首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
生物芯片技术在药物研究中的应用   总被引:2,自引:0,他引:2  
摘要:生物芯片技术是随着“人类基因组计划”的进展而发展起来的,是20世纪90年代中期以来影响最深远的重大科技进展之一,它融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新学科,具有重大的基础研究价值,又具有明显的产业化前景。采用生物芯片可进行生命科学和医学中所涉及的各种生物化学反应,以达到对基因、抗原和活体细胞等进行测试分析的目的。生物芯片技术的发展,大大推动药物研究开发进程。本文就生物芯片在药物研发过程中的应用进行综述。  相似文献   

2.
生物芯片在药物研究中的应用   总被引:3,自引:0,他引:3  
生物芯片技术通过对大量探针固定在同一支持物上,可经一次操作同时对多种生物分子进行检测分析,从而解决了技术复杂,自动化程度低,低通量(low through-put)等不足,为基因功能的研究,医学诊断及药物的研究发展提供了细有力的工具。  相似文献   

3.
基因组学与生物芯片技术在中药研究与开发中的应用   总被引:14,自引:0,他引:14  
1 后基因组时代与生物芯片在新世纪来临之际 ,伴随人类基因组计划(humangenomeproject ,HGP)的初步完成 ,人类对生命本质与疾病的研究进入了后基因组时代 (postgenomeera) ;人类基因组计划测定了人类基因组约30亿个碱基对的排列 ,绘制了人类数万个基因的物理与遗传图谱 ,即主要基因的染色体定位和核酸序列检测 ,一些遗传性疾病特别是单基因遗传疾病从基因水平得到揭示。但对基因组中单个基因的功能 ,大部份迄今仍不知晓 ,同时人类许多常见疾病的发生发展也是众多基因共同作用的结果 ;因此后基因组时代的…  相似文献   

4.
生物芯片技术及其在医学中的应用   总被引:1,自引:0,他引:1  
郭德玉 《医药导报》2002,21(10):615-618
介绍生物芯片技术的概念、特点、原理、类型和在医学上的应用,着重介绍蛋白质芯片和组织芯片.蛋白质芯片可用于寻找疾病生物学标志物、研究蛋白质相互作用、药物或毒物新靶点及其作用机制等;组织芯片可用于基因表达分析、寻找与临床治疗及预后有关的标志物、发现新的侯选癌基因或抑癌基因等.  相似文献   

5.
由蛋白芯片技术发展而来的多肽芯片,正成为生物学和化学中高通量方法的有力工具。多肽芯片上高度集成上千成万的肽片段,具有高度的特异性,只需微量的样本即可快速获得各项生理学信息。多肽芯片已广泛应用于抗体表位筛选、蛋白质结构与功能研究、酶与底物相互作用等。同时,多肽芯片在新药开发、药物筛选、药物分析等方面具有重大的应用前景。  相似文献   

6.
生物芯片(bioehip或bioarray)是根据生物分子间特异相互作用的原理,将生化分析过程集成于芯片表面,从而实现对DNA、RNA、多肽、蛋白质及其他生物成分的高通量快速检测。生物芯片技术是80年代发展起来的一门新兴技术。是现代生物学技术与计算机等其他领域高新技术相结合的产物。它可以将成千上万乃至几十万与生命相关的信息集成在一块厘米见方的芯片上,对基因、抗原  相似文献   

7.
生物芯片、基因组学和蛋白质组学在药物研发中的应用   总被引:1,自引:0,他引:1  
近年来 ,生物芯片技术、基因组学和蛋白质组学发展迅猛 ,本文就其在药物研究和开发中的应用进行综述。1 生物芯片、基因组学和蛋白质组学的概念及其相互关系生物芯片(Biochip)是指通过微加工和微电子技术在固体载体的表面上构建的可准确、大信息量检测生物组分的微型分析系统 ,含基因芯片 (genechip)、蛋白质芯片 (proteinchip)、细胞芯片 (cellchip)、组织芯片 (tissuechip)和小分子芯片 (small moleculemicroarray)及芯片实验室 (lab on a chip)或微流芯片 (microfuidics)等种类[1 ] 。基因组学(genomics)是研究某物种、组织或细胞等的基因序列、结构和功能的科学。基因组学含结构基因组学 (structuralgenomics)和功能基因组学(functionalgenomics) ,前者研究基因的序列、结构和定位 ,后者研究基因的功能。自人类基因组计划(humangenomeproject,HGP)于 1 990年 1 0月 1日正式实施以来 ,基因组学得到了空前的发展 ,目前已有超过 1 0 0 0种病毒、1 0 ...  相似文献   

8.
9.
介绍生物芯片技术的概念、特点、原理、类型和在医学上的应用,着重介绍蛋白质芯片和组织芯片.蛋白质芯片可用于寻找疾病生物学标志物、研究蛋白质相互作用、药物或毒物新靶点及其作用机制等;组织芯片可用于基因表达分析、寻找与临床治疗及预后有关的标志物、发现新的侯选癌基因或抑癌基因等.  相似文献   

10.
<正>生物芯片技术是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,是20世纪90年代中期以来影响最深远的重大科技进展之一。生物芯片可以在面积不大的基片表面(玻璃、硅片等)上有序地排列上可寻址的识别分子,在  相似文献   

11.
12.
Abstract

Ten “mega-trends” influencing the nature of modern pharmaceutical research extending to the turn of the century are illustrated. Presented are the projected changes relating to drug development strategies, costs and time perspectives, the structure of the industry, the emerging importance of biotechnology, immunopharmacology, drug delivery systems and the early diagnosis of disease. the environmental and socio-economic impact of these trends on society are assessed as they relate to the broader concern for more effective and efficient health care.  相似文献   

13.
This new conference on Psychiatric Drug Research was organised by the Strategic Research Institute and was chaired by P McGonigle (Wyeth Research, USA) and D Schoepp (Eli Lilly, USA). The 2-day meeting featured presentations from an international assembly of industrial and academic experts who have significantly contributed to the current body of knowledge in the field of psychotherapeutics. D Weinberger (NIMH, USA) gave an elegant keynote lecture on the application of genomics in psychopharmacology. Other presentations covered the latest technological advances, animal models and mechanistic approaches utilised in drug discovery for neuropsychiatric disorders and reviewed the current status of numerous novel targets resulting from these strategies.  相似文献   

14.
15.
The 5th Annual Anti-Cancer Drug Discovery and Development Summit brought together an international group of academic and industry scientists to discuss recent therapeutic developments in the field of oncology. The focus of the meeting was novel targeted approaches, i.e., those agents directed against targets that are overexpressed or overactive in tumour cells. It was acknowledged that cytotoxic agents will continue to play a key role in the treatment of cancer and new developments in this area were also discussed. With over 400 anticancer drugs in clinical development and a number of recent registrations, there is great optimism that significant therapeutic advances can be made.  相似文献   

16.
Drug metabolism in pharmaceutical research has traditionally focused on the well-defined aspects of absorption, distribution, metabolism and excretion, commonly-referred to ADME properties of a compound, particularly in the areas of metabolite identification, identification of drug metabolizing enzymes (DMEs) and associated metabolic pathways, and reaction mechanisms. This traditional emphasis was in part due to the limited scope of understanding and the unavailability of in vitro and in vivo tools with which to evaluate more complex properties and processes. However, advances over the past decade in separate but related fields such as pharmacogenetics, pharmacogenomics and drug transporters, have dramatically shifted the drug metabolism paradigm. For example, knowledge of the genetics and genomics of DMEs allows us to better understand and predict enzyme regulation and its effects on exogenous (pharmacokinetics) and endogenous pathways as well as biochemical processes (pharmacology). Advances in the transporter area have provided unprecedented insights into the role of transporter proteins in absorption, distribution, metabolism and excretion of drugs and their consequences with respect to clinical drug–drug and drug–endogenous substance interactions, toxicity and interindividual variability in pharmacokinetics. It is therefore essential that individuals involved in modern pharmaceutical research embrace a fully integrated approach and understanding of drug metabolism as is currently practiced. The intent of this review is to reexamine drug metabolism with respect to the traditional as well as current practices, with particular emphasis on the critical aspects of integrating chemistry and biology in the interpretation and application of metabolism data in pharmaceutical research.  相似文献   

17.
18.
Mass Spectrometry Innovations in Drug Discovery and Development   总被引:4,自引:0,他引:4  
This review highlights the many roles mass spectrometry plays in the discovery and development of new therapeutics by both the pharmaceutical and the biotechnology industries. Innovations in mass spectrometer source design, improvements to mass accuracy, and implementation of computer-controlled automation have accelerated the purification and characterization of compounds derived from combinatorial libraries, as well as the throughput of pharmacokinetics studies. The use of accelerator mass spectrometry, chemical reaction interface-mass spectrometry and continuous flow-isotope ratio mass spectrometry are promising alternatives for conducting mass balance studies in man. To meet the technical challenges of proteomics, discovery groups in biotechnology companies have led the way to development of instruments with greater sensitivity and mass accuracy (e.g., MALDI-TOF, ESI-Q-TOF, Ion Trap), the miniaturization of separation techniques and ion sources (e.g., capillary HPLC and nanospray), and the utilization of bioinformatics. Affinity-based methods coupled to mass spectrometry are allowing rapid and selective identification of both synthetic and biological molecules. With decreasing instrument cost and size and increasing reliability, mass spectrometers are penetrating both the manufacturing and the quality control arenas. The next generation of technologies to simplify the investigation of the complex fate of novel pharmaceutical entities in vitro and in vivo will be chip-based approaches coupled with mass spectrometry.  相似文献   

19.
20.
张冰也  吴羿霏  杜新 《药学进展》2023,47(11):849-863
2022 年,美国参议院通过《美国食品药品监督管理局现代化法案2.0》,再一次掀起了对动物试验代替方案的热议。类器官技术被认为是目前最有潜力的可代替动物试验的方案。自2007 年Hans Clevers 首次成功从小肠上皮细胞培育出类器官以来,类器官技术已有超过15 年的发展历史,特别是在近些年,这项技术的相关研究迅速增长。目前,类器官技术仍存在待攻克的技术挑战和待补充的监管空白,类器官相关产业链尚处于形成期,基于类器官的各种应用方向的商业化道路仍在探索中。综述了类器官的研究历史、应用现状与挑战,并探讨其商业化前景,旨在帮助读者快速了解类器官技术的过去、现在与未来,以及为评估类器官技术在新药研发中的应用与商业价值提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号