首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Humans show a pervasive bias for processing self- over other-related information, including in working memory (WM), where people prioritize the maintenance of self- (over other-) associated cues. To elucidate the neural mechanisms underlying this self-bias, we paired a self- versus other-associated spatial WM task with fMRI and transcranial direct current stimulation (tDCS) of human participants of both sexes. Maintaining self- (over other-) associated cues resulted in enhanced activity in classic WM regions (frontoparietal cortex), and in superior multivoxel pattern decoding of the cue locations from visual cortex. Moreover, ventromedial PFC (VMPFC) displayed enhanced functional connectivity with WM regions during maintenance of self-associated cues, which predicted individuals'' behavioral self-prioritization effects. In a follow-up tDCS experiment, we targeted VMPFC with excitatory (anodal), inhibitory (cathodal), or sham tDCS. Cathodal tDCS eliminated the self-prioritization effect. These findings provide strong converging evidence for a causal role of VMPFC in driving self-prioritization effects in WM and provide a unique window into the interaction between social, self-referential processing and high-level cognitive control processes.SIGNIFICANCE STATEMENT People have a strong tendency to attend to self-related stimuli, such as their names. This self-bias extends to the automatic prioritization of arbitrarily self-associated stimuli held in working memory. Since working memory is central to high-level cognition, this bias could influence how we make decisions. It is therefore important to understand the underlying brain mechanisms. Here, we used neuroimaging and noninvasive neurostimulation techniques to show that the source of self-bias in working memory is the ventromedial PFC, which modulates activity in frontoparietal brain regions to produce prioritized representations of self-associated stimuli in sensory cortex. This work thus reveals a brain circuit underlying the socially motivated (self-referential) biasing of high-level cognitive processing.  相似文献   

2.
Psychopaths show a reduced ability to recognize emotion facial expressions, which may disturb the interpersonal relationship development and successful social adaptation. Behavioral hypotheses point toward an association between emotion recognition deficits in psychopathy and amygdala dysfunction. Our prediction was that amygdala dysfunction would combine deficient activation with disturbances in functional connectivity with cortical regions of the face-processing network. Twenty-two psychopaths and 22 control subjects were assessed and functional magnetic resonance maps were generated to identify both brain activation and task-induced functional connectivity using psychophysiological interaction analysis during an emotional face-matching task. Results showed significant amygdala activation in control subjects only, but differences between study groups did not reach statistical significance. In contrast, psychopaths showed significantly increased activation in visual and prefrontal areas, with this latest activation being associated with psychopaths’ affective–interpersonal disturbances. Psychophysiological interaction analyses revealed a reciprocal reduction in functional connectivity between the left amygdala and visual and prefrontal cortices. Our results suggest that emotional stimulation may evoke a relevant cortical response in psychopaths, but a disruption in the processing of emotional faces exists involving the reciprocal functional interaction between the amygdala and neocortex, consistent with the notion of a failure to integrate emotion into cognition in psychopathic individuals.  相似文献   

3.
OBJECTIVE: To examine the neural basis and dynamics of facial affect processing in schizophrenic patients as compared to healthy controls. METHOD: Fourteen schizophrenic patients and fourteen matched controls performed a facial affect identification task during fMRI acquisition. The emotional task included an intuitive emotional condition (matching emotional faces) and a more cognitively demanding condition (labeling emotional faces). Individual analysis for each emotional condition, and second-level t-tests examining both within-, and between-group differences, were carried out using a random effects approach. Psychophysiological interactions (PPI) were tested for variations in functional connectivity between amygdala and other brain regions as a function of changes in experimental conditions (labeling versus matching). RESULTS: During the labeling condition, both groups engaged similar networks. During the matching condition, schizophrenics failed to activate regions of the limbic system implicated in the automatic processing of emotions. PPI revealed an inverse functional connectivity between prefrontal regions and the left amygdala in healthy volunteers but there was no such change in patients. Furthermore, during the matching condition, and compared to controls, patients showed decreased activation of regions involved in holistic face processing (fusiform gyrus) and increased activation of regions associated with feature analysis (inferior parietal cortex, left middle temporal lobe, right precuneus). CONCLUSIONS: Our findings suggest that schizophrenic patients invariably adopt a cognitive approach when identifying facial affect. The distributed neocortical network observed during the intuitive condition indicates that patients may resort to feature-based, rather than configuration-based, processing and may constitute a compensatory strategy for limbic dysfunction.  相似文献   

4.
Brain regions simultaneously activated during any cognitive process are functionally connected, forming large-scale networks. These functional networks can be examined during active conditions [i.e., task-functional magnetic resonance imaging (fMRI)] and also in passive states (resting-fMRI), where the default mode network (DMN) is the most widely investigated system. The role of the DMN remains unclear, although it is known to be responsible for the shift between resting and focused attention processing. There is also some evidence for its malleability in relation to previous experience. Here we investigated brain connectivity patterns in 16 healthy young subjects by using an n-back task with increasing levels of memory load within the fMRI context. Prior to this working memory (WM) task, participants were trained outside fMRI with a shortened test version. Immediately after, they underwent a resting-state fMRI acquisition followed by the full fMRI n-back test. We observed that the degree of intrinsic correlation within DMN and WM networks was maximal during the most demanding n-back condition (3-back). Furthermore, individuals showing a stronger negative correlation between the two networks under both conditions exhibited better behavioural performance. Interestingly, and despite the fact that we considered eight different resting-state fMRI networks previously identified in humans, only the connectivity within the posteromedial parts of the DMN (precuneus) prior to the fMRI n-back task predicted WM execution. Our results using a data-driven probabilistic approach for fMRI analysis provide the first evidence of a direct relationship between behavioural performance and the degree of negative correlation between the DMN and WM networks. They further suggest that in the context of expectancy for an imminent cognitive challenge, higher resting-state activity in the posteromedial parietal cortex may be related to increased attentional preparatory resources.  相似文献   

5.
The functional neuroanatomy and connectivity of reward processing in adults are well documented, with relatively less research on adolescents, a notable gap given this developmental period's association with altered reward sensitivity. Here, a large sample (n = 1,510) of adolescents performed the monetary incentive delay (MID) task during functional magnetic resonance imaging. Probabilistic maps identified brain regions that were reliably responsive to reward anticipation and receipt, and to prediction errors derived from a computational model. Psychophysiological interactions analyses were used to examine functional connections throughout reward processing. Bilateral ventral striatum, pallidum, insula, thalamus, hippocampus, cingulate cortex, midbrain, motor area, and occipital areas were reliably activated during reward anticipation. Bilateral ventromedial prefrontal cortex and bilateral thalamus exhibited positive and negative activation, respectively, during reward receipt. Bilateral ventral striatum was reliably active following prediction errors. Previously, individual differences in the personality trait of sensation seeking were shown to be related to individual differences in sensitivity to reward outcome. Here, we found that sensation seeking scores were negatively correlated with right inferior frontal gyrus activity following reward prediction errors estimated using a computational model. Psychophysiological interactions demonstrated widespread cortical and subcortical connectivity during reward processing, including connectivity between reward‐related regions with motor areas and the salience network. Males had more activation in left putamen, right precuneus, and middle temporal gyrus during reward anticipation. In summary, we found that, in adolescents, different reward processing stages during the MID task were robustly associated with distinctive patterns of activation and of connectivity.  相似文献   

6.

Background

Convergent evidence suggests dysfunction within the prefrontal cortex (PFC) and amygdala, important components of a neural system that subserves emotional processing, in individuals with major depressive disorder (MDD). Abnormalities in this system in the left hemisphere and during processing of negative emotional stimuli are especially implicated. In this study, we used functional magnetic resonance imaging (fMRI) to investigate amygdala–PFC functional connectivity during emotional face processing in medication-naive individuals with MDD.

Methods

Individuals with MDD and healthy controls underwent fMRI scanning while processing 3 types of emotional face stimuli. We compared the strength of functional connectivity from the amygdala between the MDD and control groups.

Results

Our study included 28 individuals with MDD and 30 controls. Decreased amygdala–left rostral PFC (rPFC) functional connectivity was observed in the MDD group compared with controls for the fear condition (p < 0.05, corrected). No significant differences were found in amygdala connectivity to any cerebral regions between the MDD and control groups for the happy or neutral conditions.

Limitations

All participants with MDD were experiencing acute episodes, therefore the findings could not be generalized to the entire MDD population.

Conclusion

Medication-naive individuals with MDD showed decreased amygdala–left rPFC functional connectivity in response to negative emotional stimuli, suggesting that abnormalities in amygdala–left rPFC neural circuitry responses to negative emotional stimuli might play an important role in the pathophysiology of MDD.  相似文献   

7.
Binge drinking is associated with increased impulsivity and altered emotional processing. This study investigated, in a group of university students who differed in their level of binge drinking, whether the ability to inhibit a pre‐potent response and to delay gratification is disrupted in the presence of emotional context. We further tested whether functional connectivity within intrinsic resting‐state networks was associated with alcohol use. Higher incidence of binge drinking was associated with enhanced activation of the lateral occipital cortex, angular gyrus, the left frontal pole during successful response inhibition irrespective of emotional context. This observation suggests a compensatory mechanism. However, higher binge drinking attenuated frontal and parietal activation during successful response inhibition within a fearful context, indicating the selective emotional facilitation of inhibitory control. Similarly, higher binge drinking was associated with attenuated frontopolar activation when choosing a delayed reward over an immediate reward within the fearful, relative to the neutral, context. Resting‐state functional data analysis revealed that binge drinking decreased coupling between the right supramarginal gyrus and Ventral Attention Network, indicating alcohol‐associated disruption of functional connectivity within brain substrates directing attention. Together, our results suggest that binge drinking makes response inhibition more effortful, yet emotional (more arousing) contexts may mitigate this; disrupted functional connectivity between regions underlying adaptive attentional control, is a likely mechanism underlying these response inhibition effects associated with binge drinking.  相似文献   

8.
Research on the functional organization of the lateral prefrontal cortex (PFC) in working memory continues to be fairly equivocal between two major frameworks: organization-by-process or organization-by-material. Although there is fairly strong evidence for organization-by-process models from event-related fMRI studies, some investigators argue that the nature of the stimulus material better defines the functional organization of the lateral PFC, particularly in more ventral regions (BA 47/45/44). Specifically, the anterior region of the ventrolateral PFC (BA 47/45) is hypothesized to subserve semantic processing while the posterior region (BA 44) may subserve phonological processing. In the current event-related fMRI study, we directly compared process-related versus material-related organizational principles in a verbal working memory task. Subjects performed a modified delayed response task in which they (1) retained a list of five words or five nonwords during the delay period ("maintenance"), or (2) performed a semantic (size reordering) or phonological (alphabetical reordering) task on the word or nonword lists, respectively ("manipulation"). We did not find evidence during the delay period of our task to support claims of anterior-posterior specializations in the ventrolateral PFC for semantic versus phonological processing. Subjects did, however, display greater neuronal activity during the delay period of manipulation trials than maintenance trials in both the dorsolateral PFC and posterior ventrolateral regions. These data are more consistent with the process model of the organization of lateral PFC in verbal working memory.  相似文献   

9.
The functional interplay between hemispheres is fundamental for behavioral, cognitive, and emotional control. Anorexia nervosa (AN) and bulimia nervosa (BN) have been largely studied with brain magnetic resonance imaging (MRI) in relation to the functional mechanisms of high‐level processing, but not in terms of possible inter‐hemispheric functional connectivity anomalies. Using resting‐state functional MRI (fMRI), voxel‐mirrored homotopic connectivity (VMHC) and regional inter‐hemispheric spectral coherence (IHSC) were studied in 15 AN and 13 BN patients and 16 healthy controls (HC). Using T1‐weighted and diffusion tensor imaging MRI scans, regional VMHC values were correlated with the left‐right asymmetry of corresponding homotopic gray matter volumes and with the white matter callosal fractional anisotropy (FA). Compared to HC, AN patients exhibited reduced VMHC in cerebellum, insula, and precuneus, while BN patients showed reduced VMHC in dorso‐lateral prefrontal and orbito‐frontal cortices. The regional IHSC analysis highlighted that the inter‐hemispheric functional connectivity was higher in the ‘Slow‐5’ band in all regions except the insula. No group differences in left–right structural asymmetries and in VMHC vs. callosal FA correlations were significant in the comparisons between cohorts. These anomalies, not explained by structural changes, indicate that AN and BN, at least in their acute phase, are associated with a loss of inter‐hemispheric connectivity in regions implicated in self‐referential, cognitive control and reward processing. These findings may thus gather novel functional markers to explore aberrant features of these eating disorders.  相似文献   

10.
Reward sensitivity, or the tendency to engage in motivated approach behavior in the presence of rewarding stimuli, may be a contributory factor for vulnerability to disinhibitory behaviors. Although evidence exists for a reward sensitivity‐related increased response in reward brain areas (i.e. nucleus accumbens or midbrain) during the processing of reward cues, it is unknown how this trait modulates brain connectivity, specifically the crucial coupling between the nucleus accumbens, the midbrain, and other reward‐related brain areas, including the medial orbitofrontal cortex and the amygdala. Here, we analysed the relationship between effective connectivity and personality in response to anticipatory reward cues. Forty‐four males performed an adaptation of the Monetary Incentive Delay Task and completed the Sensitivity to Reward scale. The results showed the modulation of reward sensitivity on both activity and functional connectivity (psychophysiological interaction) during the processing of incentive cues. Sensitivity to reward scores related to stronger activation in the nucleus accumbens and midbrain during the processing of reward cues. Psychophysiological interaction analyses revealed that midbrain–medial orbitofrontal cortex connectivity was negatively correlated with sensitivity to reward scores for high as compared with low incentive cues. Also, nucleus accumbens–amygdala connectivity correlated negatively with sensitivity to reward scores during reward anticipation. Our results suggest that high reward sensitivity‐related activation in reward brain areas may result from associated modulatory effects of other brain regions within the reward circuitry.  相似文献   

11.
Mindfulness meditation has been shown to promote emotional stability. Moreover, during the processing of aversive and self-referential stimuli, mindful awareness is associated with reduced medial prefrontal cortex (MPFC) activity, a central default mode network (DMN) component. However, it remains unclear whether mindfulness practice influences functional connectivity between DMN regions and, if so, whether such impact persists beyond a state of meditation. Consequently, this study examined the effect of extensive mindfulness training on functional connectivity within the DMN during a restful state. Resting-state data were collected from 13 experienced meditators (with over 1000 h of training) and 11 beginner meditators (with no prior experience, trained for 1 week before the study) using functional magnetic resonance imaging (fMRI). Pairwise correlations and partial correlations were computed between DMN seed regions’ time courses and were compared between groups utilizing a Bayesian sampling scheme. Relative to beginners, experienced meditators had weaker functional connectivity between DMN regions involved in self-referential processing and emotional appraisal. In addition, experienced meditators had increased connectivity between certain DMN regions (e.g. dorso-medial PFC and right inferior parietal lobule), compared to beginner meditators. These findings suggest that meditation training leads to functional connectivity changes between core DMN regions possibly reflecting strengthened present-moment awareness.  相似文献   

12.
OBJECTIVE: To use functional magnetic resonance imaging (fMRI) to investigate functional connectivity, and hence, underlying neural networks, in never-treated, first-episode patients with schizophrenia using a word fluency paradigm known to activate prefrontal, anterior cingulate, and thalamic regions. Abnormal connectivity between the prefrontal cortex (PFC) and other brain regions has been demonstrated in chronic, medicated patients in previous positron emission tomography (PET) studies, but has not to our knowledge, previously been demonstrated using both first-episode, drug-na?ve patients and fMRI technology. METHODS: A 4.0-Tesla (T) fMRI was used to examine activation and functional connectivity [psychophysiological interactions (PPIs)] during a word fluency task compared to silent reading in 10 never-treated, first-episode patients with schizophrenia and 10 healthy volunteers of comparable age, sex, handedness, and parental education. RESULTS: Compared to healthy volunteers, the schizophrenia patient group exhibited less activation during the word fluency task, mostly in the right anterior cingulate and prefrontal regions. Psychophysiological interactions between right anterior cingulate and other parts of the brain revealed a localized interaction with the left temporal lobe in healthy volunteers during the task and a widespread unfocussed interaction in patients. CONCLUSION: These findings suggest anterior cingulate involvement in the neuronal circuitry underlying schizophrenia.  相似文献   

13.
Goal-directed behavior lowers activity in brain areas that include the medial frontal cortex, the medial and lateral parietal cortex, and limbic and paralimbic brain regions, commonly referred to as the "default network." These activity decreases are believed to reflect the interruption of processes that are ongoing when the mind is in a restful state. Previously, the nature of these processes was probed by varying cognitive task parameters, but the presence of emotional processes, while often assumed, was little investigated. With fMRI, we studied the effect of systematic variations of both cognitive load and emotional stimulus connotation on task-related decreases in the default network by employing an auditory working memory (WM) task with musical sounds. The performance of the WM task, compared to passive listening, lowered the activity in medial and lateral, prefrontal, parietal, temporal, and limbic regions. In a subset of these regions, the magnitude of decrease depended on the memory load; the greater the cognitive load, the larger the magnitude of the observed decrease. Furthermore, in the right amygdala and the left precuneus, areas previously associated with processing of unpleasant dissonant musical sounds, there was an interaction between the experimental condition and the stimulus type. The current results are consistent with the previously reported effect of task difficulty on task-related brain activation decreases. The results also indicate that task-related decreases may be further modulated by the emotional stimulus connotation.  相似文献   

14.
BACKGROUND: The ventromedial prefrontal cortex (VMPFC) is a region implicated in the assessment of the rewarding potential of stimuli and may be dysfunctional in major depressive disorder (MDD). The few studies examining prefrontal cortical responses to emotive stimuli in MDD have indicated increased VMPFC responses to pleasant images but decreased responses to sad mood provocation when compared with healthy individuals. We wished to corroborate these results by examining neural responses to personally relevant happy and sad stimuli in MDD and healthy individuals within the same paradigm. METHODS: Neural responses to happy and sad emotional stimuli (autobiographical memory prompts and congruent facial expressions) were measured using blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) in MDD (n = 12) and healthy (n = 12) individuals. RESULTS: Increased and decreased responses in VMPFC were observed in MDD and healthy individuals, respectively, to happy stimuli, whereas the pattern was reversed for MDD and healthy individual responses to sad stimuli. These findings were not explained by medication effects in depressed individuals. CONCLUSIONS: These findings indicate a double dissociation of the pattern of VMPFC response to happy and sad stimuli in depressed and healthy individuals and suggest abnormal reward processing in MDD.  相似文献   

15.
Neuroimaging studies have reported increased prefrontal cortex (PFC) activity during temporal context retrieval versus recognition memory. However, it remains unclear if these activations reflect PFC contributions to domain-general executive control processes or domain-specific retrieval processes. To gain a better understanding of the functional roles of these various PFC regions during temporal context retrieval we propose it is necessary to examine PFC activity across tasks from different domains, in which parallel manipulations are included targeting specific cognitive processes. In the current fMRI study, we examined domain-general and domain-specific PFC contributions to temporal context retrieval by increasing stimulus (but maintaining response number) and increasing response number (but maintaining stimulus number) across temporal context memory and ordering control tasks, for faces. The control task required subjects to order faces from youngest to oldest. Our behavioral results indicate that the combination of increased stimulus and response numbers significantly increased task difficulty for temporal context retrieval and ordering tasks. Across domains, increasing stimulus number, while maintaining response numbers, caused greater right lateral premotor cortex (BA 6/8) activity; whereas increasing response number, while maintaining stimulus number, caused greater domain-general left DLPFC (BA 9) and VLPFC (BA 44/45) activity. In addition, we found domain-specific right DLPFC (BA 9) activity only during retrieval events. These results highlight the functional heterogeneity of frontal cortex, and suggest its involvement in temporal context retrieval is related to its role in various cognitive control processes.  相似文献   

16.
Participants with mild cognitive impairment (MCI) have a higher likelihood of developing Alzheimer's disease (AD) compared to those without MCI, and functional magnetic resonance neuroimaging (fMRI) used with MCI participants may prove to be an important tool in identifying early biomarkers for AD. We tested the hypothesis that functional connectivity differences exist between older adults with and without MCI using resting-state fMRI. Data were collected on over 200 participants of the Rush Memory and Aging Project, a community-based, clinical-pathological cohort study of aging. From the cohort, 40 participants were identified as having MCI, and were compared to 40 demographically matched participants without cognitive impairment. MCI participants showed lesser functional connectivity between the posterior cingulate cortex and right and left orbital frontal, right middle frontal, left putamen, right caudate, left superior temporal, and right posterior cingulate regions; and greater connectivity with right inferior frontal, left fusiform, left rectal, and left precentral regions. Furthermore, in an alternate sample of 113, connectivity values in regions of difference correlated with episodic memory and processing speed. Results suggest functional connectivity values in regions of difference are associated with cognitive function and may reflect the presence of AD pathology and increased risk of developing clinical AD.  相似文献   

17.
Several lines of evidence suggest that the lateral prefrontal cortex (PFC), the dorsal anterior cingulate cortex (dACC), the parietal cortex, and the thalamus are central cortical nodes in a network underlying cognitive control. However, the role of catecholamine producing midbrain and brainstem structures has rarely been addressed by functional magnetic resonance imaging (fMRI). We hypothesized differential activation patterns in the ventral tegmental area (VTA)/substantia nigra (SN) and locus coeruleus (LC) with respect to the degree of cognitive control during a Stroop task in healthy subjects. Forty‐five healthy subjects were investigated by the manual version of the Stroop task in an event‐related fMRI design. We observed significant BOLD activation of both the SN/VTA and LC during the Stroop interference condition (incongruent vs. congruent condition). LC, but not SN/VTA activation significantly correlated with the Stroop interference. Interestingly, a significant linear decrease in BOLD activation during the incongruent condition during the experiment was mainly observed in the fronto‐cingulo‐striatal network, but not in SN/VTA and LC. Using psychophysiological (PPI) analyses, a significant functional connectivity during cognitive control was observed between SN/VTA and the nigrostriatal/mesolimbic dopaminergic system. For the LC, distinct functional connectivity pattern was observed mainly to the dorsolateral and ventrolateral PFC. Both regions revealed significant functional connectivity to the dACC, parietal and occipital regions. Thus, we demonstrate for the first time that functional activation patterns in the SN/VTA and the LC are modulated by different demands of cognitive control. In addition, these nuclei exhibit distinguishable functional connectivity patterns to cortical brain networks. Hum Brain Mapp 37:2305–2318, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
Abstract

Objectives. Emotional dysregulation in bipolar disorder is thought to arise from dysfunction within prefrontal cortical regions involved in cognitive control coupled with increased or aberrant activation within regions engaged in emotional processing. The aim of this study was to determine the common and distinct patterns of functional brain abnormalities during reward and working memory processing in patients with bipolar disorder. Methods. Participants were 36 euthymic bipolar disorder patients and 37 healthy comparison subjects matched for age, sex and IQ. Functional magnetic resonance imaging (fMRI) was conducted during the Iowa Gambling Task (IGT) and the n-back working memory task. Results. During both tasks, patients with bipolar disorder demonstrated a pattern of inefficient engagement within the ventral frontopolar prefrontal cortex with evidence of segregation along the medial-lateral dimension for reward and working memory processing, respectively. Moreover, patients also showed greater activation in the anterior cingulate cortex during the Iowa Gambling Task and in the insula during the n-back task. Conclusions. Our data implicate ventral frontopolar dysfunction as a core abnormality underpinning bipolar disorder and confirm that overactivation in regions involved in emotional arousal is present even in tasks that do not typically engage emotional systems.  相似文献   

19.
BACKGROUND: Nicotine in tobacco smoke can improve functioning in multiple cognitive domains. High rates of smoking among schizophrenic patients may reflect an effort to remediate cognitive dysfunction. Our primary aim was to determine whether nicotine improves cognitive function by facilitating activation of brain regions mediating task performance or by facilitating functional connectivity. METHODS: Thirteen smokers with schizophrenia and 13 smokers with no mental illness were withdrawn from tobacco and underwent functional magnetic resonance imaging (fMRI) scanning twice, once after placement of a placebo patch and once after placement of a nicotine patch. During scanning, subjects performed an n-back task with two levels of working memory load and of selective attention load. RESULTS: During the most difficult (dichotic 2-back) task condition, nicotine improved performance of schizophrenic subjects and worsened performance of control subjects. Nicotine also enhanced activation of a network of regions, including anterior cingulate cortex and bilateral thalamus, and modulated thalamocortical functional connectivity to a greater degree in schizophrenic than in control subjects during dichotic 2-back task performance. CONCLUSIONS: In tasks that tax working memory and selective attention, nicotine may improve performance in schizophrenia patients by enhancing activation of and functional connectivity between brain regions that mediate task performance.  相似文献   

20.
Interregional correlations between blood oxygen level dependent (BOLD) magnetic resonance imaging (fMRI) signals in the resting state have been interpreted as measures of connectivity across the brain. Here we investigate whether such connectivity in the working memory and default mode networks is modulated by changes in cognitive load. Functional connectivity was measured in a steady-state verbal identity N-back task for three different conditions (N = 1, 2, and 3) as well as in the resting state. We found that as cognitive load increases, the functional connectivity within both the working memory the default mode network increases. To test whether functional connectivity between the working memory and the default mode networks changed, we constructed maps of functional connectivity to the working memory network as a whole and found that increasingly negative correlations emerged in a dorsal region of the posterior cingulate cortex. These results provide further evidence that low frequency fluctuations in BOLD signals reflect variations in neural activity and suggests interaction between the default mode network and other cognitive networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号