首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Miller NR  Jover T  Cohen HW  Zukin RS  Etgen AM 《Endocrinology》2005,146(7):3070-3079
Estradiol at physiological concentrations intervenes in apoptotic death cascades and ameliorates neuronal death in experimental models of focal and global ischemia. The cellular targets that mediate estradiol protection of hippocampal neurons in global ischemia are, however, unclear. The present study examined the hypothesis that estradiol protects hippocampal neurons in ovariectomized rats via estrogen receptor (ER)alpha and/or beta. Estradiol (14 d pretreatment) afforded robust protection of CA1 neurons against global ischemia-induced death. The broad-spectrum ER antagonist ICI 182,780 (intracerebroventricularly, 0 and 12 h after ischemia) abolished estrogen protection, consistent with a role for ERs. To evaluate the potential roles of ERalpha vs. ERbeta in estrogen protection, we administered subtype-selective agonists for 14 d before and 7 d after ischemia. The ERalpha-selective agonist propyl pyrazole triol (PPT, 10 mg/kg) and ERbeta-selective agonist WAY 200070-3 (1 mg/kg) produced nearly complete protection of CA1 neurons in approximately 50% of the animals. PPT, but not WAY 200070-3, at doses used for protection, elicited lordosis, induced negative feedback inhibition of LH release, and reduced weight gain. These findings establish the efficacy of the PPT dose in neuroendocrine assays and specificity of WAY 200070-3 for ERbeta. We also examined the ability of estradiol and neuronal injury to regulate ERalpha and ERbeta expression. Both estradiol and global ischemia markedly increased ERalpha, but not ERbeta, protein in CA1. These data indicate that estradiol can act via ERalpha and ERbeta to protect CA1 neurons from global ischemia-induced death and that both estradiol and global ischemia modulate ERalpha expression in hippocampal CA1.  相似文献   

2.
Ischemic stroke is the most common life-threatening neurological disease and has limited therapeutic options. One component of ischemic neuronal death is inflammation. Here we show that doxycycline and minocycline, which are broad-spectrum antibiotics and have antiinflammatory effects independent of their antimicrobial activity, protect hippocampal neurons against global ischemia in gerbils. Minocycline increased the survival of CA1 pyramidal neurons from 10.5% to 77% when the treatment was started 12 h before ischemia and to 71% when the treatment was started 30 min after ischemia. The survival with corresponding pre- and posttreatment with doxycycline was 57% and 47%, respectively. Minocycline prevented completely the ischemia-induced activation of microglia and the appearance of NADPH-diaphorase reactive cells, but did not affect induction of glial acidic fibrillary protein, a marker of astrogliosis. Minocycline treatment for 4 days resulted in a 70% reduction in mRNA induction of interleukin-1β-converting enzyme, a caspase that is induced in microglia after ischemia. Likewise, expression of inducible nitric oxide synthase mRNA was attenuated by 30% in minocycline-treated animals. Our results suggest that lipid-soluble tetracyclines, doxycycline and minocycline, inhibit inflammation and are neuroprotective against ischemic stroke, even when administered after the insult. Tetracycline derivatives may have a potential use also as antiischemic compounds in humans.  相似文献   

3.
Oscillations in cytosolic free Ca2+ concentration ([Ca2+]cyt) are an important component of Ca2+-based signal transduction pathways. This fact has led us to investigate whether oscillations in [Ca2+]cyt are involved in the response of stomatal guard cells to the plant hormone abscisic acid (ABA). We show that ABA induces oscillations in guard-cell [Ca2+]cyt. The pattern of the oscillations depended on the ABA concentration and correlated with the final stomatal aperture. We examined the mechanism by which ABA generates oscillations in guard-cell [Ca2+]cyt by using 1-(6-{[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione (U-73122), an inhibitor of phosphoinositide-specific phospholipase C (PI-PLC)-dependent processes in animals. U-73122 inhibited the hydrolysis of phosphatidylinositol 4,5-bisphosphate by a recombinant PI-PLC, isolated from a guard-cell-enriched cDNA library, in a dose-dependent manner. This result confirms that U-73122 is an inhibitor of plant PI-PLC activity. U-73122 inhibited both ABA-induced oscillations in [Ca2+]cyt and stomatal closure. In contrast, U-73122 did not inhibit external Ca2+-induced oscillations in guard-cell [Ca2+]cyt and stomatal closure. Furthermore, there was no effect of the inactive analogue 1-(6-{[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-2,5-pyrrolidinedione on recombinant PI-PLC activity or ABA-induced and external Ca2+-induced oscillations in [Ca2+]cyt and stomatal closure. This lack of effect suggests that the effects of U-73122 in guard cells are the result of inhibition of PI-PLC and not a consequence of nonspecific effects. Taken together, our data suggest a role for PI-PLC in the generation of ABA-induced oscillations in [Ca2+]cyt and point toward the involvement of oscillations in [Ca2+]cyt in the maintenance of stomatal aperture by ABA.  相似文献   

4.
5.
6.
A brief period of global brain ischemia, such as that induced by cardiac arrest or cardiopulmonary bypass surgery, causes cell death in vulnerable hippocampal CA1 pyramidal neurons days after reperfusion. Although numerous factors have been suggested to account for this phenomenon, the mechanisms underlying it are poorly understood. We describe a cell death signal called the PIDDosome, a protein complex of p53-induced protein with a death domain (PIDD), receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (RAIDD), and procaspase-2. We induced 5 min of transient global cerebral ischemia (tGCI) using bilateral common carotid artery occlusion with hypotension. Western blot analysis showed that expression of twice-cleaved fragment of PIDD (PIDD-CC) increased in the cytosolic fraction of the hippocampal CA1 subregion and preceded procaspase-2 activation after tGCI. Caspase-2 cleaved Bid in brain homogenates. Co-immunoprecipitation and immunofluorescent studies demonstrated that PIDD-CC, RAIDD, and procaspase-2 were co-localized and bound directly, which indicates the formation of the PIDD death domain complex. Furthermore, we tested inhibition of PIDD expression by using small interfering RNA (siRNA) treatment that was initiated 48 h before tGCI. Administration of siRNA against PIDD decreased not only expression of PIDD-CC, but also activation of procaspase-2 and Bid, resulting in a decrease in histological neuronal damage and DNA fragmentation in the hippocampal CA1 subregion after tGCI. These results imply that PIDD plays an important role in procaspase-2 activation and delayed CA1 neuronal death after tGCI. We propose that PIDD is a hypothetical molecular target for therapy against neuronal death after tGCI.  相似文献   

7.
Transient global ischemia induces selective delayed cell death, primarily of principal neurons in the hippocampal CA1. However, the molecular mechanisms underlying ischemia-induced cell death are as yet unclear. The present study shows that global ischemia triggers a pronounced and cell-specific reduction in GluR2 [the subunit that limits Ca(2+) permeability of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors] in vulnerable CA1 neurons, as evidenced by immunofluorescence of brain sections and Western blot analysis of microdissected hippocampal subfields. At 72 h after ischemia (a time before cell death), virtually all CA1 pyramidal neurons exhibited greatly reduced GluR2 immunolabeling throughout their somata and dendritic processes. GluR2 immunolabeling was unchanged in pyramidal cells of the CA3 and granule cells of the dentate gyrus, regions resistant to ischemia-induced damage. Immunolabeling of the AMPA receptor subunit GluR1 was unchanged in CA1, CA3, and dentate gyrus. Western analysis indicated that GluR2 subunit abundance was markedly reduced in CA1 at 60 and 72 h after the ischemic insult; GluR1 abundance was unchanged in all subfields at all times examined. These findings, together with the previous observation of enhanced AMPA-elicited Ca(2+) influx in postischemic CA1 neurons, show that functional GluR2-lacking, Ca(2+)-permeable AMPA receptors are expressed in vulnerable neurons before cell death. Thus, the present study provides an important link in the postulated causal chain between global ischemia and delayed death of CA1 pyramidal neurons.  相似文献   

8.
We investigated postischemic changes of non-pyramidal neurons in the gerbil hippocampus 1 h - 7 days after 10 min of cerebral ischemia, with parvalbumin and microtubule-associated protein 2 (MAP2)-immunohistochemistry. Parvalbumin-immunoreactive interneurons in the hippocampus were unaffected up to 24 h after ischemia. A slight reduction of the immunoreactivity in neuronal processes was seen in the hippocampal CA1 sector 48 h after ischemia. Seven days after ischemia, a marked loss of parvalbumin-immunoreactive interneurons was observed in the hippocampal CA1 and CA3 sectors. Furthermore, reduced staining in the dentate granular and molecular layers was observed. MAP2-immunoreactive pyramidal neurons in the hippocampus were unchanged up to 48 h after ischemia. Seven days after ischemia, a severe loss of MAP2 immunoreactivity was found in the hippocampal CA1 and CA3 neurons and dentate hilar neurons. However, scattered CA1 neurons, most likely interneurons, preserved MAP2 immunoreactivity. The results demonstrate that transient cerebral ischemia can cause a loss of parvalbumin-immunoreactive interneurons in the hippocampus. Furthermore, some interneurons seem to lose parvalbumin synthesis. Although dentate granule cells are resistant to ischemia, considerable reductions of afferent input was suggested by parvalbumin staining.  相似文献   

9.
10.
We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons. This resistance was impaired if the specific thrombin inhibitor hirudin was injected intracerebroventricularly before each short-lasting insult. Thus, efficient native neuroprotective mechanisms exist and endogenous thrombin seems to be involved therein. In vitro experiments using organotypic slice cultures of rat hippocampus revealed that thrombin can have protective but also deleterious effects on hippocampal CA1 neurons. Low concentrations of thrombin (50 pM, 0.01 unit/ml) or of a synthetic thrombin receptor agonist (10 microM) induced significant neuroprotection against experimental ischemia. In contrast, 50 nM (10 units/ml) thrombin decreased further the reduced neuronal survival that follows the deprivation of oxygen and glucose, and 500 nM even caused neuronal cell death by itself. Degenerative thrombin actions also might be relevant in vivo, because hirudin increased the number of surviving neurons when applied before a 6-min occlusion. Among the thrombin concentrations tested, 50 pM induced intracellular Ca(2+) spikes in fura-2-loaded CA1 neurons whereas higher concentrations caused a sustained Ca(2+) elevation. Thus, distinct Ca(2+) signals may define whether or not thrombin initiates protection. Taken together, in vivo and in vitro data suggest that thrombin can determine neuronal cell death or survival after brain ischemia.  相似文献   

11.
12.
大鼠全脑缺血后谷氨酸转运体的表达   总被引:6,自引:0,他引:6  
目的探讨3种谷氨酸转运体亚型(EAAT-1、EAAT-2、EAAT-3)在全脑缺血大鼠脑内表达的动态变化。方法取SD雄性大鼠42只,随机分为对照组、假手术组(各6只)及全脑缺血组(30只)。采用胸部挤压法建立全脑缺血模型。应用免疫组化方法,观察脑缺血后6h、24h、48h、72h、7d及对照组、假手术组大鼠3种谷氨酸转运体在海马CA1、CA3及皮质运动区的表达。在光镜及电镜下观察脑组织病理学改变。结果在海马CA1、CA3及皮质运动区,EAAT-2的表达在缺血后下降,随后逐渐升高;EAAT-3在海马CA1、皮质运动区的表达为逐渐下降趋势,在海马CA3区变化不明显;而EAAT-1在3个区域变化不规律。在大鼠缺血早期神经细胞损伤以坏死为主,缺血后期出现细胞凋亡现象。结论谷氨酸转运体表达变化参与了全脑缺血后的病理生理学过程。EAAT-2表达的降低与早期神经细胞的坏死有关,而EAAT-3表达升高则参与缺血损伤的耐受过程。  相似文献   

13.
Cytohesin-1, a protein abundant in cells of the immune system, has been proposed to be a human homolog of the Saccharomyces cerevisiae Sec7 gene product, which is crucial in protein transport. More recently, the same protein has been reported to be a regulatory factor for the αLβ2 integrin in lymphocytes. Overexpression of human or yeast ADP-ribosylation factor (ARF) genes rescues yeast with Sec7 defects, restoring secretory pathway function. ARFs, 20-kDa guanine nucleotide-binding proteins initially identified by their ability to stimulate cholera toxin ADP-ribosyltransferase activity and now recognized as critical components in intracellular vesicular transport, exist in an inactive cytosolic form with GDP bound (ARF-GDP). Interaction with a guanine nucleotide-exchange protein (GEP) accelerates exchange of GDP for GTP, producing the active ARF-GTP. Both soluble and particulate GEPs have been described. To define better the interaction between ARF and Sec7-related proteins, effects of cytohesin-1, synthesized in Escherichia coli, on ARF activity were evaluated. Cytohesin-1 enhanced binding of 35S-labeled guanosine 5′-[γ-thio]triphosphate [35S]GTP[γS] or [3H]GDP to ARF purified from bovine brain (i.e., it appeared to function as an ARF-GEP). Addition of cytohesin-1 to ARF3 with [35S]GTP[γS] bound, accelerated [35S]GTP[γS] release to a similar degree in the presence of unlabeled GDP or GTP[γS] and to a lesser degree with GDP[βS]; release was negligible without added nucleotide. Cytohesin-1 also increased ARF1 binding to a Golgi fraction, but its effect was not inhibited by brefeldin A (BFA), a drug that reversibly inhibits Golgi function. In this regard, it differs from a recently reported BFA-sensitive ARF-GEP that contains a Sec7 domain.  相似文献   

14.
15.
The Saccharomyces cerevisiae Sec7 protein (ySec7p), which is an important component of the yeast secretory pathway, contains a sequence of ≈200 amino acids referred to as a Sec7 domain. Similar Sec7 domain sequences have been recognized in several guanine nucleotide-exchange proteins (GEPs) for ADP ribosylation factors (ARFs). ARFs are ≈20-kDa GTPases that regulate intracellular vesicular membrane trafficking and activate phospholipase D. GEPs activate ARFs by catalyzing the replacement of bound GDP with GTP. We, therefore, undertook to determine whether a Sec7 domain itself could catalyze nucleotide exchange on ARF and found that it exhibited brefeldin A (BFA)-inhibitable ARF GEP activity. BFA is known to inhibit ARF GEP activity in Golgi membranes, thereby causing reversible apparent dissolution of the Golgi complex in many cells. The His6-tagged Sec7 domain from ySec7p (rySec7d) synthesized in Escherichia coli enhanced binding of guanosine 5′-[γ-[35S]thio]triphosphate by recombinant yeast ARF1 (ryARF1) and ryARF2 but not by ryARF3. The effects of rySec7d on ryARF2 were inhibited by BFA in a concentration-dependent manner but not by inactive analogues of BFA (B-17, B-27, and B-36). rySec7d also promoted BFA-sensitive guanosine 5′-[γ-thio]triphosphate binding by nonmyristoylated recombinant human ARF1 (rhARF1), rhARF5, and rhARF6, although the effect on rhARF6 was very small. These results are consistent with the conclusion that the yeast Sec7 domain itself contains the elements necessary for ARF GEP activity and its inhibition by BFA.  相似文献   

16.
Suramin acts as a G protein inhibitor because it inhibits the rate-limiting step in activation of the Gα subunit, i.e., the exchange of GDP for GTP. Here, we have searched for analogues that are selective for G. Two compounds have been identified: NF449 (4,4′,4",4′"-[carbonyl-bis[imino-5,1,3-benzenetriyl bis-(carbonylimino)]]tetrakis-(benzene-1,3-disulfonate) and NF503 (4,4′-[carbonylbis[imino-3,1-phenylene-(2,5-benzimidazolylene)carbonylimino]]bis-benzenesulfonate). These compounds (i) suppress the association rate of guanosine 5′-[γ-thio]triphosphate ([35S]GTP[γS]) binding to Gsα-s but not to Giα-1, (ii) inhibit stimulation of adenylyl cyclase activity in S49 cyc membranes (deficient in endogenous G) by exogenously added Gsα-s, and (iii) block the coupling of β-adrenergic receptors to Gs with half-maximum effects in the low micromolar range. In contrast to suramin, which is not selective, NF503 and NF449 disrupt the interaction of the A1-adenosine receptor with its cognate G proteins (Gi/Go) at concentrations that are >30-fold higher than those required for uncoupling of β-adrenergic receptor/Gs tandems; similarly, the angiotensin II type-1 receptor (a prototypical Gq-coupled receptor) is barely affected by the compounds. Thus, NF503 and NF449 fulfill essential criteria for G-selective antagonists. The observations demonstrate the feasibility of subtype-selective G protein inhibition.  相似文献   

17.
18.
Overian hormones can protect against brain injury, neurodegeneration, and cognitive decline. Most attention has focused on estrogens and accumulating data demonstrate that estrogen seems to specifically protect cortical and hippocampal neurons from ischemic injury and from damage due to severe seizures. Although multiple studies demonstrate protection by estrogen, in only a few instances is the issue of how the steroid confers protection known. Here, we first review data evaluating the neuroprotective effects of estrogens, a selective estrogen receptor modulator (SERM), and estrogen receptor α-and β-selective ligands in animal models of focal and global ischemia. Using focal ischemia in ovariectomized ERαKO, ERβKO, and wild-type mice, we clearly established that the ERα subtype is the critical ER mediating neuroprotection in mouse focal ischemia. In rats and mice, the middle cerebral artery occlusion (MCAO) model was used to represent cerebrovascular stroke, while in gerbils the two-vessel occlusion model, representing global ischemia, was used. The gerbil global ischemia model was used to evaluate the neuroprotective effects of estrogen, SERMs, and ERα-and ERβ-selective compounds in the hippocampus. Analysis of neurogranin mRNA, a marker of viability of hippocampal neurons, with in situ hybridization, revealed that estrogen treatment protected the dorsal CA1 regions not only when administered before, but also when given 1 h after occlusion. Estrogen rarely is secreted alone and studies of neuroprotection have been less extensive for a second key ovarian hormone progesterone. In the second half of this review, we present data on neuroprotection by estrogen and progesterone in animal model of epilepsy followed by exploration into ovarian steroid effects on neuronal damage in models of multiple sclerosis and traumatic brain injury.  相似文献   

19.
How do fluctuations in the level of generalized arousal of the brain affect the performance of specific motivated behaviors, such as sexual behaviors that depend on sexual arousal? A great deal of previous work has provided us with two important starting points in answering this question: (i) that histamine (HA) serves generalized CNS arousal and (ii) that heightened electrical activity of neurons in the ventromedial nucleus of the hypothalamus (VMN) is necessary and sufficient for facilitating the primary female sex behavior in laboratory animals, lordosis behavior. Here we used patch clamp recording technology to analyze HA effects on VMN neuronal activity. The results show that HA acting through H1 receptors (H1R) depolarizes these neurons. Further, acute administration of estradiol, an estrogen necessary for lordosis behavior to occur, heightens this effect. Hyperpolarization, which tends to decrease excitability and enhance inhibition, was not affected by acute estradiol or mediated by H1R but was mediated by other HA receptor subtypes, H2 and H3. Sampling of mRNA from individual VMN neurons showed colocalization of expression of H1 receptor mRNA with estrogen receptor (ER)-α mRNA but also revealed ER colocalization with the other HA receptor subtypes and colocalization of different subtypes with each other. The latter finding provides the molecular basis for complex “push-pull” regulation of VMN neuronal excitability by HA. Thus, in the simplest causal route, HA, acting on VMN neurons through H1R provides a mechanism by which elevated states of generalized CNS arousal can foster a specific estrogen-dependent, aroused behavior, sexual behavior.  相似文献   

20.
Transient global or forebrain ischemia induced experimentally in animals can cause selective, delayed neuronal death of hippocampal CA1 pyramidal neurons. A striking feature is a delayed rise in intracellular free Zn(2+) in CA1 neurons just before the onset of histologically detectable cell death. Here we show that alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) at Schaffer collateral to CA1 synapses in postischemic hippocampus exhibit properties of Ca(2+)/Zn(2+)-permeable, Glu receptor 2 (GluR2)-lacking AMPARs before the rise in Zn(2+) and cell death. At 42 h after ischemia, AMPA excitatory postsynaptic currents exhibited pronounced inward rectification and marked sensitivity to 1-naphthyl acetyl spermine (Naspm), a selective channel blocker of GluR2-lacking AMPARs. In control hippocampus, AMPA excitatory postsynaptic currents were electrically linear and relatively insensitive to Naspm. Naspm injected intrahippocampally at 9-40 h after insult greatly reduced the late rise in intracellular free Zn(2+) in postischemic CA1 neurons and afforded partial protection against ischemia-induced cell death. These results implicate GluR2-lacking AMPA receptors in the ischemia-induced rise in free Zn(2+) and death of CA1 neurons, although a direct action at the time of the rise in Zn(2+) is unproven. This receptor subtype appears to be an important therapeutic target for intervention in ischemia-induced neuronal death in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号