor (GDNF), injected near the rat substantia nigra (SN), protects SN dopaminergic (DA) neuronal soma from 6-hydroxydopamine (6-OHDA)-induced degeneration. In the present study, the effects of Ad GDNF injected into the striatum, the site of DA nerve terminals, were assessed in the same lesion model. So that effects on cell survival could be assessed without relying on DA phenotypic markers, fluorogold (FG) was infused bilaterally into striatae to retrogradely label DA neurons. Ad GDNF or control treatment (Ad mGDNF, encoding a deletion mutant GDNF, Ad lacZ, vehicle, or no injection) was injected unilaterally into the striatum near one FG site. Progressive degeneration of DA neurons was initiated 7 days later by unilateral injection of 6-OHDA at this FG site. At 42 days after 6-OHDA, Ad GDNF prevented the death of 40% of susceptible DA neurons that projected to the lesion site. Ad GDNF prevented the development of behavioral asymmetries which depend on striatal dopamine, including limb use asymmetries during spontaneous movements along vertical surfaces and amphetamine-induced rotation. Both behavioral asymmetries were exhibited by control-treated, lesioned rats. Interestingly, these behavioral protections occurred in the absence of an increase in the density of DA nerve fibers in the striatum of Ad GDNF-treated rats. ELISA measurements of transgene proteins showed that nanogram quantities of GDNF and lacZ transgene were present in the striatum for 7 weeks, and picogram quantities of GDNF in the SN due to retrograde transport of vector and/or transgene protein. These studies demonstrate that Ad GDNF can sustain increased levels of biosynthesized GDNF in the terminal region of DA neurons for at least 7 weeks and that this GDNF slows the degeneration of DA neurons and prevents the appearance of dopamine dependent motor asymmetries in a rat model of Parkinson's disease (PD). GDNF gene therapy targeted to the striatum, a more surgically accessible site than the SN, may be clinically applicable to humans with PD.  相似文献   

16.
In vivo microdialysis was used to examine the effects of dopaminergic transplants on extracellular concentrations of dopamine (DA), serotonin (5-HT), and their precursors and major metabolites in the denervated rat striatum. Dialysis perfusates were collected from intact, 6-hydroxydopamine (6-OHDA) lesion plus sham grafted, and lesion plus fetal substantia nigra (SN) grafted striata. The SN transplants ameliorated the reduction of striatal DA and dihydroxyphenylacetic acid (DOPAC) levels in rats with unilateral 6-OHDA lesions of the mesostriatal pathway. The transplants also increased extracellular levels of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in the denervated striatum. In response to NSD-1015 (an inhibitor of aromatic

-amino acid decarboxylase), 5-hydroxytryptophan (5-HTP) levels were substantially elevated in the SN grafted striata as compared with those in the sham grafted controls, which continued even after subsequent administration of

-3,4-dihydroxyphenylalanine (

-DOPA, 100 mg/kg i.p.). Immunohistochemical analysis showed hyperinnervation of 5-HT fibers in the grafted striatum, which was consistent with the results of microdialysis experiments. These results indicated that implantation of SN grafts into the 6-OHDA-lesioned striatum of rats induces hyperactivity of 5-HT synthesis, release and metabolism.  相似文献   

17.
丘脑底核高频电刺激对大鼠纹状体多巴胺代谢影响的研究   总被引:3,自引:0,他引:3  
目的研究丘脑底核(STN)高频电刺激(HFS)对大鼠纹状体多巴胺(DA)代谢的影响。方法给予正常大鼠一侧STN-HFS,应用微透析观察其对纹状体DA及其代谢产物的影响,应用免疫组化观察其对黑质DA能神经元的影响。结果微透析检测发现刺激侧纹状体DA代谢产物明显增高(P<0.05),DA水平无变化(P>0.05);免疫组化检测发现刺激组和对照组酪氨酸羟化酶(TH)阳性神经元数量无差异(损毁侧分别为24.00±6.81、23.43±5.49,P>0.05)。结论STN-HFS可能通过影响黑质-纹状体DA代谢发挥作用,STN-HFS对黑质DA能神经元可能无保护作用。  相似文献   

18.
This experiment attempted to determine the mechanism by which amphetamine reduces locomotor hyperactivity in neonatal rats given brain dopamine (DA)-depleting 6-hydroxydopamine (6-OHDA) injections. Brain DA neurons were destroyed selectively in neonatal rats by intraventricular (i.v.t.) injections of 6-OHDA following desmethylimipramine (DMI) pretreatment. Control rats received DMI and i.v.t. injections of the 6-OHDA vehicle solution. Rats given the 6-OHDA treatment displayed 7-fold increases in locomotor activity compared to controls during days 16–55 of life. Throughout this period, amphetamine (1 mg/kg) reduced locomotor hyperactivity in 6-OHDA-treated rats but increased locomotor activity in control rats. The reduction of hyperactivity caused by amphetamine (0.5–4 mg/kg) was dose-related and was not accompanied by stereotyped behavior. Like amphetamine, methylphenidate (4 mg/kg) reduced locomotor hyperactivity in rats given 6-OHDA. The DA antagonist, spiroperidol (50–200 μg/kg) failed to attenuate the hyperactivity-reducing effect of amphetamine in 6-OHDA-treated rats at doses which abolished the stimulant effect of amphetamine in control rats. However, the serotonin antagonist methysergide (0.5–4 mg/kg) produced dose-dependent antagonism of the effect of amphetamine in 6-OHDA-treated rats. Pretreatment with propranolol (5 mg/kg), phentolamine (5 mg/kg), atropine (0.5 mg/kg) or naloxone (10 mg/kg) failed to alter the reduction in locomotor hyperactivity caused by amphetamine. The serotonin releasing agent, fenfluramine (3 mg/kg), and the serotonin agonist, quipazine (0.5–4 mg/kg), both reduced locomotor hyperactivity in 6-OHDA-treated rats while not altering locomotion in control rats. These results confirm previous observations that amphetamine reduces locomotor hyperactivity caused by neonatal 6-OHDA administration and suggest that this effect is mediated by increased serotonergic neurotransmission.  相似文献   

19.
20.
Glucose-regulated dopamine release from substantia nigra neurons   总被引:2,自引:0,他引:2  
Levin BE 《Brain research》2000,874(2):158-164
Glucose modulates substantia nigra (SN) dopamine (DA) neuronal activity and GABA axon terminal transmitter release by actions on an ATP-sensitive potassium channel (K(ATP)). Here, the effect of altering SN glucose levels on striatal DA release was assessed by placing microdialysis probes into both the SN and striatum of male Sprague-Dawley rats. Reverse dialysis of 20 mM glucose through the SN probes transiently decreased striatal DA efflux by 32% with a return to baseline after 45 min despite constant glucose levels. During 50 mM glucose infusion, striatal DA efflux increased transiently by 50% and returned to baseline after 60 min. Infusion of 100 mM glucose produced a transient 25% decrease in striatal DA efflux followed by a sustained 50% increase above baseline. Efflux increased by a further 30% when the GABA(A) antagonist bicuculline (50 microM) was added to the 100 mM glucose infusate. At basal glucose levels, nigral bicuculline alone raised striatal DA efflux by 31% suggesting a tonic GABA inhibitory input to the DA neurons. The sulfonylurea glipizide (50 microM) produced a transient 25% increase in striatal DA release that became sustained when bicuculline was added. Thus, striatal DA release is affected by changing SN glucose levels. This response may well reflect the known effect of glucose on K(ATP) channel activity on both SN DA neurons and GABA axon terminals in the substantia nigra. These interactions could provide a mechanism whereby glucose modulates motor activity involved in food intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号