首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE OF REVIEW: The fms-like tyrosine kinase 3 (FLT3) receptor tyrosine kinase is now recognized to be a critical mediator in the pathogenesis of myeloid and some lymphoid leukemias. This article reviews recent efforts to disrupt FLT3 signaling in acute myelogenous leukemia and to identify potential therapeutic challenges posed by the acquisition of resistance mutations in these malignancies. RECENT FINDINGS: Several broad classes of FLT3 protein tyrosine kinase inhibitors are undergoing evaluation in clinical trials. Although the agents are well tolerated by patients, clinical responses in relapsed or refractory acute myelogenous leukemia (AML) are limited and transient. Nevertheless, these agents may hold promise when combined with traditional chemotherapy. Use of tyrosine kinase inhibitors for AML therapy is hindered by the acquisition of mutations in the kinase catalytic domain, and in the case of BCR-ABL, these mutations confer resistance to imatinib. In anticipation of this problem, FLT3 mutations that might confer resistance to kinase inhibitors in the clinical setting have already been identified in the laboratory. Strategies to overcome such resistance are currently under development. New efforts focus on blocking the binding of FLT3 ligand to its receptor as a means of inhibiting autocrine stimulation in leukemogenesis. SUMMARY: FLT3 is widely expressed in AML and some cases of acute lymphocytic leukemia. Activating mutations in FLT3 confer a poor risk in patients with AML. The development of FLT3 small molecule kinase inhibitors follows from research efforts to understand signal transduction and profiles of gene expression in leukemia pathogenesis. Thus, FLT3 is a promising target for therapeutic intervention. Research priorities will include (1) identification of other groups of patients likely to benefit from FLT3 inhibition, (2) the optimal use of FLT3 inhibitors in combination with other agents, and (3) development of molecules that overcome resistance to FLT3 inhibitors that arise as a result of further acquired mutations in the receptor.  相似文献   

2.
FLT3-ITD is a constitutively activated variant of the FLT3 tyrosine kinase receptor. Its expression in acute myeloid leukemia (AML) is associated with a poor prognosis. Due to this, the development of tyrosine kinase inhibitors (TKI) blocking FLT3-ITD became a rational therapeutic concept. This review describes key milestones in the clinical development of different FLT3-specific TKI with a particular focus on FLT3-TKI maintenance therapy in remission after allogeneic hematopoietic stem cell transplantation (HCT). Recent evidence from randomized trials using sorafenib in FLT3-ITD mutated AML provided a proof of concept that targeted post-HCT maintenance therapy could become a new treatment paradigm in AML.  相似文献   

3.
Activating mutations of FMS-like tyrosine kinase 3 (FLT3) are present in approximately 30% of patients with de novo acute myeloid leukemia (AML) and are associated with lower cure rates from standard chemotherapy-based treatment. Targeting the mutation by inhibiting the tyrosine kinase activity of FLT3 is cytotoxic to cell lines and primary AML cells harboring FLT3 mutations. Successful FLT3 inhibition can also improve survival in mouse models of FLT3-activated leukemia. CEP-701 is an orally available, novel, receptor tyrosine kinase inhibitor that selectively inhibits FLT3 autophosphorylation. We undertook a phase 1/2 trial to determine the in vivo hematologic effects of single-agent CEP-701 as salvage treatment for patients with refractory, relapsed, or poor-risk AML expressing FLT3-activating mutations. Fourteen heavily pretreated AML patients were treated with CEP-701 at an initial dose of 60 mg orally twice daily. CEP-701-related toxicities were minimal. Five patients had clinical evidence of biologic activity and measurable clinical response, including significant reductions in bone marrow and peripheral blood blasts. Laboratory data confirmed that clinical responses correlated with sustained FLT3 inhibition to CEP-701. Our results show that FLT3 inhibition is associated with clinical activity in AML patients harboring FLT3-activating mutations and indicate that CEP-701 holds promise as a novel, molecularly targeted therapy for this disease.  相似文献   

4.
5.
Knapper S  Mills KI  Gilkes AF  Austin SJ  Walsh V  Burnett AK 《Blood》2006,108(10):3494-3503
The receptor tyrosine kinase FLT3 is a promising molecular therapeutic target in acute myeloid leukemia (AML). Activating mutations of FLT3 are present in approximately one-third of patients, while many nonmutants show evidence of FLT3 activation, which appears to play a significant role in leukemogenesis. We studied the effects of lestaurtinib (CEP701) and PKC412, 2 small molecule inhibitors of FLT3, on 65 diagnostic AML blast samples. Both agents induced concentration-dependent cytotoxicity in most cases, although responses to PKC412 required higher drug concentrations. Cytotoxic responses were highly heterogeneous and were only weakly associated with FLT3 mutation status and FLT3 expression. Importantly, lestaurtinib induced cytotoxicity in a synergistic fashion with cytarabine, particularly in FLT3 mutant samples. Both lestaurtinib and PKC412 caused inhibition of FLT3 phosphorylation in all samples. Translation of FLT3 inhibition into cytotoxicity was influenced by the degree of residual FLT3 phosphorylation remaining and correlated with deactivation of STAT5 and MAP kinase. FLT3 mutant and wild-type cases both varied considerably in their dependence on FLT3 signaling for survival. These findings support the continued clinical assessment of FLT3 inhibitors in combination with cytotoxic chemotherapy: Entry to future clinical trials should include FLT3 wild-type patients and should remain unrestricted by FLT3 expression level.  相似文献   

6.
FLT3 mutations in childhood acute lymphoblastic leukemia   总被引:9,自引:4,他引:9       下载免费PDF全文
Activating mutations of the FLT3 receptor tyrosine kinase are common in acute myelogenous leukemia (AML) but are rare in adult acute lymphoblastic leukemia (ALL). We have recently shown that FLT3 is highly expressed and often mutated in ALLs with rearrangement of the mixed lineage leukemia (MLL) gene on chromosome 11q23. Because hyperdiploid ALL samples also show high-level expression of FLT3, we searched for the presence of FLT3 mutations in leukemic blasts from 71 patients with ALL. The data show that approximately 25% (6 of 25) of hyperdiploid ALL samples possess FLT3 mutations, whereas only 1 of 29 TEL/AML1-rearranged samples harbored mutations (P =.04, Fisher exact test). Three mutations are novel in-frame deletions within a 7-amino acid region of the receptor juxtamembrane domain. Finally, 3 samples from patients whose disease would relapse harbored FLT3 mutations. These data suggest that patients with hyperdiploid or relapsed ALL might be considered candidates for therapy with newly described small-molecule FLT3 inhibitors.  相似文献   

7.
Constitutively activating internal tandem duplication (ITD) and point mutations of the receptor tyrosine kinase FLT3 are present in up to 41% of patients with acute myeloid leukemia (AML). These FLT3/ITD mutations are likely to be important because their presence is associated with a poor prognosis. Both types of mutations appear to activate the tyrosine kinase activity of FLT3. We describe here the identification and characterization of the indolocarbazole derivative CEP-701 as a FLT3 inhibitor. This drug potently and selectively inhibits autophosphorylation of wild-type and constitutively activated mutant FLT3 in vitro in FLT3/ITD-transfected cells and in human FLT3-expressing myeloid leukemia-derived cell lines. We demonstrate that CEP-701 induces a cytotoxic effect on cells in a dose-responsive fashion that parallels the inhibition of FLT3. STAT5 and ERK1/2, downstream targets of FLT3 in the signaling pathway, are inhibited in response to FLT3 inhibition. In primary leukemia blasts from AML patients harboring FLT3/ITD mutations, FLT3 is also inhibited, with an associated cytotoxic response. Finally, using a mouse model of FLT3/ITD leukemia, we demonstrate that the drug inhibits FLT3 phosphorylation in vivo and prolongs survival. These findings form the basis for a planned clinical trial of CEP-701 in patients with AML harboring FLT3- activating mutations.  相似文献   

8.
The fms-like tyrosine kinase 3 (FLT3) plays an important role in both normal and malignant hematopoiesis. Activating mutations in the FLT3 receptor can be detected in approximately 30% of acute myeloid leukemias (AMLs) and are associated with a distinctly poor clinical outcome for patients. There are now several classes of FLT3 inhibitors in development with varying degrees of potency and selectivity for the target, including several in late-phase clinical trials in combination with chemotherapy. Major clinical responses in AML patients receiving single-agent FLT3 inhibitors have been rare, although transient peripheral blood blast reduction is common. Given such biological suggestion and preclinical activity, FLT3 inhibitors hold promise in improving the outcome of patients with mutant FLT3 AML. This review summarizes the current attempts to target this molecule, with emphasis on the validity of the target, the results of the clinical trials evaluating the FLT3 inhibitors in AML, the optimal use of these compounds and the mechanisms of resistance.  相似文献   

9.
10.
Internal tandem duplications (ITDs) of the FMS-like tyrosine kinase 3 (FLT3) receptor tyrosine kinase are found in approximately 30% of patients with acute myelogenous leukemia (AML) and are associated with a poor prognosis. FLT3 ITD mutations result in constitutive kinase activation and are thought to be pathogenetically relevant, implicating FLT3 as a plausible therapeutic target. MLN518 (formerly CT53518) is a small molecule inhibitor of the FLT3, KIT, and platelet-derived growth-factor receptor (PDGFR) tyrosine kinases with significant activity in murine models of FLT3 ITD-positive leukemia. Given the importance of FLT3 and KIT for normal hematopoietic progenitor cells, we analyzed the effect of MLN518 on murine hematopoiesis under steady-state conditions, after chemotherapy-induced myelosuppression, and during bone marrow transplantation. In these assays, we show that MLN518 has mild toxicity toward normal hematopoiesis at concentrations that are effective in treating FLT3 ITD-positive leukemia in mice. We also demonstrate that MLN518 preferentially inhibits the growth of blast colonies from FLT3 ITD-positive compared with ITD-negative patients with AML, at concentrations that do not significantly affect colony formation by normal human progenitor cells. In analogy to imatinib mesylate in BCR-ABL-positive acute leukemia, MLN518-induced remissions may not be durable. Our studies provide the basis for integrating this compound into chemotherapy and transplantation protocols.  相似文献   

11.
Activating mutations of the protein tyrosine kinase (PTK) FLT3 can be found in approximately 30% of patients with acute myeloid leukemia (AML), thereby representing the most frequent single genetic alteration in AML. These mutations occur in the juxtamembrane (FLT3 length mutations; FLT3-LMs) and the second tyrosine kinase domain of FLT3-TKD and confer interleukin 3 (IL-3)-independent growth to Ba/F3 cells. In the mouse bone marrow transplantation model, FLT3-LMs induce a myeloproliferative syndrome stressing their transforming activity in vivo. In this study, we analyzed the pro-proliferative and antiapoptotic potential of FLT3 in FLT3-LM/TKD-mutation-transformed Ba/F3 cells and AML-derived cell lines. The PTK inhibitor SU5614 has inhibitory activity for FLT3 and selectively induces growth arrest, apoptosis, and cell cycle arrest in Ba/F3 and AML cell lines expressing a constitutively activated FLT3. In addition, the compound reverts the antiapoptotic and pro-proliferative activity of FLT3 ligand (FL) in FL-dependent cells. No cytotoxic activity of SU5614 was found in leukemic cell lines that express a nonactivated FLT3 or no FLT3 protein. At the biochemical level, SU5614 down-regulated the activity of the hyperphosphorylated FLT3 receptor and its downstream targets, signal transducer and activator of (STAT) 3, STAT5, and mitogen-activated protein kinase (MAPK), and the STAT5 target genes BCL-X(L) and p21. Our results show that SU5614 is a PTK inhibitor of FLT3 and has antiproliferative and proapoptotic activity in AML-derived cell lines that endogenously express an activated FLT3 receptor. The selective and potent cytotoxicity of FLT3 PTK inhibitors support a clinical strategy of targeting FLT3 as a new molecular treatment option for patients with FLT3-LM/TKD-mutation(+) AML.  相似文献   

12.
Since the Food and Drug Administration approval of imatinib for treatment of chronic myeloid leukemia in 2001, tyrosine kinase inhibitors (TKIs) have become a mainstay in the care of many malignancies. In acute myeloid leukemia (AML), activating mutations in the FMS-like tyrosine kinase 3 (FLT3) gene result in survival and proliferation of leukemic blasts and are associated with adverse prognosis. Therefore, the FLT3 receptor is an appealing target for inhibition. Multiple small molecule TKIs are currently in development for FLT3-mutated AML, and agents are beginning to show promising efficacy. In other malignancies, the development of resistance to TKIs during the course of therapy has proven to be a challenge, and thus far, in clinical trials of FLT3 TKIs, resistance to inhibition represents a significant barrier to successful FLT3 inhibition. Understanding the mechanisms of resistance and overcoming these obstacles to target inhibition will be central to the success of these agents.  相似文献   

13.
Constitutive activation of FLT3 by internal tandem duplication (ITD) is one of the most common molecular alterations in acute myeloid leukemia (AML). FLT3/ITD mutations have also been observed in myelodysplastic syndrome patients both before and during progression to AML. Previous work has shown that insertion of an FLT3/ITD mutation into the murine Flt3 gene induces a myeloproliferative neoplasm, but not progression to acute leukemia, suggesting that additional cooperating events are required. We therefore combined the FLT3/ITD mutation with a model of myelodysplastic syndrome involving transgenic expression of the Nup98-HoxD13 (NHD13) fusion gene. Mice expressing both the FLT3/ITD and NHD13 transgene developed AML with 100% penetrance and short latency. These leukemias were driven by mutant FLT3 expression and were susceptible to treatment with FLT3 tyrosine kinase inhibitors. We also observed a spontaneous loss of the wild-type Flt3 allele in these AMLs, further modeling the loss of the heterozygosity phenomenon that is seen in human AML with FLT3-activating mutations. Because resistance to FLT3 inhibitors remains an important clinical issue, this model may help identify new molecular targets in collaborative signaling pathways.  相似文献   

14.
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is constitutively activated in approximately 30% of acute myelogenous leukemia (AML) patients and appears to confer an adverse prognosis. Thus, development of inhibitors and/or antibodies that specifically target FLT3 has been of substantial interest. In this regard, phase 1 and 2 trials involving FLT3 inhibitors have recently reported FLT3 inhibition and leukemic blast reduction in some patients. Despite this, issues such as specificity and resistance need to be addressed. Consequently, the development of alternative approaches for targeting FLT3 would be of great consequence. In the present report, we demonstrate that FLT3 siRNA effectively down-regulates FLT3 expression in Ba/F3 cells transfected with FLT3 containing an activating internal tandem duplication (ITD) in the juxtamembrane domain and FLT3-ITD-positive Molm-14 human leukemia cells. Treatment with the FLT3 siRNA results in growth inhibition and apoptosis of these cells. Furthermore, siRNA-induced down-regulation of FLT3 increased the sensitivity of both cell lines to treatment with the FLT3 inhibitor MLN518. This illustrates the potential benefit of combined therapeutic approaches.  相似文献   

15.
Levis M  Tse KF  Smith BD  Garrett E  Small D 《Blood》2001,98(3):885-887
Internal tandem duplication (ITD) mutations of the receptor tyrosine kinase FLT3 have been found in 20% to 30% of patients with acute myeloid leukemia (AML). These mutations constitutively activate the receptor and appear to be associated with a poor prognosis. Recent evidence that this constitutive activation is leukemogenic renders this receptor a potential target for specific therapy. In this study, dose-response cytotoxic assays were performed with AG1295, a tyrosine kinase inhibitor active against FLT3, on primary blasts from patients with AML. For each patient sample, the degree of cytotoxicity induced by AG1295 was compared to the response to cytosine arabinoside (Ara C) and correlated with the presence or absence of a FLT3/ITD mutation. AG1295 was specifically cytotoxic to AML blasts harboring FLT3/ITD mutations. The results suggest that these mutations contribute to the leukemic process and that the FLT3 receptor represents a therapeutic target in AML. (Blood. 2001;98:885-887)  相似文献   

16.
Aberrant FLT3 receptor signaling is common in acute myeloid leukemia (AML) and has important implications for the biology and clinical management of the disease. Patients with FLT3-mutated AML frequently present with critical illness, are more likely to relapse after treatment, and have worse clinical outcomes than their FLT3 wildtype counterparts. The clinical management of FLT3-mutated AML has been transformed by the development of FLT3 inhibitors, which are now in use in the frontline and relapsed/refractory settings. However, many questions regarding the optimal approach to the treatment of these patients remain. In this paper, we will review the rationale for targeting the FLT3 receptor in AML, the impact of FLT3 mutation on patient prognosis, the current standard of care approaches to FLT3-mutated AML management, and the diverse array of FLT3 inhibitors in use and under investigation. We will also explore new opportunities and strategies for targeting the FLT3 receptor. These include targeting the receptor in patients with non-canonical FLT3 mutations or wild-type FLT3, pairing FLT3 inhibitors with other novel therapies, using minimal residual disease testing to guide the targeting of FLT3, and novel immunotherapeutic approaches.  相似文献   

17.
Advances in molecular diagnostics in acute myeloid leukemia (AML) have translated into significant advances in our understanding of disease prognosis and biology, and the identification of new targets for therapy. The best described of these are mutations in Fms-like tyrosine kinase 3, nucleophosmin 1, and CCAAT enhancer-binding protein-alpha in those with cytogenetically AML, which allow more accurate risk stratification and help better 'target' patients who may benefit from allogeneic transplantation (specifically those with activating FLT3 mutation). Among the new targets identified for clinical trials are FLT3 mutation (a target for tyrosine kinase inhibitors), CD33 expression (a target of monoclonal antibodies and immunotoxins), aberrant methylation (target of hypomethylating agents), and overexpression of the chemokine receptor CXCR4 (a target for inhibition by small molecule or monoclonal antibody). We are advancing towards an era of personalized medicine in AML, and can now better identify specific patients who may benefit from specific therapies with less toxicity.  相似文献   

18.
Mutations of FLT3 occur in around a third of acute myeloid leukemia (AML) patients and are associated with poor outcomes. Multiple targeted tyrosine kinase inhibitors (TKI) have been developed with different selectivity and potency for FLT3 mutant clones. Indications for which FLT3 inhibitor to use depend on the clinical setting and disease status. Patients with relapsed or refractory AML benefit from a different TKI than those with de novo AML or following stem cell transplant. Moreover, each FLT3 TKI displays a different toxicity and inhibitory profile and may be most useful in patients with varying comorbidities and types of FLT3 mutations.  相似文献   

19.
FLT3 mutations are present in about one‐third of patients with acute myeloid leukemia (AML). Several FLT3 inhibitors have been used in clinical trials, and these include midostaurin, sorafenib, quizartinib, crenolanib, and gilteritinib. Monotherapy with early tyrosine kinase inhibitors (TKIs) did not have much success; however, later generation agents have shown more promising results. Combination with conventional chemotherapy may have benefit as evidenced by recently presented results, and data from ongoing trials are eagerly awaited. Several trials are also evaluating TKI given after HSCT, and a large international randomized trial is planned. We may be close to an era of targeted therapy where the standard of care for this biologically defined subset will involve incorporation of a FLT3 TKI during induction chemotherapy and after HSCT. It is important that our community continues to collaborate to conduct well‐designed clinical trials to properly define the role of FLT3 TKIs in therapy for FLT3‐mutant AML.  相似文献   

20.
Fetal liver tyrosine kinase 3 internal tandem duplication (FLT3 ITD) mutations are the most common molecular abnormality associated with adult acute myeloid leukemia (AML). To exploit this molecular target, a number of potent and specific FLT3 kinase inhibitors have been developed and are currently being tested in early phase clinical trials of patients with refractory AML. To explore the efficacy of combining a FLT3 inhibitor with standard AML chemotherapy drugs, we tested the effect of combining the FLT3 inhibitor SU11248 with cytarabine or daunorubicin on the proliferation and survival of cell lines expressing either mutant (FLT3 ITD or FLT3 D835V) or wild-type (WT) FLT3. SU11248 had additive-to-synergistic inhibitory effects on FLT3-dependent leukemic cell proliferation when combined with cytarabine or daunorubicin. The synergistic interaction of SU11248 and the traditional antileukemic agents was more pronounced for induction of apoptosis. SU11248 inhibited the proliferation of primary AML myeloblasts expressing mutant FLT3 ITD but not WT FLT3 protein. Combining SU11248 and cytarabine synergistically inhibited the proliferation of primary AML myeloblasts expressing FLT3 ITD but not WT FLT3 protein. These data suggest that the addition of potent FLT3 inhibitors such as SU11248 to AML chemotherapy regimens could result in improved treatment results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号