首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple, rapid and convenient high performance liquid chromatographic method, which permits the simultaneous determination of paracetamol, 4-aminophenol and 4-chloracetanilide in pharmaceutical preparation has been developed. The chromatographic separation was achieved on porous graphitized carbon (PGC) column using an isocratic mixture of 80/20 (v/v) acetonitrile/0.05 M potassium phosphate buffer (pH 5.5) and ultraviolet detection at 244 nm. Correlation coefficient for calibration curves in the ranges 1–50 μg ml−1 for paracetamol and 5–40 μg ml−1 for 4-aminophenol and 4-chloroacetanilide were >0.99. The sensitivity of detection is 0.1 μg ml−1 for paracetamol and 0.5 μg ml−1 for 4-aminophenol and 4-chloroacetanilide. The proposed liquid chromatographic method was successfully applied to the analysis of commercially available paracetamol dosage forms with recoveries of 98–103%. It is suggested that the proposed method should be used for routine quality control and dosage form assay of paracetamol in pharmaceutical preparations. The chromatographic behaviour of the three compounds was examined under variable mobile phase compositions and pH, the results revealed that selectivity was dependent on the organic solvent and pH used. The retention selectivity of these compounds on PGC was compared with those of octadecylsilica (ODS) packing materials in reversed phase liquid chromatography. The ODS column gave little separation for the degradation product (4-aminophenol) from paracetamol, whereas PGC column provides better separation in much shorter time.  相似文献   

2.
A simple, rapid and reproducible high-performance liquid chromatography (HPLC) assay for cisapride, its oxidation product (OP), propyl and butyl parabens in a pharmaceutical formulation is described. Chromatography was performed at room temperature by pumping acetonitrile–20 mM phosphate buffer pH 7 (50:50, v/v) at 1.5 ml min−1 through C8 reversed-phase column. Cisapride, OP, propyl and butyl parabens were detected at 276 nm and were eluted at 9.7, 3.1, 5.1 and 7.1 min, respectively. Calibration plots were linear (r>0.999) for all compounds from 0.5 to 200 μg ml−1 for cisapride and OP and 0.1–200 μg ml−1 for propyl and butyl parabens. Detection limits for cisapride, OP, propyl and butyl parabens were 40, 46, 48 and 54 ng ml−1, respectively. Forced degradation investigations showed that cisapride does not undergo degradation under heat, acidic and basic conditions but it was susceptible to oxidation. The proposed method was successfully applied to the assay of cisapride in the presence of preservatives and OP in a commercial suspension.  相似文献   

3.
Three new spectrophotometric procedures for the simultaneous determination of fosinopril and hydrochlorothiazide are described. The first method, derivative-differential spectrophotometry, comprised of measurement of the difference absorptivities derivatized in the first-order (ΔD1) of a tablet extract in 0.1 N NaOH relative to that of an equimolar solution in methanol at wavelengths of 227.6 and 276.4 nm, respectively. The second method, depends on the application ratio spectra derivative spectrophotometric method to resolve the interferance due to spectral overlapping. The analytical signals were measured at 237.9, 243.8 nm for fosinopril and 262.4, 269.3 and 278.6 nm for hydrochlorothiazide in the binary mixture, in the first derivative of the ratio spectra of the mixture solutions in methanol. Calibration graphs were established for 4.0–50.0 μg ml−1 fosinopril and 2.0–14.0 μg ml−1 hydrochlorothiazide in binary mixture. The third method, absorbance ratio method, the determination of fosinopril and hydrochlorothiazide was performed by using the absorbances read at 210.0, 219.5 and 271.7 nm in the zero-order spectra of their mixture. The developed methods were compared with absorbance ratio method. Application of the suggested procedures were successfully applied to the determination of this compound in synthetic mixtures and in pharmaceutical preparations, with high percentage of recovery, good accuracy and precision.  相似文献   

4.
A simple and rapid isocratic LC/MS coupled with electrospray ionization (ESI) method for simultaneous separation and determination of adenine, hypoxanthine, adenosine and cordycepin in Cordyceps sinensis (Cs) and its substitutes was developed. 2-Chloroadenosine was used as internal standard for this assay. The optimum separation for these analytes was achieved using the mixture of water, methanol and formic acid (85:14:1, v/v/v) as a mobile phase and a 2.0×150 mm Shimadzu VP-ODS column. Selective ion monitoring (SIM) mode ([M+H]+ at m/z 136, 137, 268, 252 and 302) was used for quantitative analysis of above four active components. The regression equations were liner in the range of 1.4–140.0 μg ml−1 for adenine, 0.6–117.5 μg ml−1 for hypoxanthine, 0.5–128.5 μg ml−1 for adenosine and 0.5–131.5 μg ml−1 for cordycepin. The limits of quantitation (LOQ) and detection (LOD) were, respectively 1.4 and 0.5 μg ml−1 for adenine, 0.6 and 0.2 μg ml−1 for hypoxanthine, 0.5 and 0.1 μg ml−1 for adenosine and cordycepin. The recoveries of four constituents were from 93.5 to 107.0%. The nucleoside contents of various types of natural Cs and its substitutes were determined and compared with this developed method.  相似文献   

5.
A simple and specific reversed phase HPLC method for the determination of dinitrosopiperazine in simulated gastric juice using UV detection was reported. The chromatographic resolution of the analyte and the internal standard isosorbide dinitrate was performed without extraction from the gastric juice on a reversed phase ODS column. Isocratic elution was carried out with methanol–0.02 M sodium dihydrogen phosphate (60:40 v/v, pH 3.0) at a flow rate of 1.0 ml min−1 with UV detection at 238 nm. The calibration graph was linear over the concentration range 0.072–2.88 μg ml−1 of dinitrosopiperazine with minimum detectability (S/N=2) of 0.01 μg ml−1 (8×10−8 M). Inter-day and intra-day precisions calculated as% RSD were in the range 0.32–0.38% and 0.19–0.25% respectively. Inter-day and intra-day accuracies calculated as% error were in the range 0.18–0.21 and 0.08–0.11% respectively. The proposed method was successfully applied to the study of the possible in–vivo production of DNPZ under the standard nitrosation conditions recommended by WHO.  相似文献   

6.
Four stability-indicating methods were developed for the determination of sumatriptan succinate in the presence of its degradation products. The first method depends on the quantitative densitometric evaluation of thin-layer chromatography of sumatriptan succinate in the presence of its degradation products without any interference. Cyclohexane–dichloromethane–diethylamine (50:40:10 v/v/v) was used as a mobile phase and the chromatogram was scanned at 228 nm. This method determines sumatriptan succinate in the concentration range l–8 μg per spot with mean percentage recovery 100.52±1.23%. The second and third methods depend on the use of first-derivative (D1) and second-derivative (D2) spectrophotometry at 234 and 238 nm, respectively. These methods determine the drug in the concentration range 1.25–10 μg ml−1 with mean percentage recovery 99.91±1.01% and 99.96±1.13% for (D1) and (D2), respectively. The fourth method depends on the use of ratio derivative spectrophotometric technique. The amplitude in the first derivative of the ratio spectra at 235 nm was selected to determine the cited drug in the presence of its degradation products. Calibration graph is linear in the concentration range 1.25–10 μg ml−1 with mean percentage recovery 100.19±1.19%. The suggested methods were successfully applied for determining sumatriptan succinate in bulk powder, laboratory-prepared mixtures and pharmaceutical dosage forms (Imigran tablet) with good accuracy and precision. The results obtained by applying the proposed methods were statistically analyzed and compared with those obtained by the reported method.  相似文献   

7.
Simple, sensitive and accurate spectrophotometric methods for the determination of glafenine and metoclopramide hydrochloride are described. The first method is based on the oxidation of glafenine with iodic acid in strong acid medium to give a coloured diphenylbenzidine derivative and subsequent measurement of the coloured product at 509 nm. Beer's law is obeyed over the concentration range 2.5–20 μg ml−1. The second method depends on the interaction of metoclopramide hydrochloride with p-dimethylaminocinnamaldehyde, to give a red coloured schiff's base with an absorbance maximum at 548 nm. Obedience to Beer's law is achieved over the concentration range 5–30 μg ml−1. First-derivative method is used to overcome the slight interference of p-dimethylaminocinnamaldehyde reagent blank at the wavelength of measurement. Linearity between the peak heights at 576 nm versus concentration range 5–25 μg ml−1 metoclopromide hydrochloride is obtained. The proposed methods have been successfully applied to the determination of these drugs in commercial products without interference. The validity of the methods is assessed by applying the standard addition technique, the relative standard deviation is less than 1%. The proposed methods are compared with reference methods with good agreement.  相似文献   

8.
Three sensitive and reproducible methods for quantitative determination of meloxicam (mel) in pure form and in pharmaceutical formulations are presented. The first method is high performance liquid chromatography by which the drug is determined in the presence of its degradation products over concentration range 100–500 μg ml−1 with mean percentage accuracy 100.13±0.53. The second method is based on measuring the absorbance of the formed neutral complex between basic methylene blue and mel in phosphate buffer (pH 8) at λ=653.5 nm over concentration range 1–5 μg ml−1 with mean percentage accuracy 99.12±1.18. The third method is based on reaction between 2,3-dichloro-5,6-dicyano-p-benzoquinone resulting in the formation of an intense orange red coloured product after heating in a boiling water bath for 5 min. The coloured product exhibits an absorption maximum at 455 nm, over concentration range 40–160 μg ml−1 with mean percentage accuracy 100.53±1.04.  相似文献   

9.
A simple, fast and reliable reversed-phase liquid chromatographic method was developed for the assay of lidocaine in human aqueous humour samples. The samples were analysed without any preliminary treatment on a C8 column with UV detection at 225 nm. The mobile phase consisted of methanol/sodium dihydrogen phosphate (30 mM) containing sodium pentansulphonate (10 mM) adjusted to pH 2.5 with phosphoric acid (50:50 v/v). Validation of the method showed it to be precise, accurate and linear over the concentration range of analysis with a limit of detection of 0.2 μg ml−1. The limit of quantitation was 2.5 μg ml−1 with a relative standard deviation of 2.5%. Linear regression analysis in the range 2.5–60 μg ml−1 gave correlation coefficients higher than 0.999. No interference from three commonly co-administered drugs was observed. The method developed was applied to the analysis of lidocaine in aqueous humour samples in order to evaluate and compare the efficacy of two different forms of administration of lidocaine for topical anaesthesia in cataract surgery.  相似文献   

10.
A simple, rapid and sensitive high-performance liquid chromatographic (HPLC) method was developed for the assay of enrofloxacin in raw material and injection. The validation method yielded good results and included the range, linearity, precision, accuracy, specificity, recovery, limit of detection (LOD) and limit quantification (LOQ) values. The HPLC separation was carried out by reversed phase chromatography on a C-18 absorbosphere column (150×4.6 mm i.d. 5 μm particle size) with a phase composed of sodium acetate (pH 4.7; 0.1 M): acetonitrile (60:40, v/v; pH 5.0), pumped isocratically at a flow rate of 1.5 ml min−1. The effluent was monitored at 278 nm with the eluting solvent. The calibration graph for enrofloxacin was linear from 10.0 to 80.0 μg ml−1.  相似文献   

11.
The delayed clearance of vancomycin results in accumulation of vancomycin crystalline degradation product, CDP-1, in the bodies of renally impaired patients. The 2 isomers, CDP-1-M (major) and CDP-1-m (minor), of CDP-1 are antibiotically inactive but cross-react with some immunoassays that use polyclonal antibodies resulting in falsely elevated results. A high performance liquid chromatographic (HPLC) method was developed to quantitate vancomycin and CDP-1 in the serum of renal patients. After solid phase extraction of 200 μl serum, the separation of vancomycin, the 2 isomers of CDP-1 and the internal standard (cefazolin) was accomplished by gradient HPLC on a reversed phase C18 column with detection at 210 nm. Linearity was established from 1 to 25 and 25 to 100 μg ml−1 vancomycin and 1 to 25 μg ml−1 CDP-1. Coefficients of variation for vancomycin and CDP-1 were 3.3–8.6% (n=10) and 2.8–5.2% (n=8).  相似文献   

12.
The National Cancer Institute (NCI) has screened many nucleosides for antiviral activity to the HIV-1 virus. Drugs demonstrating antiviral activity are tested in animal models to evaluate their toxicity and pharmacokinetic characteristics. These drugs are subsequently evaluated for efficacy in human clinical trials. Sensitive analytical methodology is needed to quantify nucleosides in plasma and other biological matrices in support of these studies. Battelle has modified and validated a reversed phase high-performance liquid chromatography (HPLC) method for several of these nucleosides that could be easily adapted for similar compounds. Methods have been validated for 6-chloro-2′,3′-dideoxyguanosine (6ClddG), 6-chloro-2′,3′-dideoxyinosine (6ClddI) and their primary metabolites 2′,3′-dideoxyguanosine (ddG) and 2′,3′-dideoxyinosine (ddI) in both rat and dog plasma containing EDTA. The method has also been validated for 2′-fluoro-2′,3′-dideoxyara-adenosine (βFlddA) and its primary metabolite 2′-β-fluorodideoxyinosine (βFddI) in rat plasma containing heparin. Calibration plasma standards were prepared over ranges of 0.1–10 μg ml−1 for βFlddA and βFddI, 0.1–50 μg ml−1 for 6ClddG and ddG, and 0.25–50 μg ml−1 for 6ClddI and ddI in plasma containing 4 μg ml−1 pentostatin. The addition of pentostatin to the plasma samples inhibits in-vitro deamination of the drug after collection. Quality control (QC) standards were prepared containing the appropriate anticoagulant and 4 μg ml−1 pentostatin at concentrations within each of the bracketed calibration ranges in plasma. These methods have been successfully applied to plasma samples generated during various animal studies.  相似文献   

13.
Stable isotope analogues of phenytoin are useful for pulse dose pharmacokinetic studies in epilepsy patients. A simultaneous assay was developed to quantitate phenytoin (5,5-diphenylhydantoin) and its stable isotope analogue [13C3]-phenytoin (5,5-diphenyl-2,4,5-13C3-hydantoin) from plasma. Quantitation was achieved by GC-MS analysis of liquid/liquid extracted plasma samples, with [2H10]-phenytoin (5,5-di(pentadeuterophenyl)-hydantoin) as an internal standard. The total coefficients of variance (C.V.t) were <7% for phenytoin (2.5–40 μg ml−1) and <10.3% for [13C3]-phenytoin (0.1–6.0 μg ml−1). The accuracy of the assay varied from 87.8–100.1% (phenytoin, 2.5–40 μg ml−1) and 89.6–116.3% ([13C3]-phenytoin, 0.02–6.0 μg ml−1). The assay was tested under in vivo conditions by administration of a pulse dose of the stable isotope analogue to a single rat dosed to steady-state with fosphenytoin, a phenytoin prodrug. The results of the in vivo experiment demonstrate the usefulness of this assay for future pharmacokinetic studies in special population epilepsy patients.  相似文献   

14.
A flow-injection manifold is proposed for the determination of epinephrine. The experimental procedure is based on the indirect biamperometric detection of the drug by using Fe(III)-Fe(II) as an indicating redox system and a flow-through detector with two polarized Pt wire electrodes. The calibration graph is linear over the range 0.3–20 μg ml−1 of epinephrine. The relative standard deviation for the determination of 10 μg ml−1 of epinephrine is 1.5% (n = 25) and the sample throughput is 153 h−1. The method was applied to the determination of epinephrine in two commercially available pharmaceutical preparations.  相似文献   

15.
A simple and effective procedure is proposed for the study and simultaneous determination of adrenaline and noradrenaline. The fluorimetric determination of both substances is performed in a flow injection assembly and by oxidation of both drugs with the solved molecular oxygen. The influence of different parameters is empirically studied and the interpretation of the reaction mechanism is also added. The determination of adrenaline is monitored at 450 nm and the outputs at 520 nm correspond to the adrenaline and noradrenaline global amount; for both lectures λexc 329 nm. The influence of temperature is relevant and analytical determination occurred at 55 °C by immersing the sample loop in a water bath. The linear range for adrenaline is over 0.5–20 μg ml−1, limit of detection for both compounds is 0.2 μg ml−1: the influence of foreign compounds as potential interferents is also tested; and, finally the procedure is applied to determination of both chatecolamines in synthetic samples.  相似文献   

16.
A simple and rapid fluorimetric method for the determination of 9-fluoro-10-[N-(4′-methyl)piperazinyl]-7-oxo-2,3-dihydro-7H-pyrido[1,2,3-d,e][1–4]benzothyazin-6-carboxylic acid hydrochloride (MF 934), in serum and in pharmaceutical formulations, has been developed based on its strong fluorescence, in 0.1 N H2SO4, at 526 nm (excitation wavelength at 340 nm). The procedure which involves the direct dilution of the sample requires only a few minutes and the sample volume is only 20–100 μl of serum, depending on the drug concentration. Tedious sample preparation procedures such as extraction, deproteinization, or centrifugation are not necessary. The minimum concentration that can be detected is 0.3 ng ml−1, the standard curve in 0.1 N H2SO4 was found to be linear from 0.005 to 1.5 μg ml−1 and from 0.01 to 0.07 g in plasma after dilution with 0.1 N H2SO4.  相似文献   

17.
LC assays utilizing fully automated sample preparation procedures on Zymark PyTechnology™ Robot and BenchMate™ Workstation for the quantification of hydrochlorothiazide (HCTZ) in human plasma and urine have been developed. After aliquoting plasma and urine samples, and adding internal standard (IS) manually, the robot executed buffer and organic solvent addition, liquid—liquid extraction, solvent evaporation and on-line LC injection steps for plasma samples, whereas, BenchMate™ performed buffer and organic solvent addition, liquid—liquid and solid-phase extractions, and on-line LC injection steps for urine samples. Chromatographic separations were carried out on Beckman Octyl Ultrasphere column using the mobile phase composed of 12% (v/v) acetonitrile and 88% of either an ion-pairing reagent (plasma) or 0.1% trifluoroacetic acid (urine). The eluent from the column was monitored with UV detector (271 nm). Peak heights for HCTZ and IS were automatically processed using a PE-Nelson ACCESS*CHROM laboratory automation system. The assays have been validated in the concentration range of 2–100 ng ml−1 in plasma and 0. 1–20 μg ml−1 in urine. Both plasma and urine assays have the sensitivity and specificity necessary to determine plasma and urine concentrations of HCTZ from low dose (6.25/12.5 mg) administration of HCTZ to human subjects in the presence or absence of losartan.  相似文献   

18.
It has been established that the antibiotic pefloxacin (Abaktal) methane-sulphonate reacts with Fe(III) at pH 1.00–8.00 to form a water-soluble complex with maximum absorbance at 360 nm. The composition of the complex, determined spectrophotometrically by the application of Job's, molar-ratio and Bent—French's methods, was pefloxacin: Fe(III) = 1:1 (pH = 2.50; λ = 360 nm; μ = 0.1 M). The relative stability constant, obtained by the methods of Sommer and Asmus was 105.02 (pH = 2.50; λ = 360 nm; μ = 0.1 M). The molar absorptivity of the complex at 360 nm was found to be 4.8 × 103 l mol−1 cm−1, Beer's law was followed for pefloxacin concentrations of 2.15–85.88 μg ml−1. The lower sensitivity limit of the method was 2.15 μg ml−1. The relative standard deviation (n = 10) was 0.57–1.07%. The method can be applied to the rapid and simple determination of pefloxacin in aqueous solutions and tablets.  相似文献   

19.
A reproducible reverse phase high pressure liquid chromatography (RP-HPLC) method for the determination of biotin in multivitamin-multimineral tablets has been developed and validated. This method involves reverse phase separation of the component monitored by absorbance at 200 nm wavelength. The method has excellent precision and accuracy with S.D. 0.83 and 2.9%, respectively. The established linearity range was 0.5–2 μg ml−1 (r2>0.9999). The recovery of biotin from spiked placebo was >97% over the linear range. The extraction procedure is simple and the HPLC conditions separate biotin from its degradation products and excipients. The method has been successfully used in determining biotin content in 4 brands of commercially available multivitamin- multimineral tablets.  相似文献   

20.
In addition to its antifungal activity, clotrimazole attracts interest as an anti-inflammatory drug. In order to correlate this effect with plasma concentrations in mice, a capillary electrophoretic method was developed. Sample preparation was carried out by protein precipitation using methanol. Quantification of clotrimazole was achieved by means of capillary electrophoresis using ketoconazole as an internal standard (IS). The background electrolyte (BGE) composed of a Tris buffer solution (100 mM, pH 3.0, adjusted with acetic acid) and methanol (8:2, v/v). Injection was carried out electrokinetically with 10 kV over a time period of 20 s. A special rinsing procedure utilizing a sequence of a SDS/methanol solution, a sodium hydroxide solution, water and BGE, was applied to enhance the reproducibility. With this procedure, an intermediate precision (day-to-day precision) of the area ratios of clotrimazole and IS of 5.0% for 0.5 μg ml−1 and 2.6% for 10 μg ml−1 was obtained. In summary, with the described capillary zone electrophoresis (CZE) method it is possible to handle small sample volumes of 60 μl, to detect clotrimazole concentrations of 0.3 μg ml−1 (limit of detection), and to quantify clotrimazole down to concentrations of 0.5 μg ml−1 (limit of quantification).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号