首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
The objective of this investigation is to develop a multi-unit sustained release dosage form of a water soluble drug from a completely aqueous environment avoiding the use of any organic solvent. The drug was complexed with resin and calcium alginate or polyethyleneimine-treated calcium alginate beads loaded with the resinate were prepared by a ionic/polyelectrolyte complexation method. The effect of different formulation variables on the characteristics of the beads was investigated. Although the drug release from spherical and smooth-surfaced calcium alginate beads in both acidic and alkaline dissolution media were slower than those obtained from plain resinate, none of the variables were found to prolong the drug release considerably due to rapid swelling and disintegration of calcium alginate beads in alkaline medium. On the other hand, drug release from polyethyleneimine-treated calcium alginate beads in acidic medium did not increase appreciably following a burst release. However, in alkaline medium, the drug release was found to increase gradually and extend over a different period of time depending on the intensity of polyethyleneimine treatment. Scanning electron micrographs revealed the formation of a dense membrane around the resinate-loaded calcium alginate matrix. The membrane appeared to be responsible for reduced swelling and protracted disintegration of the beads resulting in slow release of the drug. The results indicate that sustained release of a water soluble drug from polyethyleneimine-treated calcium alginate beads could be achieved by adjusting the formulation variables.  相似文献   

2.
Propranolol-HCl-loaded calcium alginate (ALG) beads, propranolol-resin complex (resinate)-loaded calcium alginate (RALG) beads and polyethyleneimine (PEI)-treated RALG (RALG-PEI) beads were prepared by ionotropic gelation/polyelectrolyte complexation method. The beads were evaluated and compared in respect of drug entrapment efficiency (DEE) and release characteristics in simulated gastric fluid (SGF, 0.1(N) HCl, pH 1.2) and simulated intestinal fluid (SIF, phosphate buffer, pH 6.8). DEE of RALG beads was considerably higher than that of ALG beads containing unresinated drug. However, DEE of RALG beads decreased with increase in both gelation time and concentration of the gel forming Ca2+ ions due to drug displacement from resinate. PEI treatment of RALG beads further decreased DEE as the polycation also displaced the drug from the resinate. The release of drug from all the beads was slow and incomplete in SGF owing to considerably less swelling of the beads and the decrease in drug release from the beads followed the order: RALG-PEI相似文献   

3.
Hydrophilic matrix tablets based on the alginate system have been used in relation to their possible function in modified drug delivery formulations using metronidazole as a model drug. The matrix tablets were prepared by direct compression using different grades of alginate. The effect of some factors (i.e. particle size of drug, additive used, and pH of medium) on drug release from alginate-based matrix tablets was also investigated. Swelling, erosion, and in vitro release studies of the matrix tablets were carried out in 0.1N HCl or phosphate buffer (pH 6.8). The alginate-based matrix tablets swelled or eroded while in contact with the aqueous medium and formed a continuous gel layer or underwent combination of swelling and erosion. The swelling action of alginate matrices is controlled by the rate of its hydration in the medium. Different grades of alginate insignificantly influenced the matrix swelling in acidic medium but significantly influenced in neutral medium. The presence of ammonium or calcium salts induced tablet disintegration in acidic medium. However, incorporation of calcium acetate and sodium bicarbonate can alter the tablet swelling in acidic medium. Release studies showed that all investigated factors influence the drug release. The extent of matrix swelling, erosion, and diffusion of drug determined the kinetics as well as mechanism of drug release from alginate-based matrix tablets. Most of the release data in acidic medium showed a good fit into Korsmeyer-Peppas equation but fitted well with zero-order release model, in neutral medium.  相似文献   

4.
Calcium alginate gel-coated pellets were developed by forming an insoluble gel coat on extruded-spheronized pellets by interfacial complexation. Experiments were designed to investigate the effect of pellet size, alginate type, alginate concentration, and dissolution medium on swelling and drug release behavior. Low swelling in acidic media was related to proton-calcium ion exchange forming insoluble acid gels. In contrast, partial formation of soluble sodium alginate in 0.1M NaCl induced water uptake, resulting in greater swelling. Drug release from coated pellets showed a lag time when the gel coat hydrated and swelled, followed by a zero-order release. Significantly slower release was observed when either the pellet size or the alginate concentration was increased. Alginate with high guluronic acid content gave the slowest release. Different types of alginate with high mannuronic acid content showed different release behaviors that are probably due to the different monomer sequences and botanical sources. The faster drug release in acidic media and 0.1M NaCl compared to water is probably due to reduced calcium cross-linking in the gel. These results suggest that the pellet size, alginate type and concentration and dissolution medium influenced the swelling and drug release behavior of calcium alginate gel-coated pellets.  相似文献   

5.
Polymeric reinforcement and coatings of alginate beads were carried out to control the release rate of drug from alginate beads. A poorly water-soluble ibuprofen (IPF) was selected as a model drug. A commercially available Eudragit® RS100 was also used as a polymer. Effects of polymeric contents, the presence of plasticizers and amount of drug loading on the release rate of drug were investigated. The release rate of drug from alginate beads in the simulated gastric fluid did not occur within 2 h but released immediately when dissolution media were switched to the simulated intestinal fluid. No significant difference of release rate from polymer-reinforced alginate bead without plasticizers was observed when compared to plain (simple) beads. However, the release rate of drug from polymer-reinforced alginate beads was further sustained and retarded when aluminium tristearate (AT) as a plasticizer was added to polymer. However, polyethylene glycol 400 (PEG400) did not change the release rate of drug from alginate beads although PEG400 was used to improve dispersion of polymer and sodium alginate, and plasticize Eudragit® RS100 polymer. The presence of plasticizer was crucial to reinforce alginate gel matrices using a polymer. As the amount of drug loading increased, the release rate of drug increased as a result of decreasing effects of polymer contents in matrices. The significantly sustained release of drug from polymer-coated alginate beads occurred as the amount of polymer increased because the thickness of coated membrane increased so that cracks and pores of the outer surface of alginate beads could be reduced. The sustained and retarded action of polymer-reinforced and coated beads may result from the disturbance of swelling and erosion (disintegration) of alginate beads. From these findings, polymeric-rein-forcement and coatings of alginate gel beads can provide an advanced delivery system by retarding the release rate of various drugs.  相似文献   

6.
Novel pH-sensitive carboxymethylcellulose-(polyacrylamide-grafted-sodium alginate) interpenetrating network (IPN) hydrogel beads loaded with ketoprofen were prepared using ionotropic gelation and covalent crosslinking method. Polyacrylamide-grafted-sodium alginate (PAAm-g-SA) copolymer was synthesized by free radical polymerization using ammonium persulfate (APS) as free radical initiator under the nitrogen atmosphere followed by hydrolysis using sodium hydroxide. The grafting, alkaline hydrolysis and crosslinking reactions were confirmed by Fourier transform infrared spectroscopy (FTIR). Beads were characterized by differential scanning calorimetric (DSC) analysis, thermogravimetric analysis (TGA), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The mechanical properties of the prepared IPNs were investigated. The erosion was observed with the beads containing only ionic crosslinks whereas it was negligible with the beads containing both ionic and covalent crosslinks. The swelling of the beads and drug release was significantly increased when pH of the medium was changed from acidic to alkaline (P<0.05). The swelling and release data were fitted to an empirical equation to determine the transport mechanism. Drug release followed case II transport mechanism in acidic medium whereas anomalous/non-Fickian transport mechanism was observed in alkaline medium.  相似文献   

7.
Sodium alginate, a biopolymer, was employed in the formulation of matrix tablets. They cracked or laminated at acidic pH, compromising their dissolution performance. Improved mechanical strength and reduced barrier permeability of calcium alginate gel provided the rationale for cross-linking the alginate matrix to sustain drug release. Studies had suggested that the incorporation of soluble calcium salts in alginate matrix tablets could sustain drug release at near-neutral pH due to in situ cross-linking. However, results from the present study showed otherwise when gastrointestinal pH conditions were simulated. Significant reduction in drug release rate was only observed when an external calcium source was utilized at low concentration. High calcium ion concentrations caused matrix disintegration. In contrast, matrices pre-coated by calcium alginate could sustain drug release at pH 1.2 followed by pH 6.8 for over 12h. The presence of cross-linked barrier impeded matrix lamination and preserved matrix structure, contributing to at least three-fold reduction in drug release at pH 1.2. Zero order release as well as delayed burst release could be achieved by employing appropriate grade of alginate and cross-linking conditions.  相似文献   

8.
Sustained release polymeric particles containing diclofenac sodium dispersed in Gelucire® matrix and encapsulated in calcium alginate shell were prepared with different drug-to-polymer ratios and also with different concentrations of sodium alginate for a fixed drug-to-polymer ratio in an aqueous environment. Spherical particles were formed by dropping an emulsion of diclofenac sodium in Gelucire® matrix, emulsified with sodium alginate, into calcium chloride solution. The gelled beads formed by ionotropic gelation of alginate with calcium ions showed sustained release of the water soluble drug in in-vitro release study. Drug release was a function of square-root of time, suggesting a matrix diffusion release pattern. The rate of release was significantly suppressed with increasing proportions of Gelucire® in the mixture. Sustained and complete release was achieved with Gelucire® of low melting point and low HLB value. No significant drug release occurred in a dissolution medium of pH 1.5, whereas complete release was observed at pH 6.8, consistent with considerable swelling of the alginate gel at this pH.  相似文献   

9.
In this study, periodate oxidation of sodium alginate was controlled such that the oxidized alginate could form isolatable beads with Ca+2 ions. The beads of oxidized alginate having a degree of oxidation 1 mol%, entrapped 89% flurbiprofen and released almost all of its content within 1.5 h in pH 7.2 phosphate buffer solution. The beads were covalently crosslinked with adipic dihydrazide (ADH) in addition to ionic crosslinks and were characterized. Scanning electron microscopy revealed that the beads were spherical having smooth surfaces. The drug entrapment efficiency decreased (90–86%) with increasing concentration of ADH (2–6% w/v) in the gelation medium. However, the beads prolonged the drug release in alkaline dissolution medium up to 8 h depending upon the concentration of ADH. The beads prepared with 2% ADH swelled more rapidly and led to faster drug release in either pH 1.2 HCl solution or pH 7.2 phosphate buffer solution. The swelling tendencies were reduced and the drug release became slower with higher concentrations in either fluid. The drug diffusion from the beads followed super case II transport mechanism. FTIR spectroscopy indicated stable nature of flurbiprofen in the beads and therefore had potential as sustained oral delivery system for the drug.  相似文献   

10.
目的酮洛芬果胶钙凝胶小球和酮洛芬海藻酸钙凝胶小球的制备及性能比较。方法利用果胶、海藻酸钠及二者不同比例,以酮洛芬为模型药物采用滴制法制备凝胶小球,考察2种多糖物质对药物包封率和释放行为的影响。利用大鼠肠囊外翻实验对凝胶小球的生物黏附性能进行比较,通过对释放机理的探讨和凝胶小球溶胀性的测定进一步证明2种凝胶小球释药行为的不同。结果酮洛芬果胶钙凝胶小球和酮洛芬海藻酸钙凝胶小球均具有良好的生物黏附性能,果胶钙凝胶小球主要通过溶胀作用缓慢释药,而海藻酸钙凝胶小球的释药与凝胶小球慢慢吸水后骨架溶蚀有关。结论酮洛芬果胶钙凝胶小球和酮洛芬海藻酸钙凝胶小球通过与生物黏膜的紧密结合缓慢释药,而二者的释放行为有所不同。  相似文献   

11.
Chitosan beads (CBs) incorporating Ca-alginate microspheres (CAMs), containing a drug, were prepared as an oral sustained delivery system. Stable and monodisperse Ca-alginate microspheres loaded with drug were obtained by a membrane emulsification method. The Ca-alginate microspheres were encapsulated in chitosan beads by the ionotropic gelation method with a polyelectrolyte complex reaction between two oppositely charged polyions. The surface and internal characteristics of the beads were improved by ionic cross-linking in tripolyphosphate (TPP) solution adjusted to pH 5.0. The release experiments were performed using lidocaine.HCl (cationic drug) and sodium salicylate (anionic drug) as model drugs. Initial release of drugs depended on the degree of swelling. Ca-alginate microspheres encapsulated in chitosan beads were superior to both drug-loaded CBs and CAMs beads for sustained release because they had a three-layer composition; a calcium alginate core bounded by an inter-phasic chitosan-alginate membrane, which itself was surrounded by a layer of chitosan-TPP.  相似文献   

12.
Chitosan beads (CBs) incorporating Ca-alginate microspheres (CAMs), containing a drug, were prepared as an oral sustained delivery system. Stable and monodisperse Ca-alginate microspheres loaded with drug were obtained by a membrane emulsification method. The Ca-alginate microspheres were encapsulated in chitosan beads by the ionotropic gelation method with a polyelectrolyte complex reaction between two oppositely charged polyions. The surface and internal characteristics of the beads were improved by ionic cross-linking in tripolyphosphate (TPP) solution adjusted to pH 5.0. The release experiments were performed using lidocaine·HCl (cationic drug) and sodium salicylate (anionic drug) as model drugs. Initial release of drugs depended on the degree of swelling. Ca-alginate microspheres encapsulated in chitosan beads were superior to both drug-loaded CBs and CAMs beads for sustained release because they had a three-layer composition; a calcium alginate core bounded by an inter-phasic chitosan-alginate membrane, which itself was surrounded by a layer of chitosan-TPP.  相似文献   

13.
Context: Methyl salicylate–lactose physical mixture (1:1 and 1:1.5 ratios) was incorporated into calcium alginate beads by a coacervation method involving an ionotropic gelation/polyelectrolyte complexation approach.

Objectives: This study aims to determine the influence of chitosan coating over the beads on drug entrapment efficiency (DEE) and release characteristics in artificial saliva compared to that of the uncoated beads.

Results and discussion: Changes in formulation parameters (gelation time, concentrations of Ca2+ and alginate) resulted in decrease in DEE of chitosan-uncoated beads (p?<?0.05). This is due to the combined effects of drug leach-out from the physical mixture by Ca2+ ions, alginate gel matrix cross-linking and free drug diffusion from chitosan-uncoated beads. However, an increment in the DEE was seen for chitosan-coated beads. A rapid drug release profile was noted for uncoated beads, but for chitosan-coated beads a sustained release profile was depicted depending upon the coating conditions. Chitosan-coated beads had reduced swelling and erosion properties and thus behaved as a physical barrier to drug release. Shifting from anomalous transport type to Fickian transport confirmed the formation of physical barrier onto chitosan-coated beads.

Conclusion: Calcium alginate beads could be used as a controlled-release system for methyl salicylate–lactose physical mixture.  相似文献   

14.
The aim of the present work was to investigate the swelling behavior and the in vitro release of the antihypertensive drug verapamil hydrochloride from calcium alginate and chitosan treated calcium alginate beads. Calcium-alginate beads, chitosan-coated alginate beads and alginate-chitosan mixed beads were synthesized and their morphology was investigated by scanning electron microscopy. The swelling ability of the beads in different media was found to be dependent on the presence of the polyelectrolyte complex between alginate and chitosan, the pH of the aqueous media and the initial physical state of the beads. The results revealed that the encapsulation of verapamil in both calcium-alginate and calcium alginate-chitosan mixed beads exceeded 80%. Considering the in vitro stability of verapamil encapsulating beads, 70% of the drug released from wet and dry plain calcium alginate beads within 1 and 3h, respectively. The presence of chitosan was found to retard significantly the release from wet beads. However, in the case of dry beads the presence of chitosan had no significant effect on the initial release stage and significantly increased the release on the later stage. The results were analyzed by using a semi-empirical equation and it was found that the drug release mechanisms were either "anomalous transport" or "case-II transport".  相似文献   

15.
The effect of four formulation and processing variables, calcium concentration, drying condition, concentration of hardening agent and hardening time on the bead properties and the release characteristics of a model drug from calcium pectinate gel (CPG) beads were studied. A poorly soluble compound, indomethacin, was used as the model drug. The investigated variables affected the bead size, the entrapment efficiency and the release of indomethacin from CPG beads. Drug release was found to be a function of the formulation and processing variables. The slower drug release was achieved from the formulations with higher calcium concentration, higher concentration of hardening agent and longer hardening time. The drying condition, however, did not influence the drug release. The mechanism of indomethacin release from CPG beads followed the diffusion controlled model for an inert porous matrix. All drug release data fitted well to the Higuchi square root time expression.  相似文献   

16.
The effect of four formulation and processing variables, calcium concentration, drying condition, concentration of hardening agent and hardening time on the bead properties and the release characteristics of a model drug from calcium pectinate gel (CPG) beads were studied. A poorly soluble compound, indomethacin, was used as the model drug. The investigated variables affected the bead size, the entrapment efficiency and the release of indomethacin from CPG beads. Drug release was found to be a function of the formulation and processing variables. The slower drug release was achieved from the formulations with higher calcium concentration, higher concentration of hardening agent and longer hardening time. The drying condition, however, did not influence the drug release. The mechanism of indomethacin release from CPG beads followed the diffusion controlled model for an inert porous matrix. All drug release data fitted well to the Higuchi square root time expression.  相似文献   

17.
Floating calcium alginate beads, designed to improve drug bioavailability from oral preparations compared with that from many commercially available and modified release products, have been investigated as a possible gastro-retentive dosage form. A model drug, riboflavin, was also incorporated into the formula.

The aims of the current work were (a) to obtain information regarding the structure, floating ability and changes that occurred when the dosage form was placed in aqueous media, (b) to investigate riboflavin release from the calcium alginate beads in physiologically relevant media prior to in vivo investigations.

Physical properties of the calcium alginate beads were investigated. Using SEM and ESEM, externally the calcium alginate beads were spherical in shape, and internally, air filled cavities were present thereby enabling floatation of the beads. The calcium alginate beads remained buoyant for times in excess of 13 h, and the density of the calcium alginate beads was <1.000 g cm−3. Riboflavin release from the calcium alginate beads showed that riboflavin release was slow in acidic media, whilst in more alkali media, riboflavin release was more rapid.

The characterisation studies showed that the calcium alginate beads could be considered as a potential gastro-retentive dosage form.  相似文献   


18.
This paper presents the development of new pH-sensitive, amphiphilic and biocompatible hydrogels based on alginate-g-PCL, cross-linked with calcium ions to form beads, prepared for controlled delivery of poorly water-soluble drug. We have focused our study on the effect of the length of PCL chains (530 and 1250 g mol−1). Swelling profiles obtained clearly indicated that these hydrogels swell slightly (10-14%) in a simulated gastric fluid (pH 1.2), and strongly (700-1300% before disintegration) in a simulated intestinal fluid (pH 6.8). In both media, rates of swelling were lower for beads based on amphiphilic derivatives than for alginate/Ca2+ ones due to the hydrophobic PCL grafts, and decreased when hydrophobic character increased. A model drug, theophylline, was entrapped into these hydrogels and release studies were carried out. The drug was protected in acidic fluid (only 14-20% of release for alginate-g-PCL hydrogel against 35% of release for alginate hydrogel during 350 min). The drug is released completely in neutral fluid due to ion exchanges and disintegration of the hydrogel. PCL leads to decrease in the release kinetics in SIF (2 h for alginate-g-PCL/Ca2+ beads against 1 h for alginate/Ca2+ beads). It was demonstrated that the establishment of clusters inside beads by intramolecular interactions between PCL grafts of 530 g mol−1 in salt media allowed to retain the drug and to slow down its release considerably.  相似文献   

19.
The purpose of the study was to develop a multiunit sustained release dosage form of diltiazem hydrochloride using a natural polymer, sodium carboxymethyl xanthan gum and polyethyleneimine (PEI) from a completely aqueous environment. PEI treated diltiazem resin complex loaded beads were characterized by morphology, drug entrapment efficiency, in vitro and in vivo release behaviour. 40% and 80% drug was released in 2 hour in pH 1.2 and in 5 to 6 h in pH 6.8 respectively depending on the formulation variables. The prolonged release was attributed to decreased swelling of the beads due to PEI treatment. Maintaining the shape throughout the dissolution process, PEI treated diltiazem resin complex beads released the drug following non-Fickian transport phenomena. In vivo pharmacokinetic evaluation in rabbits shows slow and prolonged drug release when compared with diltiazem solution. The designed beads are suitable for prolonged release of a water soluble drug under a complete aqueous environment using natural gum.  相似文献   

20.
The work investigates the development and optimization of chitosan-alginate beads containing Losartan potassium (LP) through ionotropic/external gelation technique using 32 factorial design. The effect of polymer-blend concentrations i.e. chitosan and sodium alginate on the drug encapsulation efficiency (DEE%), and cumulative drug release after 20 h (R20h %) was optimized. The DEE% of all these beads was within the range of 67.12 ± 1.97–89.81 ± 1.52 % with sustained in vitro drug release of 80.98–97.13 % over 20 h. The in vitro drug release from these beads was followed first order kinetic model. The beads were also characterized by FE-SEM, FTIR and XRD analysis. The swelling of chitosan–alginate beads containing LP were influenced by the pH of the test medium. Chitosan coated alginate beads were developed as oral sustained delivery carriers for LP in order to improve patient compliance, to reduce side effects associated with it and also to reduce the dose/dosing frequency in the management of hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号