首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Titanium alloy implants were precoated biomimetically with a thin and dense layer of calcium phosphate and then incubated either in a supersaturated solution of calcium phosphate or in phosphate-buffered saline, each containing bovine serum albumin (BSA) at various concentrations, under physiological conditions for 48 h. Coated implants then underwent scanning electron microscopy, immunohistochemical evaluation, Fourier transform infrared spectroscopy, and X-ray diffraction. The quantity of BSA taken up by coatings and the kinetics of protein release were monitored colorimetrically. In coatings prepared by the coprecipitation of calcium phosphate and BSA, protein had become incorporated into the mineral crystal latticework. With increasing BSA concentration, matrices decreased in thickness, became more dense, showed lower crystallinity, and underwent a change in crystal geometry. The octacalcium phosphate structure manifested in the absence of protein was gradually transformed into a carbonated apatite form. Preformed mineral coatings became only superficially mantled with a layer of BSA, and the morphology of the mineral matrices themselves remained unchanged. At equivalent protein concentrations, coatings prepared by the coprecipitation of calcium phosphate released only a minute fraction of its protein component under physiological conditions, whereas preformed mineral matrices showed a "burst" release of their associated protein within a single 2-h period. The biomimetic coating can be a carrier for osteoinductive agents.  相似文献   

2.
In orthopaedic and dental implantology, novel tools and techniques are being sought to improve the regeneration of bone tissue. Numerous attempts have been made to enhance the osteoconductivity of titanium prostheses, including modifications in their surface properties and coating with layers of calcium phosphate. The technique whereby such layers are produced has recently undergone a revolutionary change, which has had profound consequences for their potential to serve as drug-carrier systems. Hitherto, calcium phosphate layers were deposited upon the surfaces of metal implants under highly unphysiological physical conditions, which precluded the incorporation of proteinaceous osteoinductive drugs. These agents could only be adsorbed, superficially, upon preformed layers. Such superficially adsorbed molecules are released too rapidly within a biological milieu to be effective in their osteoinductive capacity. Now, it is possible to deposit calcium phosphate layers under physiological conditions of temperature and pH by the so-called biomimetic process, during which bioactive agents can be coprecipitated. Since these molecules are integrated into the inorganic latticework, they are released gradually in vivo as the layer undergoes degradation. This feature enhances the capacity of these coatings to act as a carrier system for osteogenic agents.  相似文献   

3.
Biomimetic and electrolytic deposition are versatile methods to prepare calcium phosphate coatings. In this article, we compared the effects of biomimetically deposited octacalcium phosphate and carbonate apatite coatings as well as electrolytically deposited carbonate apatite coating on the proliferation and differentiation of mouse osteoblast-like MC3T3-E1 cells. It was found that MC3T3-E1 cells cultured on the biomimetically deposited carbonate apatite coating demonstrated the greatest proliferation rate and the highest differentiation potential. Cells on the biomimetically deposited octacalcium phosphate coating had lower proliferation rate before day 7, but higher after that, than those on the electrolytically deposited carbonate apatite coating. There was no difference on the expression of early differentiation markers, that is, alkaline phosphatase activity and collagen content, between biomimetically deposited octacalcium phosphate and electrolytically deposited carbonate apatite coatings. However, higher expression of late differentiation markers, that is, osteocalcin and bone sialoprotein mRNA, was found on the biomimetically deposited octacalcium phosphate coating on day 14. These results suggest that the difference in in vitro osteoblast cell performance of calcium phosphate coatings might relate to their physicochemical properties. Biomimetic carbonate apatite coating is the most favorable surface for the proliferation and differentiation of MC3T3-E1 cells.  相似文献   

4.
Recombinant human bone morphogenetic protein 2 (rhBMP-2) is currently in clinical studies as part of an implantable device that contains a biomaterial carrier. Implant retention of rhBMP-2 by the biomaterial carrier is important for the osteoinductive activity. To control in situ retention of rhBMP-2, thermoreversible polymers were synthesized and characterized, and their compatibility with rhBMP-2-induced osteoinduction was investigated. The results indicated that polymers with a controlled "solubility <--> insolubility" transition temperature could be prepared from N-isopropylacrylamide, ethylmethacrylate, and N-acryloxysuccinimide (NASI). NASI-containing polymers were able to conjugate to rhBMP-2 without additional cross-linkers. Implantation in the rat ectopic model, where alkaline phosphatase and calcium deposition were utilized as markers of osteoinductive activity, indicated that rhBMP-2 mixed with the polymers were effective for osteoinduction. Moreover, rhBMP-2 conjugated to the chosen polymers was as effective as native rhBMP-2 in inducing ALP activity and calcium deposition. We conclude that thermoreversible polymers are compatible with rhBMP-2-induced osteogenesis and can serve as novel biomaterials for rhBMP-2 delivery.  相似文献   

5.
Xia L  Xu Y  Wei J  Zeng D  Ye D  Liu C  Zhang Z  Jiang X 《Cells, tissues, organs》2011,194(6):481-493
The aim of this study was to evaluate the effects of maxillary sinus floor elevation by a tissue-engineered bone complex with recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded porous calcium phosphate cement (CPC) scaffold and bone marrow stromal cells (bMSCs) in rabbits. bMSCs were cultured and osteogenically induced. The osteoblastic differentiation of expanded bMSCs was detected by alkaline phosphatase activity, and calcium deposits in vitro. Thirty-six rabbits were randomly allocated into week 2, 4 and 8 observation groups. At each time point, 24 maxillary sinus floor elevation surgeries in 12 rabbits were performed bilaterally and randomly implanted by (1) CPC materials alone (group A, n = 6), (2) rhBMP-2/CPC composite materials alone (group B, n = 6), (3) CPC/bMSCs complex (group C, n = 6) and (4) rhBMP-2/CPC/bMSCs complex (group D, n = 6). As for maxillary sinus floor elevation, rhBMP-2-loaded CPC could promote new bone formation as compared to CPC, while addition of bMSCs could further enhance its new bone formation and maturity significantly, as detected by histological findings, and fluorochrome labeling. Our data suggested that rhBMP-2/CPC possessed excellent osteoinductive ability, while combining with bMSCs could further promote new bone formation and maturation in maxillary sinus elevation.  相似文献   

6.
We have investigated pellet-shaped implants prepared from biphasic calcium phosphate (BCP) ceramics with five different ratios of hydroxyapatite (HAP) to beta tricalcium phosphate (beta-TCP). The purpose of this study was to evaluate these BCP ceramics as carriers for rhBMP-2. BCP ceramics impregnated with the different doses of recombinant human bone morphogenetic protein 2 (rhBMP-2) (1, 5 and 10g) were used for the experimental purpose and the ceramics without rhBMP-2 were used as control. The pellets were placed into subcutaneous pockets on the dorsum of 4-week-old male Wistar rats. The animals were sacrificed 2 and 4 weeks after implantation. Bone induction was estimated by alkaline phosphatase (ALP) activity measured at 2 weeks after implantation. Pellets were also examined radiologically, histologically and histomorphometrically. The results showed that all experimental pellets exhibited new bone formation whereas the control pellets produced only fibrous connective tissue. Here, 100% HAP ceramic showed most amount of bone formation, whereas 25% HAP to 75% TCP ceramic produced the bone least in amount among different BCP ceramics at the end of 4 weeks. This study indicates that formation of new bone depends on the ceramic content with high HAP-TCP ratio and high dose of rhBMP-2.  相似文献   

7.
To evaluate the osteoinductive effects of recombinant human bone morphogenetic protein (rhBMP)-2 during the early stages of rat ectopic bone formation, we prepared two distinct carriers. Two carriers, insoluble bone matrix (IBM) and fibrous glass membrane (FGM) were combined with rhBMP-2 and implanted into the backs of rats to evaluate the osteoinductive effects of the two rhBMP-2 carrier systems. Insoluble bone matrix particle size was 320 to 620 microm. Fibrous glass membrane was constructed from unwoven glass fibers 1 microm in diameter. Alkaline phosphatase (ALP) activity and type II collagen were detected in IBM/rhBMP-2 at 5 days postimplantation. Calcium (Ca) was also detected in IBM/rhBMP-2 at 7 and 9 days postimplantation. In contrast, ALP and type II collagen were detected in FGM/rhBMP-2 at 7 days. Calcium was undetected, indicating that the bone formation in IBM/rhBMP-2 proceeded faster than in FGM/rhBMP-2 during the early stage of BMP-induced osteogenesis. In addition, mRNA expression level of KDR, a receptor for vascular endothelial growth factor, was also increased in IBM/rhBMP-2. To investigate the in vivo release profile of rhBMP-2, iodine 125 ((125)I)-labeled BMP-2-incorporating IBM and FGM implants were inserted into the back subcutis of mice. More than 60% of the rhBMP-2 was released from the IBM/rhBMP-2 carrier within 1 day after implantation, whereas 50% of the rhBMP-2 was released from the FGM/rhBMP-2 10 days postimplantation. These results indicated that osteo- and chondrogenesis depends highly upon the geometry of the carrier and the in situ retention of rhBMP-2 during the early stage of rhBMP-2 induced bone formation.  相似文献   

8.
The development of new bone formation strategies offers tremendous therapeutic implications in a variety of musculoskeletal diseases. One approach involves harnessing the regenerative capacity of osteoprogenitor bone cells in combination with biomimetic scaffolds generated from appropriate scaffold matrices and osteoinductive factors. The aims of our study were to test the efficacy of two innovative osteoinductive agents: the osteoblast stimulating factor-1 (osf-1), an extracellular matrix-associated protein, and osteoinductive extracts of Saos-2 cells on human osteoprogenitor cells. Saos-2 extracted osteoinductive factors significantly stimulated alkaline phosphatase specific activity in basal and osteogenic conditions. Osf-1 significantly stimulated chemotaxis, total colony formation, alkaline phosphatase-positive colony formation, and alkaline phosphatase specific activity at concentrations as low as 10 pg/ml compared with control cultures. Osteoinductive factors present in Saos-2 cell extracts and osf-1 promoted adhesion, migration, expansion, and differentiation of human osteoprogenitor cells on 3-D scaffolds. The successful generation of 3-D biomimetic structures incorporating osf-1 or osteoinductive factors from Saos-2 cells indicates their potential for de novo bone formation that exploits cell-matrix interactions.  相似文献   

9.
The development of new bone formation strategies offers tremendous therapeutic implications in a variety of musculoskeletal diseases. One approach involves harnessing the regenerative capacity of osteoprogenitor bone cells in combination with biomimetic scaffolds generated from appropriate scaffold matrices and osteoinductive factors. The aims of our study were to test the efficacy of two innovative osteoinductive agents: the osteoblast stimulating factor-1 (osf-1), an extracellular matrix-associated protein, and osteoinductive extracts of Saos-2 cells on human osteoprogenitor cells. Saos-2 extracted osteoinductive factors significantly stimulated alkaline phosphatase specific activity in basal and osteogenic conditions. Osf-1 significantly stimulated chemotaxis, total colony formation, alkaline phosphatase-positive colony formation, and alkaline phosphatase specific activity at concentrations as low as 10 pg/ml compared with control cultures. Osteoinductive factors present in Saos-2 cell extracts and osf-1 promoted adhesion, migration, expansion, and differentiation of human osteoprogenitor cells on 3-D scaffolds. The successful generation of 3-D biomimetic structures incorporating osf-1 or osteoinductive factors from Saos-2 cells indicates their potential for de novo bone formation that exploits cell-matrix interactions.  相似文献   

10.
The need for bone tissue engineering has increased as the world population ages. The objectives of this study were to (1) develop a novel human umbilical cord mesenchymal stem cell (hUCMSC)-encapsulating, fiber-reinforced injectable calcium phosphate cement (CPCF) scaffold, and (2) investigate the effects of osteogenic media delivery, preosteodifferentiation, and bone morphogenetic protein-2 (BMP-2) delivery on hUCMSC osteodifferentiation inside CPCF for the first time. CPCF was developed using calcium phosphate powders, chitosan, and absorbable fibers. Four types of hUCMSC-encapsulating constructs were fabricated: control media in alginate hydrogel microbeads in CPCF; osteogenic media in microbeads; preosteodifferentiation; and recombinant human BMP-2 (rhBMP-2) in microbeads. The hUCMSCs inside CPCF maintained good viability, successfully differentiated into the osteogenic lineage, and synthesized bone minerals. The preosteodifferentiation method yielded high gene expressions of alkaline phosphatase, osteocalcin, collagen, and osterix, as well as alkaline phosphatase protein synthesis. The mineralization for the preosteodifferentiation constructs exceeded those of the rhBMP-2 group at 1-7 days, and was slightly lower than the rhBMP-2 group at 21 days. Mineralization of the rhBMP-2 group was 12-fold that of the control constructs at 21 days. In conclusion, although the BMP-2 delivery promoted osteodifferentiation, the preosteodifferentiation method and the ostegenic media method with hUCMSCs in CPCF were also promising for bone regeneration. hUCMSCs may be an effective alternative to the gold-standard bone marrow MSCs, which require an invasive procedure to harvest. The novel injectable stem cell-CPCF construct may be useful in minimally invasive and other orthopedic surgeries.  相似文献   

11.
The osteoinductive activity induced by recombinant human BMP-2 (rhBMP-2) blunts proportionately as the recipient ages. In order to compensate for this bluntness administration of fibroblast growth factor-2 (FGF-2) has been considered. The aim of this study was to determine whether FGF-2 administration augments osteoinductive activity caused by rhBMP-2 and to evaluate the effect of aging on bone formation induced by coadministration of rhBMP-2 and FGF-2. Sixty-four Wistar strain male rats of 8-week-old (prepubertal) and 16-week-old (postpubertal) received bone defects bilaterally in the parietal bone and the defects were filled by a polylactic acid polyglycolic acid copolymer/gelatin sponge (PGS) impregnated with rhBMP-2 plus 0 ng, 25 ng, and 250 ng FGF-2 (n=10 in each). At 2 weeks after grafting, the new bone volume seemed to be larger in the rhBMP-2+FGF-2 groups than in the rhBMP-2 alone group. At 4 weeks, the new bone formation was linked to the adjacent original bone. In the prepubertal rats, all newly formed bone was similarly calcified. In the postpubertal rats, only the rhBMP-2+25 ng FGF-2 group showed this higher degree of calcification. At 2 weeks, alkaline phosphatase (ALP) activity in the rhBMP-2+25 ng FGF-2 group was significantly (p<0.05) larger than that in the rhBMP-2 group in both prepubertal and postpubertal rats. This result shows that low-dose administration of FGF-2 enhanced the degree of calcification and ALP activity in the rhBMP-2 grafting site especially in the postpubertal rats. Therefore, FGF-2 would be a candidate to compensate for the reduction of osteoinductive activity of rhBMP-2 with aging.  相似文献   

12.
In this study, the osteoinductive properties of porous calcium phosphate (Ca-P) cement loaded with bone morphogenetic protein 2 (rhBMP-2) were evaluated and compared with rhBMP-2 loaded absorbable collagen sponge (ACS). Discs with a diameter of 8mm were loaded with a buffer solution with or without 10 microg rhBMP-2 and inserted in 8mm full thickness cranial defects in rabbits for 2 and 10 weeks of implantation. Histological analysis revealed excellent osteoconductive properties of the Ca-P material. It maintained its shape and stability during the implantation time better than the ACS but showed no degradation like the ACS. Quantification of the Ca-P cement implants showed that bone formation was increased significantly by administration of rhBMP-2 (10 weeks pore fill: 53.0+/-5.4%), and also reached a reasonable amount without rhBMP-2 (43.1+/-10.4%). Remarkably, callus-like bone formation outside the implant was observed frequently in the 2 weeks rhBMP-2 loaded Ca-P cement implants, suggesting a correlation with the presence of growth factor in the surrounding tissue. However, an additional in vitro assay revealed an accumulative release of no more than 9.7+/-0.9% after 4 weeks. We conclude that: (1). Porous Ca-P cement is an appropriate candidate scaffold material for bone engineering. (2). Bone formation can be enhanced by lyophilization of rhBMP-2 on the cement. (3). Degradation of porous Ca-P cement is species-, implantation site- and implant dimension-specific.  相似文献   

13.
The fibrotic response of the body to synthetic polymers limits their success in tissue engineering and other applications. Though porous polymers have demonstrated improved healing, difficulty in controlling their pore sizes and pore interconnections has clouded the understanding of this phenomenon. In this study, a novel method to fabricate natural polymer/calcium phosphate composite scaffolds with tightly controllable pore size, pore interconnection, and calcium phosphate deposition was developed. Microporous, nanofibrous fibrin scaffolds were fabricated using sphere-templating methods. Composite scaffolds were created by solution deposition of calcium phosphate on fibrin surfaces or by direct incorporation of nanocrystalline hydroxyapatite (nHA). The SEM results showed that fibrin scaffolds exhibited a highly porous and interconnected structure. Osteoblast-like cells, obtained from murine calvaria, attached, spread and showed a polygonal morphology on the surface of the biomaterial. Multiple cell layers and fibrillar matrix deposition were observed. Moreover, cells seeded on mineralized fibrin scaffolds exhibited significantly higher alkaline phosphatase activity as well as osteoblast marker gene expression compared to fibrin scaffolds and nHA incorporated fibrin scaffolds (0.25 and 0.5g). All types of scaffolds were degraded both in vitro and in vivo. Furthermore, these scaffolds promoted bone formation in a mouse calvarial defect model and the bone formation was enhanced by addition of rhBMP-2.  相似文献   

14.
The objective of this study was to examine the osteoinductive capacity of different concentrations of BMP-2 on bone marrow stromal cells in vitro. Further, we intended to determine whether titanium provided with an increased surface roughness is more efficient in osteoblast differentiation than machined titanium. Therefore, 20,000 cells/ml were seeded and cultured on machined and grit-blasted titanium discs for 4, 8 and 16 days. Different concentrations of rhBMP-2 (0, 10, 100, 1000 ng/ml) were supplemented to the medium for 8 days of culturing. To evaluate cellular proliferation and differentiation, specimens were examined for DNA, alkaline phosphatase activity, and calcium content. Morphological appearance of the specimens at 8 and 16 days of incubation was evaluated using scanning electron microscopy. Two separate experimental runs were performed.Evaluation of the DNA and alkaline phosphatase data revealed that a significant difference existed for these data between both experimental runs. Further analysis of the DNA figures learned that roughening of the titanium surface and addition of BMP-2 had no effect on cell proliferation. The alkaline phosphatase analysis and calcium measurements revealed that BMP-2 stimulated the early differentiation of osteogenic cells on machined titanium substrates in a dose-dependent manner. After 16 days of culture, no significant differences in calcium content could be observed anymore between machined and roughened titanium surfaces. Further, the data revealed that the machined surfaces showed a significant increase in calcium deposition when 100 and 1000 ng/ml BMP-2 were supplemented to the medium. However, the roughened surfaces showed this significant enhancement in calcium content only with 1000 ng/ml BMP-2. In addition, SEM evaluation revealed a dose-dependent response to BMP-2. Increasing BMP-2 concentrations resulted in more calcified globular accretions on bone surfaces than when no BMP-2 was added.On the basis of our results, we conclude that (1) due to the heterogeneous nature of bone marrow, experimental results with primary rat bone marrow cells are difficult to reproduce from one experiment to the other, and (2) addition of rhBMP-2 in the medium stimulates the early differentiation and matrix mineralization of osteogenic cells on machined titanium surfaces in a dose-responsive manner. Further, we concluded that our roughened titanium surfaces had no effect on proliferation and differentiation of primary derived rate bone marrow cells.  相似文献   

15.
A new type of degradable biomaterial with bone-inducing capacity was made by combining porous beta-tricalcium phosphate (beta-TCP) with a delivery system for recombinant human bone morphogenetic protein-2 (rhBMP-2). The BMP delivery system consisted of a block copolymer composed of poly-D,L-lactic acid with random insertion of p-dioxanone and polyethylene glycol (PLA-DX-PEG), a known biocompatible and biodegradable material. The efficacy of this biomaterial in terms of its bone-inducing capacity was examined by ectopic bone formation in the dorsal muscles of the mouse. In the beta-TCP implants coated with the PLA-DX-PEG polymer containing more than 0.0025% (w/w) of rhBMP-2, new ectopic bone tissues with marrow were consistently found on the surface of implants. The radiographic density of beta-TCP was diminished in a time-dependent manner. On histological examination, numerous multinucleated osteoclasts with positive tartrate-resistant acid-phosphatase (TRAP) staining were noted on the surface of the beta-TCP. These experimental results indicate that beta-TCP implants coated with synthetic rhBMP-2 delivery system might provide effective artificial bone-graft substitutes with osteoinductive capacity and biodegradable properties. In addition, this type of biomaterial may require less rhBMP-2 to induce significant new bone mass.  相似文献   

16.
背景:重组人骨形态发生蛋白2在体内半衰期短、易降解代谢,达不到理想的骨再生效果。 目的:制备缓释型重组人骨形态发生蛋白2/壳聚糖生物骨修复材料,并观察其缓释性能、骨诱导活性。 方法:将重组人骨形态发生蛋白2与壳聚糖混合制备壳聚糖膜,涂覆于生物骨修复材料表面,ELISA方法检测其体外释药性能。茜素红染色检测缓释型人骨形态发生蛋白2/壳聚糖生物骨材料、重组人骨形态发生蛋白2生物骨材料、单纯骨填充材料诱导C2C12细胞骨钙蛋白的形成,观察其诱导成骨细胞能力。同时将3种骨修复材料植入清洁级KM小鼠股部肌袋内,2周后检测新生骨Ca2+离子含量,评价其异位骨诱导能力。 结果与结论:材料表面的壳聚糖膜分布均匀,负载的重组人骨形态发生蛋白2呈团簇状。重组人骨形态发生蛋白2/壳聚糖生物骨修复材料体外释药存在突释,前4 d释放量达总药量的50%,持续至12 d,释药量达到90%,第18天时释放完全。与单纯骨填充材料、重组人骨形态发生蛋白2生物骨材料相比,缓释型人骨形态发生蛋白2/壳聚糖生物骨修复材料诱导C2C12细胞向成骨晚期分化能力与异位骨形成能力显著增强(P < 0.05)。结果提示缓释型人骨形态发生蛋白2/壳聚糖生物骨修复材料缓释性能好,促进骨形成能力强。  相似文献   

17.
BACKGROUND: It has become a hotspot to prepare the bone repair material that exhibits natural bone structure and is used in combination with biological factors. OBJECTIVE: To prepare the recombinant human bone morphogenetic protein-2 (rhBMP-2)/bone repair material, and to evaluate its capacities of release, activity and ectopic osteoinduction. METHODS: A collagen-binding domain was added to the N-terminal of native rhBMP-2 that allowed bind to collagens in the bone repair material. Then, rhBMP-2/bone repair material was obtained through freeze-dried method. The releasing ability of rhBMP-2 in vitro was assayed by ELISA. C2C12 cell lines were loaded to the composite material with 0.25, 0.5 and 1 µg rhBMP-2, respectively. Afterwards, alkaline phosphatase activity was detected at 72 hours. The composite materials with 0, 2, 5 and 10 µg rhBMP-2 were implanted into the quadriceps of Sprague-Dawley rats, respectively. Alkaline phosphatase activity and the newly formed bone were detected at 2 and 4 weeks after implantation. The CY-7-labeled composite material was implanted into the quadriceps of Sprague-Dawley rats to observe its stability. RESULTS AND CONCLUSION: Substantially no rhBMP-2 from the rhBMP-2/bone repair material was released within 45 days. The alkaline phosphatase activity of C2C12 was in a rise with the increased concentration of rhBMP-2. The stability of the composite material in vivo was better, the alkaline phosphatase activity and ectopic bone formation increased as the concentration of rhBMP-2 rose. To conclude, the rhBMP-2/bone repair material preserves the stability of rhBMP-2, and improves ectopic osteoinduction ability.  相似文献   

18.
Human recombinant bone morphogenetic protein-2 (rhBMP-2) immobilized on the surface of metal implants can facilitate osseointegration. Here, we describe a cell reporter assay useful for quantifying small amounts of immobilized rhBMP-2 on various materials. The peptide was dotted and heat-fixed on titanium, 316L stainless steel, nitrocellulose, or glass, and its distribution was monitored by in situ biotinylation followed by detection with the avidin-biotin method. Bioactivity of rhBMP-2 was demonstrated by means of a confluent layer of osteoblastic MC3T3-E1 cells that evenly covered rhBMP-2-free and rhBMP-2-loaded surface areas, as shown with epifluorescence microscopy of calcein acetoxymethyl (AM)-loaded cells. Expression of osteocalcin, fibronectin, actin, and vimentin increased where cells were located on rhBMP-2 dotted areas, but the signal:noise ratio was too low to bioassay the peptide. However, local pronounced expression of alkaline phosphatase was used to quantify BMP-2 in the range of 5-80 ng/dot by means of a cytochemical color reaction for alkaline phosphatase and image analysis of resulting dots. The lower detection limit was in the order nitrocellulose > glass > titanium > 316L steel. We conclude that the cell reporter assay is useful to assess biological activity of rhBMP-2 even after immobilization on three-dimensional implant materials.  相似文献   

19.
In this report, bioactive calcium phosphate (CaP) coatings were produced on titanium (Ti) by using phosphate-based glass (P-glass) and hydroxyapatite (HA), and their feasibility for hard tissue applications was addressed in vitro. P-glass and HA composite slurries were coated on Ti under mild heat treatment conditions to form a porous thick layer, and then the micropores were filled in with an HA sol-gel precursor to produce a dense layer. The resultant coating product was composed of HA and calcium phosphate glass ceramics, such as tricalcium phosphate (TCP) and calcium pyrophosphate (CPP). The coating layer had a thickness of approximately 30-40 microm and adhered to the Ti substrate tightly. The adhesion strength of the coating layer on Ti was as high as 30-33 MPa. The human osteoblastic cells cultured on the coatings produced by the combined method attached and proliferated favorably. Moreover, the cells on the coatings expressed significantly higher alkaline phosphatase activity than those on pure Ti, suggesting the stimulation of the osteoblastic activity on the coatings. On the basis of these observations, the engineered CaP coating layer is considered to be potentially applicable as a hard tissue-coating system on Ti-based implants.  相似文献   

20.
An appropriate carrier acting as a slow delivery vehicle for the BMPs is required for maximal clinical effectiveness of these bone-inductive proteins. The purpose of this study was to evaluate a low-molecular-weight PLGA copolymer as a synthetic, biodegradable carrier for rhBMP-2 implantation in vivo. Two, 10, or 50 microg of recombinant human BMP-2 were mixed with 10 mg of a poly (DL-lactide-co-glycolide) (PLGA) 50:50 copolymer and implanted into the calf muscles of Wistar rats. Soft X-ray analysis and histologic examination indicated that new bone formation occurred at all rhBMP-2-implanted sites within 3 weeks after implantation. Correlation of rhBMP-2 concentration with the amount of bone induction was confirmed by specific alkaline phosphatase activity and calcium content assay. In vitro analysis indicated that 78.5% of the PLGA copolymer was degraded to smaller molecular weight material after 14 days in PBS solution. It is suggested that rhBMP-2 was released in an active form at the implant site during the degradation of the copolymer, resulting in the induction of new bone formation. Thus this low-molecular-weight PLGA copolymer material represents a promising delivery vehicle for BMPs, and possibly other growth factors, around dental and orthopedic implants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号