首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang QG  Han D  Xu J  Lv Q  Wang R  Yin XH  Xu TL  Zhang GY 《Neuroscience》2006,143(2):431-444
Activation of Akt/protein kinase B has been recently reported to play an important role in ischemic tolerance. We here demonstrate that the decreased protein expression and phosphorylation of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) underlie the increased Akt-Ser-473 phosphorylation in the hippocampal CA1 subfield in ischemic preconditioning (IPC). Co-immunoprecipitation analysis reveals that Akt physically interacts with Rac1, a small Rho family GTPase required for mixed lineage kinase 3 (MLK3) autophosphorylation, and both this interaction and Rac1-Ser-71 phosphorylation induced by Akt are promoted in preconditioned rats. In addition, we show that Akt activation results in the disassembly of the plenty of SH3s (POSH)-MLK3-Rac1 signaling complex and down-regulation of the activation of MLK3/c-Jun N-terminal kinase (JNK) pathway. Akt activation results in decreased serine phosphorylation of 14-3-3, a cytoplasmic anchor of Bax, and prevents ischemia-induced mitochondrial translocation of Bax, release of cytochrome c, and activation of caspase-3. The expression of Fas ligand is also decreased in the CA1 region. Akt activation protects against apoptotic neuronal death as shown in TUNEL staining following IPC. Intracerebral infusion of LY294002 before IPC reverses the increase in Akt phosphorylation and the decrease in JNK signaling activation, as well as the neuroprotective action of IPC. Our results suggest that activation of pro-apoptotic MLK3/JNK3 cascade can be suppressed through activating anti-apoptotic phosphoinositide 3-kinase/Akt pathway induced by a sublethal ischemic insult, which provides a functional link between Akt and the JNK family of stress-activated kinases in ischemic tolerance.  相似文献   

2.
Many neutrophil functions are regulated by phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) that mediates protein membrane translocation via binding to pleckstrin homolog (PH) domains within target proteins. Here we show that inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), a cytosolic small molecule, bound the same PH domain of target proteins and competed for binding to PtdIns(3,4,5)P3. In neutrophils, chemoattractant stimulation triggered rapid elevation in Ins(1,3,4,5)P4 concentration. Depletion of Ins(1,3,4,5)P4 by deleting the gene encoding InsP3KB, which converts Ins(1,4,5)P3 to Ins(1,3,4,5)P4, enhanced membrane translocation of the PtdIns(3,4,5)P3-specific PH domain. This led to enhanced sensitivity to chemoattractant stimulation, elevated superoxide production, and enhanced neutrophil recruitment to inflamed peritoneal cavity. On the contrary, augmentation of intracellular Ins(1,3,4,5)P4 concentration blocked PH domain-mediated membrane translocation of target proteins and dramatically decreased the sensitivity of neutrophils to chemoattractant stimulation. These findings establish a role for Ins(1,3,4,5)P4 in cellular signal transduction pathways and provide another mechanism for modulating PtdIns(3,4,5)P3 signaling in neutrophils.  相似文献   

3.
Tumor necrosis factor receptor-associated factor 6 (TRAF6) plays a critical role in establishing both innate and acquired immune responses by mediating signals from the TNF superfamily, the TLR/IL-1R family, and the T-cell receptor. Here, we report a previously unidentified function of TRAF6 in IL-2 signaling. CD3/CD28 stimulation-induced proliferation and Il2 mRNA expression in Traf6(-/-) CD4(+) T cells were dramatically enhanced. This enhancement is likely due to hyperactive IL-2 signaling, in which activation of the Jak1-Erk pathway was enhanced and the subsequent Fos gene expression was up-regulated. To elucidate the molecular mechanisms of the enhanced activation of Jak1, IL-2 signaling was reconstituted in mouse embryonic fibroblast (MEF) cells to investigate the interaction between TRAF6 and the TRAF6-binding site that overlaps with the Jak1-binding site present in the IL-2R β-chain. The Jak1-Erk pathway was activated upon IL-2 stimulation in Traf6(-/-) MEF cells, while a β-chain mutation that inactivates TRAF6 binding but retains Jak1 binding abrogated the TRAF6-dependent reduction in IL-2 signaling. These results indicate that the binding of TRAF6 to the TRAF6-binding site of the β-chain negatively regulates IL-2-induced Jak1 activation, which is likely to be involved in the proper regulation of T-cell activation and development.  相似文献   

4.
5.
Protein phosphorylation is a major mechanism for the regulation of synaptic transmission. Previous studies have shown that several serine/threonine kinases are involved in the induction of long-term depression (LTD) at excitatory synapses on a Purkinje neuron (PN) in the cerebellum. Here, we show that Src-family protein tyrosine kinases (SFKs) are involved in the regulation of the LTD induction. Intracellular application of c-Src suppressed LTD. We also show that application of a SFK-selective inhibitor PP2 recovered LTD from the suppression caused by the inhibition of mGluR1 activity. These results indicate that SFKs negatively regulate the LTD induction at excitatory synapses on a cerebellar PN.  相似文献   

6.
Mast cells are granulated immune sentinels responsible for allergic inflammation. Allergen-induced FcεRI-signaling leads to rapid degranulation in the early-phase and sustained production and release of pro-inflammatory mediators in the late phase. Glycogen synthase kinase 3 (GSK3) is a constitutively active serine/threonine kinase and a central molecular convergence point for several pro-inflammatory pathways. GSK3 inhibition has been shown to reduce inflammation but has not yet been fully characterized in mast cell activation. Therefore, the objective of this study was to evaluate GSK3 as a putative therapeutic target in allergic inflammation using the GSK3 inhibitor, CHIR99021. Here, we found that GSK3 inhibition impaired ROS production and degranulation. Through modulation of MKK4-JNK, c-jun, and NF-κB signaling, GSK3 inhibition reduced the production/release of IL-6, IL-13, TNF, and CCL1, while only the release of CCL2 and CCL3 was impaired. Furthermore, CHIR99021-mediated GSK3 inhibition altered the pro-inflammatory phenotype of mast cells, reducing c-kit receptor levels. This implicated GSK3 in FcεRI signaling, reducing release of IL-6, TNF, and CCL1 when stimulated through FcεRI, while CCL2 and CCL3 remained unaffected, and were increased when stimulated with SCF only. These results identify GSK3 as a potential therapeutic target of utility warranting further consideration in contexts of pathological mast cell activation.  相似文献   

7.
β-arrestins 1 and 2 are ubiquitously expressed proteins that alter signalling by G-protein-coupled receptors. β-arrestin 2 plays an important role as a signalling adaptor and scaffold in regulating cellular inflammatory responses. We hypothesized that β-arrestin 2 is a critical modulator of inflammatory response in experimental sepsis. β-arrestin 2(−/−) and wild-type (WT) mice were subjected to caecal ligation and puncture (CLP). The survival rate was significantly decreased (P < 0·05) in β-arrestin 2(−/−) mice (13% survival) compared with WT mice (53% survival). A second group of mice were killed 18 hr after CLP for blood, peritoneal lavage and tissue sample collection. CLP-induced plasma interleukin (IL)-6 was significantly increased 25 ± 12 fold and caecal myeloperoxidase (MPO) activity was increased 2·4 ± 0·3 fold in β-arrestin 2(−/−) compared with WT mice. β-arrestin 2(−/−) mice exhibited more severe lung damage and higher bacterial loads compared with WT mice post CLP challenge as measured by histopathology and colony-forming unit count. In subsequent experiments, splenocytes, peritoneal macrophages and bone marrow-derived macrophages (BMDMs) were isolated and cultured from β-arrestin 2(−/−) and WT mice and stimulated in vitro with lipopolysaccharide (LPS). Tumour necrosis factor (TNF)-α, IL-6 and IL-10 production induced by LPS was significantly augmented (2·2 ± 0·2 fold, 1·8 ± 0·1 fold, and 2·2 ± 0·4 fold, respectively; P < 0·05) in splenocytes from β-arrestin 2(−/−) mice compared with WT mice. The splenocyte response was different from that of peritoneal macrophages or BMDMs, which exhibited no difference in TNF-α and IL-6 production upon LPS stimulation between WT and β-arrestin 2(−/−) mice. Our data demonstrate that β-arrestin 2 functions to negatively regulate the inflammatory response in polymicrobial sepsis.  相似文献   

8.
The expression of phosphatidylinositol-3 kinase in tumors and homologous tissues from 29 patients with lung cancer, 5 patients with lung metastases of various tumors, and some nontumorous pulmonary diseases was studied by Western blot analysis. The expression of phosphatidylinositol-3 kinase was increased in these tumors in comparison with histologically intact lung tissue in 5 patients with non-small-cell cancer. In 20 patients expression of phosphatidylinositol-3 kinase was the same as in homologous tissue and in 4 patients it was decreased. No relationship between phosphatidylinositol-3 kinase expression and clinical and morphological characteristics of lung cancer was revealed. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 130, No. 12, pp. 648–650, December, 2000  相似文献   

9.
The innate immune system surveys the extra- and intracellular environment for the presence of microbes. Among the intracellular sensors is a protein known as Nod2, a cytosolic protein containing a leucine-rich repeat domain. Nod2 is believed to play a role in determining host responses to invasive bacteria. A key element in upregulating host defense involves activation of the NF-kappaB pathway. It has been suggested through indirect studies that NF-kappaB-inducing kinase, or NIK, may be involved in Nod2 signaling. Here we have used macrophages derived from primary explants of bone marrow from wild-type mice and mice that either bear a mutation in NIK, rendering it inactive, or are derived from NIK-/- mice, in which the NIK gene has been deleted. We show that NIK binds to Nod2 and mediates induction of specific changes induced by the specific Nod2 activator, muramyl dipeptide, and that the role of NIK occurs in settings where both the Nod2 and TLR4 pathways are activated by their respective agonists. Specifically, we have linked NIK to the induction of the B-cell chemoattractant known as BLC and suggest that this chemokine may play a role in processes initiated by Nod2 activation that lead to improved host defense.  相似文献   

10.
BACKGROUND: The Janus family of protein tyrosine kinases (JAKs) regulate cellular processes involved in cell growth, differentiation and transformation through their association with cytokine receptors. We have recently identified the JAK-binding protein, JAB that inhibits various cytokine-dependent JAK signalling pathways. JAB inhibits JAK2 tyrosine kinase activity by binding to the kinase domain (JH1 domain) through the N-terminal kinase inhibitory region (KIR) and the SH2 domain. The SH2 domain of JAB has been shown to bind to the phosphorylated Y1007 in the activation loop of JH1. We also identified another JAK-binding protein, CIS3 (cytokine-inducible SH2-protein 3, or SOCS3) that inhibits signalling of various cytokines. However, the mechanism of JAK signal inhibition by CIS3 has not been clarified. RESULTS: We showed that endogenous CIS3 bound to JAK2 in intact cells. The CIS3-SH2 domain bound to the phosphorylated Y1007 of JH1, and inhibited tyrosine kinase activity through the N-terminal KIR. Therefore, CIS3 and JAB inhibit JAK2 tyrosine kinase activity by an essentially similar mechanism. However, we found that the affinity of the SH2 domain of CIS3 to Y1007 was weaker than that of JAB. In contrast, the KIR of CIS3 showed stronger potential for both binding to JH1 and inhibition of JAK kinase activity than that of JAB. Consistent with this notion, chimeras containing CIS3-KIR and JAB-SH2 domain inhibited JAK2 kinase activity more efficiently than the wild-type CIS3 or JAB. CONCLUSION: CIS3 inhibits JAK2 kinase activity by binding to the activation loop through the SH2 domain, and KIR is necessary for kinase inhibition. Although the inhibitory mechanism by CIS3 is similar to that by JAB, the contributions of the SH2 domain and KIR for binding are different between JAB and CIS3. Our study defined the inhibitory mechanism of CIS3 and provides a useful information for creating a novel tyrosine kinase inhibitor.  相似文献   

11.
BACKGROUND: Previous studies have shown that phosphatidylinositol-3 kinase (PI3K) plays an important role in NGF (nerve growth factor)-induced neurite elongation. However, the roles of the PI3K pathway in neurite branch formation were not fully understood. Also, it was not clear where the PI3K pathway is activated during branch formation. RESULTS: We found that the treatment of PC12 cells with the PI3K inhibitor LY294002 resulted in a marked increase in the number of neurite branch points, suggesting a suppressive role of PI3K in neurite branch formation. Expression of a constitutively active form of Akt, a downstream effector of PI3K, decreased the number of branch points, whereas that of a dominant-negative form of Akt increased it. In contrast, inhibition of neither Rac, mTOR nor GSK3, other effectors of PI3K, promoted branch formation. Importantly, the phosphorylated form of endogenous Akt was localized at the tips of growth cones, but devoid of small branches in NGF-treated PC12 cells. A GFP-fusion protein of the plekstrin-homology (PH) domain of Akt was also localized at the tips of growth cones. CONCLUSIONS: The PI3K-Akt pathway thus plays a key role in suppression of neurite branch formation in NGF-treated PC12 cells.  相似文献   

12.
Regulation of epithelial cell proliferation and apoptosis are important determinants of colonic crypt homeostasis, and their dysregulations are key features of colon cancer. In this study, we investigated whether CD44, an adhesion protein overexpressed in colon cancer, plays a role in colonocyte proliferation and apoptosis, and the molecular mechanisms involved in these processes. Using a CD44 knockout mouse model devoid of a gross phenotype, we found that CD44 null colonocytes have alterations at the ultrastructural and molecular levels. Mitochondria in CD44 null colonocytes at the top of the crypt have disrupted cristae. The ratio of anti-apoptotic Bcl-xl to pro-apoptotic Bak was shifted toward apoptosis in CD44 null colon due to decreased Bcl-xl expression. Caspase 9 was upregulated and active in CD44 null colon. Its expression shifted from a location restricted to the top of the control crypts to the whole crypt axis in CD44 null colon. Caspase 3 was also activated in CD44 null colon suggesting that CD44 null colonocytes are apoptotic via the intrinsic pathway. Cell cycle regulators, cyclin A, p21, and pRb protein were abrogated in CD44 null mice. Overall, CD44 negatively regulates apoptosis via the mitochondrial pathway in the colonic epithelium through the regulators/effectors of cell cycle and apoptosis.  相似文献   

13.
Mutations in the leucine-rich repeat kinase-2 (LRRK2) gene cause late-onset Parkinson's disease, but its physiological function has remained largely unknown. Here we report that LRRK2 activates a calcium-dependent protein kinase kinase-β (CaMKK-β)/adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway which is followed by a persistent increase in autophagosome formation. Simultaneously, LRKR2 overexpression increases the levels of the autophagy receptor p62 in a protein synthesis-dependent manner, and decreases the number of acidic lysosomes. The LRRK2-mediated effects result in increased sensitivity of cells to stressors associated with abnormal protein degradation. These effects can be mimicked by the lysosomal Ca(2+)-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) and can be reverted by an NAADP receptor antagonist or expression of dominant-negative receptor constructs. Collectively, our data indicate a molecular mechanism for LRRK2 deregulation of autophagy and reveal previously unidentified therapeutic targets.  相似文献   

14.
Activation of toll-like receptor (TLR) signaling that initiates an innate immune response to pathogens must be strictly regulated to prevent excessive inflammatory damage in the host. Here, we demonstrate that Mer receptor tyrosine kinase (MerTK) is a negative regulatory molecule in the lipoteichoic acid (LTA)-induced inflammatory response. LTA that activated TLR2 signaling concomitantly induced activation of MerTK signaling in RAW264.7 macrophages, including phosphoinositide 3-kinase (PI3K)/Akt and suppressor of cytokine signaling 3 (SOCS3). Moreover, LTA induced MerTK activation in a time-dependent manner, and LTA-induced MerTK activation was dependent on the ligand Gas6. Additionally, pretreatment with a specific Mer-blocking antibody significantly inhibited LTA-induced phosphorylation of MerTK, while further enhancing LTA-induced phosphorylation of IκB-α and NF-κBp65 as well as production of TNF-α and IL-6. Meanwhile, the antibody blockade of MerTK markedly prevented LTA-induced Akt phosphorylation and SOCS3 expression, both of which were crucial for the inhibition of TLR2-mediated immune response. Collectively, these results suggest, for the first time, that MerTK is an intracellular negative feedback regulator that inhibits the inflammatory response of LTA-stimulated macrophages through the PI3K/Akt pathway and SOCS3 protein.  相似文献   

15.
HMBOX1 is a new member of the homeobox family. Homeobox members have been reported to participate in embryonic development and systemic metabolism, but the function of HMBOX1 remains unclear, especially in the hematopoietic system. Here, we show that HMBOX1 is expressed at a high level in primary human NK cells but is expressed at much lower levels in NK cell lines. Overexpression of HMBOX1 significantly inhibited NK cell activities, including natural cytotoxicity against tumor cells, the level of CD107a (a marker protein for degranulation) and the production of cytolytic proteins (perforin and granzymes). More interestingly, HMBOX1 negatively regulated the expression of NKG2D and the activation of the NKG2D/DAP10 signaling pathway in NK cells. This effect was reversed by knocking down HMBOX1. Taken together, these findings demonstrate that HMBOX1 may act as a negative regulator of NK cell functions via suppressing the NKG2D/DAP10 signaling pathway.  相似文献   

16.
Follicular helper T (TFH) cells are essential for inducing germinal centre (GC) reactions to mediate humoral adaptive immunity and antiviral effects, but the mechanisms of TFH cell differentiation remain unclear. Here, we found that the hippo kinase MST1 is critical for TFH cell differentiation, GC formation, and antibody production under steady-state conditions and viral infection. MST1 deficiency intrinsically enhanced TFH cell differentiation and GC reactions in vivo and in vitro. Mechanistically, mTOR and HIF1α signalling is involved in glucose metabolism and increased glycolysis and decreased OXPHOS, which are critically required for MST1 deficiency-directed TFH cell differentiation. Moreover, upregulated Foxo3 expression is critically responsible for TFH cell differentiation induced by Mst1−/−. Thus, our findings identify a previously unrecognized relationship between hippo kinase MST1 signalling and mTOR-HIF1α-metabolic reprogramming coupled with Foxo3 signalling in reprogramming TFH cell differentiation.  相似文献   

17.
18.
磷脂酰肌醇3激酶/蛋白激酶B/雷帕霉素靶蛋白(phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin,PI3K/Akt/mTOR)是细胞内重要信号通路,在细胞生长、增殖、分化和蛋白合成等过程中起重要作用.肺癌、哮喘、肺动脉高压、肺纤维化、慢性阻塞性肺疾病(chronic pulmonary obstructive disease,CORD)等疾病是呼吸系统常见疾病,其病理机制涉及细胞增殖及凋亡等,与PI3K/Akt/mTOR信号通路关系密切.  相似文献   

19.
20.
BACKGROUND Controlled trophoblast invasion into the maternal decidua (interstitial invasion) is important for placental development. Factors secreted by the maternal decidual cells and the extravillous trophoblast can influence trophoblast invasion and abnormalities in the invasion process may lead to pregnancy complications. Serine protease HtrA3 is highly expressed in the decidual cells in the late secretory phase of the menstrual cycle and throughout pregnancy, and in most trophoblast cell types, apart from the invading interstitial trophoblast during the first trimester. HtrA3 and its family members are down-regulated in a number of cancers and are proposed as tumour suppressors. The current study aimed to investigate whether HtrA3 is secreted by decidual cells, and whether inhibiting such secretion alters trophoblast invasion. METHODS AND RESULTS Human endometrial stromal cells (HESCs) were decidualized with estradiol, medroxyprogesterone acetate and cyclic adenosine monophosphate. Real-time RT-PCR, western blotting and immunocytochemistry confirmed that HtrA3 mRNA and protein expression increased during decidualization. HtrA3 was also detected in the conditioned media (CM) of the decidualized HESCs, confirming its secretion. For functional studies, a protease-inactive mutant form of HtrA3 which was previously confirmed to be a dominant-negative inhibitor was produced using wheat germ cell-free technology. CM from decidualized HESCs significantly suppressed invasion of trophoblast HTR-8 cells (P < 0.01), whereas inhibition of HtrA3 in this CM by exogenous HtrA3 mutant resulted in increased trophoblast HTR-8 cell invasion (P < 0.001). CONCLUSIONS These results strongly support the hypothesis that decidual HtrA3 negatively regulates trophoblast invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号