首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Increased thermal perceptions that affect comfort are a leading reason for intolerance to wearing respiratory protective equipment. Despite their popularity and use for decades, relatively little is known about the thermal burden imposed by the use of N95 filtering facepiece respirators (FFR) at normal work rates. Twenty healthy subjects exercised at a low-moderate work rate for 1 and 2 h while wearing four models of N95 FFR (two with an exhalation valve) as core and skin temperatures were monitored wirelessly. N95 FFR use resulted in non-significant minimal increases in core temperature and uncovered facial skin (cheek) temperatures. Facial skin temperature under the FFR was significantly increased over baseline values (P < 0.001). Wearing N95 FFR for up to 2 h at a low-moderate work rate does not impose a significant thermal burden on core temperature and uncovered facial skin temperature but significantly increases the temperature of the facial skin that is covered by the FFR. Perceptions of increased body heat when wearing N95 FFR under the test conditions are likely not due to effects on core temperature but may relate more to warming of the facial skin covered by the respirator and warming of the inspired air.  相似文献   

3.
The objective of this study was to determine the effect of several simulated air environmental conditions on the particle penetration and the breathing resistance of two N95 filtering facepiece respirator (FFR) models. The particle penetration and breathing resistance of the respirators were evaluated in a test system developed to mimic inhalation and exhalation breathing while relative humidity and temperature were modified. Breathing resistance was measured over 120 min using a calibrated pressure transducer under four different temperature and relative humidity conditions without aerosol loading. Particle penetration was evaluated before and after the breathing resistance test at room conditions using a sodium chloride aerosol measured with a scanning mobility particle sizer. Results demonstrated that increasing relative humidity and lowering external temperature caused significant increases in breathing resistance (p < 0.001). However, these same conditions did not influence the penetration or most penetrating particle size of the tested FFRs. The increase in breathing resistance varied by FFR model suggesting that some FFR media are less influenced by high relative humidity.  相似文献   

4.
This study investigated the filtration performance of NIOSH-approved N95 and P100 filtering facepiece respirators (FFR) against six different monodisperse silver aerosol particles in the range of 4-30 nm diameter. A particle test system was developed and standardized for measuring the penetration of monodisperse silver particles. For respirator testing, five models of N95 and two models of P100 filtering facepiece respirators were challenged with monodisperse silver aerosol particles of 4, 8, 12, 16, 20, and 30 nm at 85 L/min flow rate and percentage penetrations were measured. Consistent with single-fiber filtration theory, N95 and P100 respirators challenged with silver monodisperse particles showed a decrease in percentage penetration with a decrease in particle diameter down to 4 nm. Penetrations less than 1 particle/30 min for 4-8 nm particles for one P100 respirator model, and 4-12 nm particles for the other P100 model, were observed. Experiments were also carried out with larger than 20 nm monodisperse NaCl particles using a TSI 3160 Fractional Efficiency Tester. NaCl aerosol penetration levels of 20 nm and 30 nm (overlapping sizes) particles were compared with silver aerosols of the same sizes by a three-way ANOVA analysis. A significant (p < 0.001) difference between NaCl and silver aerosol penetration levels was obtained after adjusting for particle sizes and manufacturers. A significant (p = 0.001) interaction with manufacturers indicated the difference in NaCl, and silver aerosol penetrations were not the same across manufacturers. The two aerosols had the same effect across 20 nm and 30 nm sizes as shown by the absence of any significant (p = 0.163) interaction with particle sizes. In the case of P100 FFRs, a significant (p < 0.001) difference between NaCl and silver aerosol (20 nm and 30 nm) penetrations was observed for both respirator models tested. The filtration data for 4-30 nm monodisperse particles supports previous studies that indicate NIOSH-approved air-purifying respirators provide expected levels of filtration protection against nanoparticles.  相似文献   

5.
A new system was used to determine the workplace protection factors (WPF) for dust and bioaerosols in agricultural environments. The field study was performed with a subject wearing an N95 filtering facepiece respirator while performing animal feeding, grain harvesting and unloading, and routine investigation of facilities. As expected, the geometric means (GM) of the WPFs increased with increasing particle size ranging from 21 for 0.7-1 microm particles to 270 for 5-10 microm particles (p < 0.001). The WPF for total culturable fungi (GM = 35) was significantly greater than for total culturable bacteria (GM = 9) (p = 0.01). Among the different microorganism groups, the WPFs of Cladosporium, culturable fungi, and total fungi were significantly correlated with the WPFs of particles of the same sizes. As compared with the WPFs for dust particles, the WPFs for bioaerosols were found more frequently below 10, which is a recommended assigned protection factor (APF) for N95 filtering facepiece respirators. More than 50% of the WPFs for microorganisms (mean aerodynamic diameter < 5 microm) were less than the proposed APF of 10. Even lower WPFs were calculated after correcting for dead space and lung deposition. Thus, the APF of 10 for N95 filtering facepiece respirators seems inadequate against microorganisms (mean aerodynamic size < 5 microm). These results provide useful pilot data to establish guidelines for respiratory protection against airborne dust and microorganisms on agricultural farms. The method is a promising tool for further epidemiological and intervention studies in agricultural and other similar occupational and nonoccupational environments.  相似文献   

6.
OBJECTIVES: We have recently developed a new personal sampling system for the real-time measurement of the protection provided by respirators against airborne dust and micro-organisms. The objective of this study was to evaluate the performance characteristics of the new sampling system in both laboratory and field conditions. METHODS: The measurements were conducted using the N95 filtering facepiece respirators and the newly developed personal sampling system put on a manikin (laboratory study) or donned by a human subject (laboratory and field studies). Two inhalation flow rates (0 and 40 l min(-1)) in conjunction with the sampling flow rate (10 l min(-1)) were tested in the manikin-based experiments to investigate the effects of the leak location (nose, cheek and chin) and the depth of the sampling probe (0, 5, 10 and 15 mm) within the respirator. The effect of human activity on the protection factor was evaluated using a variety of head movements and breathing patterns when a human subject wore the respirator in a room-size laboratory test chamber. The field study was conducted during corn harvesting with a respirator worn by a human subject on a combine. RESULTS: There was no significant difference in the protection factors for different leak locations, or for sampling probe depths, when the inhalation rate was 0 l min(-1). For the inhalation rate of 40 l min(-1), the protection factors for nose leaks were higher than those for chin and cheek leaks. Furthermore, the protection factor was the lowest and showed the least variation when the sampling probe depth was equal to 0 mm (imbedded on the respirator surface). Human subject testing showed that the grimace maneuver decreased the protection factor and changed the original respirator fit. The protection factor during breath holding was lower than that found during inhalation and exhalation. Field results showed greater variation than laboratory results. CONCLUSIONS: The newly designed personal sampling system efficiently detected the changes in protection factors in real time. The sampling flow was least affected by the inhalation flow when the sampling probe was imbedded on the respirator surface. Leak location, breathing patterns and exercises did affect the measurement of the protection factors obtained using an N95 filtering facepiece respirator. This can be attributed to the differences in the in-mask airflow dynamics contributed by the leak, filter material, sampling probe and inhalation. In future studies, it would be beneficial if the laboratory data could be integrated with the field database.  相似文献   

7.
Current regulations require annual fit testing before an employee can wear a respirator during work activities. The goal of this research is to determine whether respirator fit measured with two TSI Portacount instruments simultaneously sampling ambient particle concentrations inside and outside of the respirator facepiece is similar to fit measured during an ambient aerosol condensation nuclei counter quantitative fit test.

Sixteen subjects (ten female; six male) were recruited for a range of facial sizes. Each subject donned an N95 filtering facepiece respirator, completed two fit tests in random order (ambient aerosol condensation nuclei counter quantitative fit test and two-instrument real-time fit test) without removing or adjusting the respirator between tests. Fit tests were compared using Spearman's rank correlation coefficients.

The real-time two-instrument method fit factors were similar to those measured with the single-instrument quantitative fit test. The first four exercises were highly correlated (r > 0.7) between the two protocols. Respirator fit was altered during the talking or grimace exercise, both of which involve facial movements that could dislodge the facepiece.

Our analyses suggest that the new real-time two-instrument methodology can be used in future studies to evaluate fit before and during work activities.  相似文献   


8.
N95 particulate filtering facepiece respirators are certified by measuring penetration levels photometrically with a presumed severe case test method using charge neutralized NaCl aerosols at 85 L/min. However, penetration values obtained by photometric methods have not been compared with count-based methods using contemporary respirators composed of electrostatic filter media and challenged with both generated and ambient aerosols. To better understand the effects of key test parameters (e.g., particle charge, detection method), initial penetration levels for five N95 model filtering facepiece respirators were measured using NaCl aerosols with the aerosol challenge and test equipment employed in the NIOSH respirator certification method (photometric) and compared with an ultrafine condensation particle counter method (count based) for the same NaCl aerosols as well as for ambient room air particles. Penetrations using the NIOSH test method were several-fold less than the penetrations obtained by the ultrafine condensation particle counter for NaCl aerosols as well as for room particles indicating that penetration measurement based on particle counting offers a more difficult challenge than the photometric method, which lacks sensitivity for particles < 100 nm. All five N95 models showed the most penetrating particle size around 50 nm for room air particles with or without charge neutralization, and at 200 nm for singly charged NaCl monodisperse particles. Room air with fewer charged particles and an overwhelming number of neutral particles contributed to the most penetrating particle size in the 50 nm range, indicating that the charge state for the majority of test particles determines the MPPS. Data suggest that the NIOSH respirator certification protocol employing the photometric method may not be a more challenging aerosol test method. Filter penetrations can vary among workplaces with different particle size distributions, which suggests the need for the development of new or revised "more challenging" aerosol test methods for NIOSH certification of respirators.  相似文献   

9.
A method for performing quantitative fit tests (QNFT) with N95 filtering facepiece respirators was developed by earlier investigators. The method employs a simple clamping device to allow the penetration of submicron aerosols through N95 filter media to be measured. The measured value is subtracted from total penetration, with the assumption that the remaining penetration represents faceseal leakage. The developers have used the clamp to assess respirator performance. This study evaluated the clamp's ability to measure filter penetration and determine fit factors. In Phase 1, subjects were quantitatively fit-tested with elastomeric half-facepiece respirators using both generated and ambient aerosols. QNFT were done with each aerosol with both P100 and N95 filters without disturbing the facepiece. In Phase 2 of the study elastomeric half facepieces were sealed to subjects' faces to eliminate faceseal leakage. Ambient aerosol QNFT were performed with P100 and N95 filters without disturbing the facepiece. In both phases the clamp was used to measure N95 filter penetration, which was then subtracted from total penetration for the N95 QNFT. It was hypothesized that N95 fit factors corrected for filter penetration would equal the P100 fit factors. Mean corrected N95 fit factors were significantly different from the P100 fit factors in each phase of the study. In addition, there was essentially no correlation between corrected N95 fit factors and P100 fit factors. It was concluded that the clamp method should not be used to fit-test N95 filtering facepieces or otherwise assess respirator performance.  相似文献   

10.
11.
During July 1995 the National Institute for Occupational Safety and Health (NIOSH) began to certify nine new classes of particulate respirators. To determine the level of performance of these respirators, NIOSH researchers conducted a study to (1) measure the simulated workplace performance of 21 N95 respirator models, (2) determine whether fit-testing affected the performance, and (3) investigate the effect of varying fit-test pass/fail criteria on respirator performance. The performance of each respirator model was measured by conducting 100 total penetration tests. The performance of each respirator model was then estimated by determining the 95th percentile of the total penetration through the respirator (i.e., 95% of wearers of that respirator can expect to have a total penetration value below the 95th percentile penetration value). The 95th percentile of total penetrations for each respirator without fit-testing ranged from 6 to 88%. The 95th percentile of total penetrations for all the respirators combined was 33%, which exceeds the amount of total penetration (10%) normally expected of a half-mask respirator. When a surrogate fit test (1% criterion) was applied to the data, the 95th percentile of total penetrations for each respirator decreased to 1 to 16%. The 95th percentile of total penetrations for all the respirators combined was only 4%. Therefore, fit-testing of N95 respirators is necessary to ensure that the user receives the expected level of protection. The study also found that respirator performance was dependent on the value of the pass/fail criterion used in the surrogate fit-test.  相似文献   

12.
National Institute for Occupational Safety and Health recommends the use of particulate respirators for protection against nanoparticles (<100 nm size). Protection afforded by a filtering facepiece particulate respirator is a function of the filter efficiency and the leakage through the face-to-facepiece seal. The combination of particle penetration through filter media and particle leakage through face seal and any component interfaces is considered as total inward leakage (TIL). Although the mechanisms and extent of nanoparticle penetration through filter media have been well documented, information concerning nanoparticle leakage through face seal is lacking. A previous study in our laboratory measured filter penetration and TIL for specific size particles. The results showed higher filter penetration and TIL for 50 nm size particles, i.e. the most penetrating particle size (MPPS) than for 8 and 400 nm size particles. To better understand the significance of particle penetration through filter media and through face seal leakage, this study was expanded to measure filter penetration at sealed condition and TIL with artificially introduced leaks for 20-800 nm particles at 8-40 l minute volumes for four N95 models of filtering facepiece respirators (FFRs) using a breathing manikin. Results showed that the MPPS was ~45 nm for all four respirator models. Filter penetration for 45 nm size particles was significantly (P < 0.05) higher than the values for 400 nm size particles. A consistent increase in filter penetrations for 45 and 400 nm size particles was obtained with increasing breathing minute volumes. Artificial leakage of test aerosols (mode size ~75 nm) through increasing size holes near the sealing area of FFRs showed higher TIL values for 45 nm size particles at different minute volumes, indicating that the induced leakage allows the test aerosols, regardless of particle size, inside the FFR, while filter penetration determines the TIL for different size particles. TIL values obtained for 45 nm size particles were significantly (P < 0.05) higher than the values obtained for 400 nm size particles for all four models. Models with relatively small filter penetration values showed lower TIL values than the models with higher filter penetrations at smaller leak sizes indicating the dependence of TIL values on filter penetration. When the electrostatic charge was removed, the FFRs showed a shift in the MPPS to ~150 nm with the same test aerosols (mode size ~75 nm) at different hole sizes and breathing minute volumes, confirming the interaction between filter penetration and face seal leakage processes. The shift in the MPPS from 45 to 150 nm for the charge removed filters indicates that mechanical filters may perform better against nanoparticles than electrostatic filters rated for the same filter efficiency. The results suggest that among the different size particles that enter inside the N95 respirators, relatively high concentration of the MPPS particles in the breathing zone of respirators can be expected in workplaces with high concentration of nanoparticles. Overall, the data obtained in the study suggest that good fitting respirators with lower filter penetration values would provide better protection against nanoparticles.  相似文献   

13.
Filtering facepiece respirators (FFRs) are recommended for use as precautions against airborne pathogenic microorganisms; however, during pandemics demand for FFRs may far exceed availability. Reuse of FFRs following decontamination has been proposed but few reported studies have addressed the feasibility. Concerns regarding biocidal efficacy, respirator performance post decontamination, decontamination cost, and user safety have impeded adoption of reuse measures. This study examined the effectiveness of three energetic decontamination methods [ultraviolet germicidal irradiation (UVGI), microwave-generated steam, and moist heat] on two National Institute for Occupational Safety and Health-certified N95 FFRs (3M models 1860s and 1870) contaminated with H5N1. An aerosol settling chamber was used to apply virus-laden droplets to FFRs in a method designed to simulate respiratory deposition of droplets onto surfaces. When FFRs were examined post decontamination by viral culture, all three decontamination methods were effective, reducing virus load by > 4 log median tissue culture infective dose. Analysis of treated FFRs using a quantitative molecular amplification assay (quantitative real-time polymerase chain reaction) indicated that UVGI decontamination resulted in lower levels of detectable viral RNA than the other two methods. Filter performance was evaluated before and after decontamination using a 1% NaCl aerosol. As all FFRs displayed <5% penetration by 300-nm particles, no profound reduction in filtration performance was caused in the FFRs tested by exposure to virus and subsequent decontamination by the methods used. These findings indicate that, when properly implemented, these methods effectively decontaminate H5N1 on the two FFR models tested and do not drastically affect their filtering function; however, other considerations may influence decisions to reuse FFRs.  相似文献   

14.
The purpose of this manikin-based study was to determine the percentage penetrations of nine CE-marked filtering facepiece respirator models (two samples from each) from filtering classes FFP1, FFP2, and FFP3 and to demonstrate by an independent measurement method the disadvantages and shortcomings of the currently valid European Norm (EN 149:2001) for filtering facepieces. All of the filtering facepieces were evaluated size-selectively in an experimental chamber using charge-neutralized monodisperse ammonium sulfate in 9 sizes ranging from 20–400 nm of count median diameter (CMD) under flowrate of 95 L/min. The results were then compared to the previous study concerning penetrations of 47-mm diameter filters cut from the filtering material of identical filtering facepieces. Although these two experimental methods for measuring penetrations of filtering materials from filtering facepieces are in good agreement (R2 = 0.91), the results show within-respirator variations in all three filtering classes (5.5–19.3% for all FFRs in FFP1, 2.8–8.5% in FFP2, and 0.1–2.8% in FFP3). The most penetrating particle size (MPPS) in this study was found to be in the range of 25–65 nm (CMD), which is in agreement with the range of 30–60 nm found in the previous study. Moreover, 7 out of 9 FFR models reached higher penetrations from manikin-based respirator measurements than during measurements of filters from the respective respirators. Furthermore, penetration levels increased up to ~50% when the respirator was not sealed around the face of the manikin, indicating that the real protection level provided by these filtering facepieces may be even lower if the respirator does not fit perfectly. Considering that poor filtration efficiency and poor fit may increase under real work conditions, the particle penetration is even higher than was found in this study. Therefore, the CE-marked respirators examined in this study may not be efficient in providing the expected level of protection for workers exposed to nanoparticles.  相似文献   

15.
目的 研究N95过滤式防尘口罩的防护效果与使用者对口罩主观评价的关系.方法 选取市场上销售的2个品牌共4种防尘口罩(A1、A2、B1、B2),测试其过滤效率和吸气阻力.根据国人头面二元分栏选取50名测试者,采用核凝计数器法进行4种口罩的密合性测试,并问卷调查测试者佩戴口罩时的主观感受.结果 4种防尘口罩材质的过滤效率和吸气阻力均符合国家标准GB 2626-2006中关于N95防尘口罩的相关规定.4种口罩适合因数的几何均值(GMFF)分别为20.9、14.6、74.0和49.1,两两比较的差异有统计学意义(P<0.05),密合测试的通过率分别为4%、4%、42%和20%,密合性能均较差,A1和A2两种口罩通过率不到10%.佩戴者对实验口罩呼吸阻力主观感受的差异无统计学意义(P>0.05).B类口罩与面部吻合程度优于A类口罩,折叠状口罩舒适性高于杯状口罩,差异均有统计学意义(P<0.05).佩戴者对实验口罩漏气情况的主观评价与客观检测结果的一致性不好,kappa值为0.067(95%CI:-0.029~0.163,P=0.18),一致率为50.00%.结论 国内市场上N95过滤式防尘口罩普遍存在密合性较差的问题,应根据国人头面特征进行改进.同时,接尘工人在选择防尘口罩时应依据密合性测试结果而非个人主观判断.  相似文献   

16.
17.
Nanoparticle (<100 nm size) exposure in workplaces is a major concern because of the potential impact on human health. National Institute for Occupational Safety and Health (NIOSH)-approved particulate respirators are recommended for protection against nanoparticles based on their filtration efficiency at sealed conditions. Concerns have been raised on the lack of information for face seal leakage of nanoparticles, compromising respiratory protection in workplaces. To address this issue, filter penetration and total inward leakage (TIL) through artificial leaks were measured for NIOSH-approved N95 and P100 and European certified Conformit'e Europe'en-marked FFP2 and FFP3 filtering facepiece respirator models sealed to a breathing manikin kept inside a closed chamber. Monodisperse sucrose aerosols (8-80 nm size) generated by electrospray or polydisperse NaCl aerosols (20-1000 nm size) produced by atomization were passed into the chamber. Filter penetration and TIL were measured at 20, 30, and 40 l min(-1) breathing flow rates. The most penetrating particle size (MPPS) was ~50 nm and filter penetrations for 50 and 100 nm size particles were markedly higher than the penetrations for 8 and 400 nm size particles. Filter penetrations increased with increasing flow rates. With artificially introduced leaks, the TIL values for all size particles increased with increasing leak sizes. With relatively smaller size leaks, the TIL measured for 50 nm size particles was ~2-fold higher than the values for 8 and 400 nm size particles indicating that the TIL for the most penetrating particles was higher than for smaller and larger size particles. The data indicate that higher concentration of nanoparticles could occur inside the breathing zone of respirators in workplaces where nanoparticles in the MPPS range are present, when leakage is minimal compared to filter penetration. The TIL/penetration ratios obtained for 400 nm size particles were larger than the ratios obtained for 50 nm size particles at the three different flow rates and leak sizes indicating that face seal leakage, not filter penetration, contributing to the TIL for larger size particles. Further studies on face seal leakage of nanoparticles for respirator users in workplaces are needed to better understand the respiratory protection against nanoparticle exposure.  相似文献   

18.
Contact transmission of pathogens from personal protective equipment is a concern within the healthcare industry. During public health emergency outbreaks, resources become constrained and the reuse of personal protective equipment, such as N95 filtering facepiece respirators, may be needed. This study was designed to characterize the transfer of bacteriophage MS2 and fluorescein between filtering facepiece respirators and the wearer's hands during three simulated use scenarios. Filtering facepiece respirators were contaminated with MS2 and fluorescein in droplets or droplet nuclei. Thirteen test subjects performed filtering facepiece respirator use scenarios including improper doffing, proper doffing and reuse, and improper doffing and reuse. Fluorescein and MS2 contamination transfer were quantified. The average MS2 transfer from filtering facepiece respirators to the subjects' hands ranged from 7.6–15.4% and 2.2–2.7% for droplet and droplet nuclei derived contamination, respectively. Handling filtering facepiece respirators contaminated with droplets resulted in higher levels of MS2 transfer compared to droplet nuclei for all use scenarios (p = 0.007). MS2 transfer from droplet contaminated filtering facepiece respirators during improper doffing and reuse was greater than transfer during improper doffing (p = 0.008) and proper doffing and reuse (p = 0.042). Droplet contamination resulted in higher levels of fluorescein transfer compared to droplet nuclei contaminated filtering facepiece respirators for all use scenarios (p = 0.009). Fluorescein transfer was greater for improper doffing and reuse (p = 0.007) from droplet contaminated masks compared to droplet nuclei contaminated filtering facepiece respirators and for improper doffing and reuse when compared improper doffing (p = 0.017) and proper doffing and reuse (p = 0.018) for droplet contaminated filtering facepiece respirators. For droplet nuclei contaminated filtering facepiece respirators, the difference in MS2 and fluorescein transfer did not reach statistical significance when comparing any of the use scenarios. The findings suggest that the results of fluorescein and MS2 transfer were consistent and highly correlated across the conditions of study. The data supports CDC recommendations for using proper doffing techniques and discarding filtering facepiece respirators that are directly contaminated with secretions from a cough or sneeze.  相似文献   

19.
It is necessary to consider protective measures, such as dust respirators, against the inhalation of nanoparticle aerosols. Industrial hygienists and workers handling nanomaterials are concerned about the filteration performance of dust respirators in protecting against nanoparticles, the size of which is less than 100 nm. We developed a filteration performance evaluating system using titanium dioxide nanoparticle aerosols ranging from 15 to 220 nm in diameter. The system, which includes two models of DS1 class and four models of DS2 class, was used to measure the collection efficiencies of dust respirators. These tested dust respirators had been certified by the Japanese government. In the dust respirators, there were no samples that showed less collection efficiency than the standard certified collection efficiency (80% for DS1 and 95% for DS2).  相似文献   

20.
Protection of the human respiratory system from exposure to nanoparticles is becoming an emerging issue in occupational hygiene. The potential adverse health effects associated with particles of approximately 1-100 nm are probably greater than submicron or micron-sized particles. The performance of two models of N95 half-facepiece-filtering respirators against nano-sized particles was evaluated at two inhalation flow rates, 30 and 85 l min(-1), following a manikin-based protocol. The aerosol concentration was measured outside and inside the facepiece using the Wide-Range Particle Spectrometer. Sodium chloride particles, conventionally used to certify N-series respirators under NIOSH 42 CFR 84 regulations, were utilized as the challenge aerosol. The targeted particle sizes ranged from 10 to 600 nm, although the standard certification tests are performed with particles of approximately 300 nm, which is assumed to be the most penetrating size. The results indicate that the nanoparticle penetration through a face-sealed N95 respirator may be in excess of the 5% threshold, particularly at high respiratory flow rates. Thus, N95 respirators may not always provide the expected respiratory protection for workers. The highest penetration values representing the poorest respirator protection conditions were observed in the particle diameter range of approximately 30-70 nm. Based on the theoretical simulation, we have concluded that for respirators utilizing mechanical filters, the peak penetration indeed occurs at the particle diameter of approximately 300 nm; however, for pre-charged fiber filters, which are commonly used for N95 respirators, the peak shifts toward nano-sizes. This study has confirmed that the neutralization of particles is a crucial element in evaluating the efficiency of a respirator. The variability of the respirator's performance was determined for both models and both flow rates. The analysis revealed that the coefficient of variation of the penetration ranged from 0.10 to 0.54 for particles of 20-100 nm in diameter. The fraction of N95 respirators for which the performance test at 85 l min(-1) demonstrated excessive (>5%) penetration of nanoparticles was as high as 9/10. The test results obtained in a relatively small (0.096 m(3)) test chamber and in a large (24.3 m(3)) walk-in chamber were found essentially the same, thus, suggesting that laboratory-based evaluations have a good potential to adequately represent the respirator field performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号