首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of aging on the properties of N-methyl-d-aspartate (NMDA) receptors in the forebrain of female NMRI mice was investigated using the antagonist [3H]MK-801 as radioligand. Compared to young (3 months) mice, aged (20 months) mice showed changes of the properties of the NMDA receptor at three different levels: (1) the density was reduced by about 35%; (2) the efficacy ofl-glutamate and glycine for stimulating specific [3H]MK-801 binding was enhanced, probably because more NMDA receptor-associated ion channels are closed under baseline conditions in the aged brain; (3) the affinity ofl-glutamate and glycine to its binding sites at the NMDA receptor complex was also enhanced. Chronic treatment of aged mice with phosphotidylserine (20 mg/kg, i.p., once daily) for three weeks completely normalized enhanced efficacy and affinity ofl-glutamate and glycine and elevated NMDA receptor density by approximately 25%. These findings are consistent with the assumptions that deficits of the NMDA receptor are one of the mechanisms of age-related cognitive impairment and that the beneficial effects of phosphatidylserine treatment on cognitive deficits of aged individuals might be partially due to the effects of this drug on age-related NMDA receptor deficits.  相似文献   

2.
The El mouse is an animal model with genetically determined epilepsy. To elucidate the mechanism of convulsive seizures in El mice, the effects of L-glutamate and glycine on the binding of (+)[3H]MK-801 were studied in well-washed membranes from forebrains of ddY, BALB/c and El (stimulated and non-stimulated) mice. There were no significant differences in affinity (Kd) or density (Bmax) among the 4 groups of mice under basal conditions. Incubation in the presence of L-glutamate and/or glycine led to an increase in apparent density, but not in affinity. No significant change was observed in either Kd, Bmax, or the percentage increase in (+)[3H]MK-801 binding amount the 4 groups in the presence of L-glutamate and/or glycine. These results suggest that the seizure susceptibility of El mice cannot be explained by changes in affinity or density of the NMDA receptor/channel complex.  相似文献   

3.
The N-methyl-D-aspartate (NMDA) receptor plays an important role in developmental plasticity. Previous studies have reported differences between the NMDA receptor-channel complex in the rat pup brain and the adult brain. In the present study, modulation of the NMDA channel complex as a function of age was measured to determine when the temporal switching of the NMDA receptor from the immature form to the adult mature form takes place. [(3)H]MK-801 binding was measured in the rat forebrain from postnatal day 1 to day 21. Our data suggest the presence of two types of NMDA receptors - an immature type and a mature type. The immature NMDA receptor, seen during the early postnatal period (day 1-day 14) is highly sensitive to spermidine, L-glutamate alone potentiates [(3)H]MK-801 binding, and glycine failed to potentiate an L-glutamate-induced increase in [(3)H]MK-801 binding. During the late postnatal period (after day 14) spermidine alone did not increase [(3)H]MK-801 binding as potently as it did during the early postnatal period, high-affinity [(3)H]MK-801 binding was not seen in the presence of L-glutamate alone, and L-glutamate and glycine or L-glutamate and spermidine or L-glutamate, glycine and spermidine together, significantly increased [(3)H]MK-801 binding in a manner similar to that reported in the adult brain. Together, the pharmacology of the NMDA receptor during the early postnatal period differs from the adult-like receptor seen during the late postnatal period, and that in rats the apparent switching of the NMDA receptor from the immature type to the mature type takes place after the second postnatal week.  相似文献   

4.
R Sircar  S R Zukin 《Brain research》1991,556(2):280-284
Glycine potentiates N-methyl-D-aspartate (NMDA) receptor-mediated responses via its interaction with a strychnine-insensitive glycine recognition site. We have previously shown that the potent glycine receptor antagonist 7-chlorokynurenic acid (7Cl-KYN) dose-dependently inhibits [3H]MK-801 binding to the PCP receptor and that this effect is reversed by glycine. [3H]MK-801 binding to the PCP receptor within the NMDA receptor-gated ion channel is a measure of channel activation. Association of PCP receptor ligands is biexponential with the fast component of binding serving as a marker of activated NMDA channels. In the present study we utilize 7Cl-KYN as a probe of the kinetic mechanism of the glycine effect upon NMDA receptor functioning. In the presence of L-glutamate, incubation with 7Cl-KYN completely abolished the fast component of [3H]MK-801 association in 4 out of 5 experiments. In the fifth experiment where the fast component was detected, it accounted for less than half of that seen in the presence of L-glutamate alone. 7Cl-KYN-induced inhibition of the fast component of [3H]MK-801 association was reversed by the addition of glycine. Since the fast component represents ligand binding to the PCP receptor via the open NMDA channel, selective reduction of this component by 7Cl-KYN indicates that glycine receptor antagonists reduce the probability of channel opening, and also that the selective reduction in the component of [3H]MK-801 binding that manifests fast kinetics can serve as a marker for glycine antagonists.  相似文献   

5.
The N-methyl-D-aspartate (NMDA) subtype of glutamate receptor is thought to play a critical role in neuronal development, differentiation and plasticity. A number of studies have shown an enhanced sensitivity to NMDA receptor ligands in neonatal animals. This study examined the ontogenetic changes in the glycinergic modulation of NMDA-coupled cation channels in the developing central nervous system of rat pups. The nonequilibrium binding of the specific channel ligand [3H]MK-801 was used as a measure of NMDA channel access. Glycine (10(-5) M) enhancement of [3H]MK-801 binding at 2 h in forebrain membranes from adult rats was significantly greater than that observed in tissues from 8- to 28-day-old rat pups. This difference was due to changes in the efficacy, but not potency of glycine. The observed ontogenetic changes in the efficacy of glycine-enhanced [3H]MK-801 binding were attributable to developmental changes in receptor site density, as determined by equilibrium [3H]MK-801 saturation isotherms. Kinetic studies revealed that glycine increased the association rate constants of [3H]MK-801 in 8-day and adult membranes by a similar magnitude (0.111 +/- 0.021 vs 0.094 +/- 0.009 nM-1 h-1, respectively). Similarly, the fractional amount of [3H]MK-801 bound (i.e., amount bound at time t normalized to amount bound at equilibrium) in the presence of glycine was relatively constant throughout neonatal development. These findings suggest that the allosteric modulation of the NMDA ionophore by glycine is similar in postnatal and adult rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Summary Receptor binding studies on rat cortical membranes were used to characterize the NMDA receptor in aged rats (22 months) treated for 20 months with a memantine containing diet delivering 30 mg/kg/day in comparison to aged and young/adult rats treated with control-diet. Spatial memory impairing effects of (+)-MK-801 (0.16 mg/kg) in the radial maze was not altered within the course of memantine-treatment (up to 16 months). However, chronic memantine-treatment significantly increased the number of [3H]MK-801 binding sites and the affinity of [3H]glycine. A non-significant trend to such changes was also seen in aged-control rats. Glycine-dependent [3H]MK-801 binding (functional binding under non-equilibrium conditions at a fixed L-glutamate concentration) revealed that a decreased ability of glycine to stimulate channel opening in aged rats was partially attenuated by the long-term memantine treatment. Furthermore, an increased ability of spermidine to enhance [3H]MK-801 binding in aged-control rats was even more pronounced in the aged memantine-treated group. Together these findings may indicate that changes in functional receptor-channel properties during the process of aging occur prior to a detectable loss of binding sites and that memantine enhances an endogenous compensatory mechanism triggered by glutamatergic hypofunction which is suggested to take place in aging.  相似文献   

7.
Compounds enhancing N-methyl-d-aspartate (NMDA) glutamate receptor function have been reported to improve cognitive deficits. Since cognitive deficits are considered to be the core symptom of schizophrenia, enhancing NMDA receptor function represents a promising approach to treating schizophrenia. In the present study, we investigated whether d-serine or a glycine transporter inhibitor N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine (NFPS), both of which enhance NMDA receptor function, could improve MK-801-induced cognitive deficits in rats, and compared their effects with those of the atypical antipsychotic clozapine and of the typical antipsychotic haloperidol. To assess cognitive function, we used a novel object recognition test in rats that measured spontaneous exploratory activity of a novel object when paired with a familiar object. We then evaluated the effects of the compounds on cognitive deficits induced by treatment with MK-801, the NMDA receptor antagonist. Pretreatment with clozapine (1, 5 mg/kg, i.p.) but not haloperidol (0.03, 0.1 mg/kg, i.p.) significantly improved MK-801-induced cognitive deficits. Pretreatment with D-serine at 800 mg/kg (i.p.) or NFPS (0.3, 1 mg/kg, i.p.) significantly improved MK-801-induced cognitive deficits under this test paradigm. These findings suggest that impaired preference for novel objects induced by MK-801 in the novel object recognition test could be a useful animal model for evaluating the efficacy of compounds targeting the cognitive deficits observed in schizophrenic patients. The results also suggest that enhancing NMDA receptor function is an effective way for treating the cognitive deficits associated with schizophrenia.  相似文献   

8.
The effects of ethanol on the binding of [3H]MK-801, [3H]l-glutamate, [3H]glycine and [3H]CGS 19755 to the N-methyl-d-aspartate receptor were determined in membranes from mouse cortex and hippocampus. Under equilibrium conditions, ethanol in vitro (100 mM) did not alter the apparent affinity or binding site density for any of these ligands. However, in the presence of glutamate and the selective glycine antagonist, 5,7-dichlorokynurenic acid, ethanol inhibited the non-equilibrium binding of [3H]MK-801. This inhibition could be reversed in a time- and concentration-dependent manner by addition of glycine. These data suggest that ethanol may inhibit N-methyl-d-aspartate receptor-mediated responses by altering the kinetics of channel activation. Chronic in vivo ethanol ingestion by mice, the resulted in tolerance to and physical dependence on ethanol, produced an increased density of hippocampal [3H]MK-801 and [3H]l-glutamate binding sites, but not [3H]glycine or [3H]CGS 19755 binding sites. It is possible that chronic ethanol ingestion may influence the subunit composition of the NMDA receptor complex.  相似文献   

9.
The N-methyl- -aspartate (NMDA) receptor plays an important role in developmental plasticity. Previous studies have reported differences between the NMDA receptor-channel complex in the rat pup brain and the adult brain. In the present study, modulation of the NMDA channel complex as a function of age was measured to determine when the temporal switching of the NMDA receptor from the immature form to the adult mature form takes place. [3H]MK-801 binding was measured in the rat forebrain from postnatal day 1 to day 21. Our data suggest the presence of two types of NMDA receptors — an immature type and a mature type. The immature NMDA receptor, seen during the early postnatal period (day 1–day 14) is highly sensitive to spermidine, -glutamate alone potentiates [3H]MK-801 binding, and glycine failed to potentiate an -glutamate-induced increase in [3H]MK-801 binding. During the late postnatal period (after day 14) spermidine alone did not increase [3H]MK-801 binding as potently as it did during the early postnatal period, high-affinity [3H]MK-801 binding was not seen in the presence of -glutamate alone, and -glutamate and glycine or -glutamate and spermidine or -glutamate, glycine and spermidine together, significantly increased [3H]MK-801 binding in a manner similar to that reported in the adult brain. Together, the pharmacology of the NMDA receptor during the early postnatal period differs from the adult-like receptor seen during the late postnatal period, and that in rats the apparent switching of the NMDA receptor from the immature type to the mature type takes place after the second postnatal week.  相似文献   

10.
7-Chlorokynurenic acid (7-Cl KYNA) has been reported to attenuate N-methyl-D-aspartate (NMDA) receptor functioning by a potent and selective inhibitory action mediated at the strychnine-insensitive glycine recognition site of the NMDA complex. Here we report that 7-Cl KYNA dose-dependently inhibits [3H]MK-801 binding to the PCP receptor, and that this effect is reversed by addition of glycine. Since [3H]MK-801 binding is a measure of channel activation, our results are consistent with the hypotheses that 7-Cl KYNA exerts its NMDA receptor antagonism by acting at the glycine site, and that activation of the glycine site is required for NMDA channel activity to occur.  相似文献   

11.
Polyamines such as spermidine potentiate activation of the N-methyl-D-aspartate (NMDA)-type excitatory amino acid receptor. The goal of the present study was to investigate interactions between the putative polyamine binding site and previously described sites for glutamate and glycine. Binding of the high-potency PCP receptor ligand [3H]MK-801 to well-washed rat brain membranes was used as an in vitro probe of NMDA receptor activation. Spermidine concentration-response studies were performed in the absence and presence of both glutamate and glycine, with and without D-(-)-2-amino-5-phosphonovaleric acid (D(-)-AP-5) or 7-chlorokynurenic acid (7Cl-KYN). Incubation in the presence of spermidine alone induced a 20.4-fold increase in [3H]MK-801 binding with an EC50 value of 13.3 microM. The mean concentration of spermidine which induced maximal stimulation of binding was 130 microM (n = 10, S.E.M. = 24.66, range = 25-250 microM). Glutamate (10 microM) decreased the EC50 value for spermidine-induced stimulation of [3H]MK-801 binding to 3.4 microM. Glycine (10 microM) did not significantly alter either maximum spermidine-induced [3H]MK-801 binding or the EC50 value for spermidine-induced stimulation of [3H]MK-801 binding. Incubation in the presence of the specific glutamate antagonist D(-)AP-5 attenuated [3H]MK-801 binding in a glutamate-reversible fashion. The competitive glycine antagonist 7Cl-KYN decreased maximum spermidine-induced [3H]MK-801 binding in a glycine-reversible fashion. In addition, 7Cl-KYN increased the EC50 value for spermidine-induced stimulation of [3H]MK-801 binding while D(-)AP-5 was without effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Glutamate NMDA receptor has been implicated in brain developmental processes as well as in excitotoxicity and seizure mediation. A previous study has shown that an acute episode of seizures for 30 min in rats altered NMDA receptor characteristics, mainly in the very immature animal. In order to assess whether receptor modifications may also account for long-lasting cerebral disabilities, medium- and long-term consequences of repeated seizures in developing rats on brain NMDA receptor properties were investigated. Seizures were induced once a day for 3 consecutive days, either from post-natal day 5 (P5) to P7 or from P15 to P17. NMDA receptors were then analysed at P15, P25 and P60 (adulthood) by measuring specific binding of [3H]MK-801 on brain membrane preparations. In addition, allosteric modulation of NMDA receptors by exogenous glutamate and glycine was investigated. Seizures from P5 to P7 led to a 22% increase in the density of [3H]MK-801 binding sites measured at P15, but did not affect NMDA receptor density or affinity at P25 or P60. P15-P17 seizures led to a 21% decrease in the density of binding sites and to a 33% decrease in receptor dissociation constant at P25, while they were without effect at P60. Moreover, P5-P7 and P15-P17 seizures were both associated with a suppression of the glutamate/glycine-induced receptor activation at P60. These modifications might account for long-term alterations in cerebral excitability or plasticity after early convulsive disorders, with regards to altered cognitive capacities, epileptogenesis and brain susceptibility to recurrent seizures.  相似文献   

13.
The aim of this study was to investigate the in vivo relationship between reelin and NMDA receptor function in schizophrenia. We assessed the effect of reelin deficiency in behavioral models of aspects of this illness, NMDA receptor subunit levels, and NMDA receptor, dopamine D2 receptor, and dopamine transporter density. Male, but not female, reelin heterozygous mice showed significantly enhanced MK-801-induced locomotor hyperactivity compared to wildtype controls (7.4-fold vs. 5.2-fold effect of MK-801 over saline, respectively) but there were no genotype differences in the response to amphetamine. Both male and female reelin heterozygous mice showed enhanced effects of MK-801 on startle, but not prepulse inhibition (PPI) of startle. There were no group differences in the effect of apomorphine on startle or PPI. The levels of NMDA receptor subunits were not altered in the striatum. In the frontal cortex, male and female reelin heterozygous mice showed significant up-regulation of NR1 subunits, but down-regulation of NR2C subunits, which was associated with significantly elevated NR1/NR2A and NR1/NR2C ratios. However, there were no differences in [3H]MK-801 binding density in the nucleus accumbens or caudate nucleus, nor in the density of [3H]YM-09151 or [3H]GBR12935 in these brain regions. The enhanced effects of MK-801 in reelin heterozygous mice in this study could be reflective of the role of reelin deficiency in schizophrenia. This genotype effect was male-specific for locomotor hyperactivity, a model of psychosis, but was seen in male and female mice for startle, which could be an indication of changes in anxiety. Changes in NMDA receptor subunit levels and ratios were also seen in both male and female mice. These results suggest that the role of reelin deficiency in schizophrenia may be particularly mediated by altered NMDA receptor responses, with some of these effects being strictly sex-specific.  相似文献   

14.
NMDA receptor/ion channel function is modulated through a number of distinct sites that regulate channel opening. Published studies report widely varying results in modulatory site agonist effects due to assay conditions and technique. Also, NMDA receptor regulation at these sites by endogenous substances remains poorly characterized. The objectives of the present study in Sprague-Dawley rat forebrain sections were: (i) determine the contribution of various prewash variables on agonist stimulation of the NMDA receptor, (ii) compare regional differences in functional glycine, spermidine and NMDA binding sites under optimized prewash conditions, and (iii) define the influence of endogenous substances at each modulatory site by analyzing changes in binding at different prewash durations. We demonstrate that prewash conditions have a critical influence on [3H]MK-801 binding in rat tissue sections and that this effect was differentially expressed across brain regions. An extended prewash duration caused a regionally specificdecrease in unenhanced [3H]MK-801 binding, while a short prewash caused a regionally specific biphasic effect on enhanced [3H]MK-801 binding. After prolonged prewash, binding was restored to previous (unwashed) binding levels with exogenously added glycine, NMDA, or spermidine alone or combinations of agonists. These data suggest that washable endogenous substances contribute to the full functionality of the NMDA receptor and the regional heterogeneity in [3H]MK-801 binding is dependent on the interaction of receptor protein subtypes and the presence of one or more endogenous substances.  相似文献   

15.
[3H]Glycine binding studies have been performed to further characterize polyamine interactions with the rat brain N-methyl-D-aspartate (NMDA) receptor. Strychnine-insensitive [3H]glycine binding to washed cortical membranes was enhanced by spermine, spermidine, and hirudonin. Spermine stimulation of binding was additive with that produced by the NMDA receptor agonist L-glutamate. A high concentration of the L-glutamate antagonist 2-amino-5-phosphonovaleric acid reduced, but did not eliminate, spermine effects. Saturation experiments indicated that L-glutamate and spermine enhancement of binding was due to an increase in [3H]glycine binding affinity. Kinetic studies showed that optimal concentrations of spermine and L-glutamate reduced [3H]glycine association and dissociation rates by approximately fivefold and 30-fold, respectively. In competition experiments, the presence of L-glutamate and spermine had differential effects on the affinities of compounds that act as either agonists or antagonists at the glycine site of the NMDA receptor. The affinities of the agonists glycine, D-serine, and D-alanine, were increased about fivefold, while antagonist (HA-966, 7-chlorokynurenic acid) inhibitory potencies were unchanged. These data support our previous results showing that the NMDA receptor possesses a novel polyamine recognition site and demonstrate that these compounds directly modulate glycine's interactions with the receptor complex.  相似文献   

16.
1. Agonists may act at any one of three sites on the N-methyl-D-aspartate (NMDA) receptor-effector complex to promote opening of the associated ion channel. The three sites are activated by i) NMDA, L-glutamate, aspartate, and other dicarboxylic amino acids; ii) glycine, D-serine, D-cycloserine, and others; iii) the polyamines spermine or spermidine, but not cadaverine or putrescine. 2. This opening by exogenous agonists is reflected by an enhanced binding of the phencyclidine-like dissociative anesthetic [3H]MK-801 to rat cortical membranes (well washed to remove endogenous agonists, e.g., L-glutamate, glycine). 3. The effects of adding combinations of agonists yielded stimulation approximately equal to the sum of each agonist's effect, suggesting that in the first approximation the three classes act at independent sites. 4. When the glutamate (E) site was antagonized with D-2-amino-5-phosphonopentanoate (D-AP5), no stimulation in binding could be elicited by agonists at the two other sites. Activation of the E site is therefore necessary but not sufficient for channel opening. 5. When the glycine (G) site was antagonized with 7-chlorokynurenate, no stimulation in binding could be elicited by agonists at the other two sites. Activation of the G site is therefore necessary but not sufficient for channel opening. 6. Of the two putative antagonists for the polyamine (PA) site, ifenprodil fails to completely inhibit the binding of [3H]MK-801, whereas arcaine inhibited [3H]MK-801 binding completely. We present data which question the selectivity of arcaine for the polyamine site, and propose that the polyamine site is merely modulatory, but neither necessary nor sufficient, for channel opening.  相似文献   

17.
The effect of age on binding of MK-801 in the cat visual cortex.   总被引:3,自引:0,他引:3  
We have examined the effect of age on the binding of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine maleate (MK-801) in the cat visual cortex. We hypothesized that this binding might change with age because: (1) MK-801 binds to a site associated with the N-methyl-D-aspartate (NMDA) receptor; (2) the NMDA receptor complex has been implicated in neural plasticity; (3) plasticity in the cat visual cortex is age dependent. We used standard receptor binding techniques to measure MK-801 binding in membrane homogenates in cats aged 7 days (d), 21 d, 43 d, 83 d, 7-8 months (mo) and over 2 years. Glutamate (100 microM), glycine (30 microM) and spermidine (20 microM) were used to enhance binding. We found that MK-801 binding is maximal at about 6 weeks of age, decreases slightly by 83 days and then decreases more dramatically in adults. Saturation analysis showed that the of binding with age resulted from variation in number of binding sites and not from variation in affinity. The ability of Mg2+ to inhibit MK-801 binding did not change with age. Dark rearing did not alter the development of MK-801 binding sites.  相似文献   

18.
Glutamate NMDA receptor has been implicated in brain developmental processes as well as in excitotoxicity and seizure mediation. A previous study has shown that an acute episode of seizures for 30 min in rats altered NMDA receptor characteristics, mainly in the very immature animal. In order to assess whether receptor modifications may also account for long-lasting cerebral disabilities, medium- and long-term consequences of repeated seizures in developing rats on brain NMDA receptor properties were investigated. Seizures were induced once a day for 3 consecutive days, either from postnatal day 5 (P5) to P7 or from P15 to P17. NMDA receptors were then analysed at P15, P25 and P60 (adulthood) by measuring specific binding of [3H]MK-801 on brain membrane preparations. In addition, allosteric modulation of NMDA receptors by exogenous glutamate and glycine was investigated. Seizures from P5 to P7 led to a 22% increase in the density of [3H]MK-801 binding sites measured at P15, but did not affect NMDA receptor density or affinity at P25 or P60. P15–P17 seizures led to a 21% decrease in the density of binding sites and to a 33% decrease in receptor dissociation constant at P25, while they were without effect at P60. Moreover, P5–P7 and P15–P17 seizures were both associated with a suppression of the glutamate/glycine-induced receptor activation at P60. These modifications might account for long-term alterations in cerebral excitability or plasticity after early convulsive disorders, with regards to altered cognitive capacities, epileptogenesis and brain susceptibility to recurrent seizures.  相似文献   

19.
Polyamines such as spermidine potentiate activation of theN-methyl-D-aspartate (NMDA)-type excitatory amino acid receptor. The goal of the present study was to investigate interactions between the putative polyamine binding site and previously described sites for glutamate and glycine. Binding of the high-potency PCP receptor ligand [3H]MK-801 to well-washed rat brain membranes was used as an in vitro probe of NMDA receptor activation. Spermidine concentration-response studies were performed in the absence and presence of both glutamate and glycine, with and withoutD-(−)-2-amino-5-phosphonovaleric acid (D(−)AP-5) or 7-chlorokynurenic acid (7Cl-KYN). Incubation in the presence of spermidine alone induced a 20.4-fold increase in [3H]MK-801 binding with an EC50 value of 13.3 μM. The mean concentration of spermidine which induced maximal stimulation of binding was 130 μM (n = 10,S.E.M.= 24.66,range= 25–250 μM). Glutamate (10 μM) decreased the EC50 value for spermidine-induced stimulation of [3H]MK-801 binding to 3.4 μM. Glycine (10 μM) did not significantly alter either maximum spermidine-induced [3H]MK-801 binding or the EC50 value for spermidine-induced stimulation of [3H]MK-801 binding. Incubation in the presence of the specific glutamate antagonistD(−)AP-5 attenuated [3H]MK-801 binding in a glutamate-reversible fashion. The competitive glycine antagonist 7Cl-KYN decreased maximum spermidine-induced [3H]MK-801 binding in a glycine-reversible fashion. In addition, 7Cl-KYN increased the EC50 value for spermidine-induced stimulation of [3H]MK-801 binding whileD(−)AP-5 was without effect. These findings suggest that glutamate and glycine regulate the polyamine binding site differentially. PCP-like agents induce a psychotomimetic state closely resembling schizophrenia by inhibiting NMDA receptor-mediated neurotransmission. The ability of polyamines to modulate NMDA receptor functioning suggests a potential site for pharmacological intervention.  相似文献   

20.
Using an in vivo microdialysis technique, we have investigated the effect of N-methyl-D-aspartate (NMDA) or kainate on the extracellular concentrations of free D-serine and L-glutamate in the striatum. A intrastriatal perfusion of NMDA or kainate caused a significant increase in the extracellular release of L-glutamate, but a significant decrease in that of D-serine. Co-perfusion of an NMDA receptor antagonist, MK-801, or an alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid/kainate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), with NMDA or kainate significantly reversed the NMDA- or kainate-induced decrease in the extracellular level of D-serine, respectively. The NMDA- or kainate-evoked increase in the extracellular L-glutamate level was also reversed by co-perfusion of MK-801 or CNQX, respectively. Because D-serine acts as a potent and selective agonist for the glycine site of the NMDA receptor and because intracerebroventricularly injected D-serine is accumulated in the astrocytes, D-serine could be taken up by the astrocytes following synaptic activation. Furthermore, because cortical ablation to remove corticostriatal glutamatergic inputs attenuates the excitotoxic effects of kainate in the striatum, L-glutamate may enhance its own release through a presynaptic NMDA and/or non-NMDA receptor-mediated mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号