首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
肝癌发生过程中的差异基因表达   总被引:1,自引:1,他引:1  
目的:应用寡核苷酸芯片研究正常肝脏、慢性乙型肝炎、肝硬化及肝癌的基因表达谱,筛选肝癌相关基因.方法:分别对正常肝组织及肝炎、肝硬化和肝癌组织进行总RNA抽提并纯化,反转录得到cDNA,生物素标记cRNA探针,分别与含有19378个已知基因的寡核苷酸芯片进行杂交,Gene Scanner 3000激光系统扫描,GenePix Pro3.0分析软件读取处理杂交信号.结果:在慢性乙型肝炎、肝硬化及肝癌组织中,筛选出共同差异表达基因81个,其中持续上调表达基因53个,持续下调表达基因数28个.结论:寡核苷酸基因表达谱芯片能够快速筛选出肝癌相关基因,有多种基因共同参与肝癌发生的整个过程.  相似文献   

4.
Background: Alcohol abuse during pregnancy injures the fetal brain. One of alcohol’s most important neuroteratogenic effects is neuronal loss. Rat models have shown that the cerebellum becomes less vulnerable to alcohol‐induced neuronal death as it matures. We determined if maturation‐dependent alcohol resistance occurs in mice and compared patterns of gene expression during the alcohol resistant and sensitive periods. Methods: Neonatal mice received alcohol daily over postnatal day (PD) 2 to 4 or PD8 to 10. Purkinje cells and granule cells were quantified on PD25. The temporal expression patterns of 4 neuro‐developmental genes and 3 neuro‐protective genes in the cerebellum were determined daily over PD0 to 15 to determine how gene expression changes as the cerebellum transitions from alcohol‐vulnerable to alcohol‐resistant. The effect of alcohol on expression of these genes was determined when the cerebellum is alcohol sensitive (PD4) and resistant (PD10). Results: Purkinje and granule cells were vulnerable to alcohol‐induced death at PD2 to 4, but not at PD8 to 10. Acquisition of maturation‐dependent alcohol resistance coincided with changes in the expression of neurodevelopmental genes. The vulnerability of cerebellar neurons to alcohol toxicity declined in parallel with decreasing levels of Math1 and Cyclin D2, markers of immature granule cells. Likewise, the rising resistance to alcohol toxicity paralleled increasing levels of GABA α‐6 and Wnt‐7a, markers of mature granule neurons. Expression of growth factors and genes with survival promoting function (IGF‐1, BDNF, and cyclic AMP response element binding protein) did not rise as the cerebellum transitioned from alcohol‐vulnerable to alcohol‐resistant. All 3 were expressed at substantial levels during the vulnerable period and were not expressed at higher levels later. Acute alcohol exposure altered the expression of neurodevelopmental genes and growth factor genes when administered either during the alcohol vulnerable period or resistant period. However, the patterns in which gene expression changed varied among the genes and depended on timing of alcohol administration. Conclusions: Mice have a temporal window of vulnerability in the first week of life, during which cerebellar neurons are more sensitive to alcohol toxicity than during the second week. Expression of genes governing neuronal maturation changes in synchrony with the acquisition of alcohol resistance. Growth factors do not rise as the cerebellum transitions from alcohol‐vulnerable to alcohol‐resistant. Thus, a process intrinsic to neuronal maturation, rather than rising levels of growth factors, likely underlies maturation‐dependent alcohol resistance.  相似文献   

5.
Ruchkin V  Martin A 《Lancet》2005,365(9458):451-453
  相似文献   

6.
7.
The enteric nervous system (ENS) is composed of neurons and glial cells, organized as interconnected ganglia within the gut wall, which controls peristalsis of the gut wall and secretions from its glands. The Ret receptor tyrosine kinase is expressed throughout enteric neurogenesis and is required for normal ENS development; humans with mutations in the RET locus have Hirschsprung disease (HSCR, an absence of ganglia in the colon), and mice lacking Ret have total intestinal aganglionosis. The Ret mutant mouse provides a tool for identifying genes implicated in development of the ENS. By using RNA from WT and Ret mutant (aganglionic) gut tissue and DNA microarrays, we have conducted a differential screen for ENS-expressed genes and have identified hundreds of candidate ENS-expressed genes. Forty-seven genes were selected for further analysis, representing diverse functional classes. We show that all of the analyzed genes are expressed in the ENS and that the screen was sensitive enough to identify genes marking only subpopulations of ENS cells. Our screen, therefore, was reliable and sensitive and has identified many previously undescribed genes for studying ENS development. Moreover, two of the genes identified in our screen Arhgef3 and Ctnnal1, have human homologues that map to previously identified HSCR susceptibility loci, thus representing excellent candidates for HSCR genes. This comprehensive profile of ENS gene expression refines our understanding of ENS development and serves as a resource for future developmental, biochemical, and human genetic studies.  相似文献   

8.
《Pancreatology》2022,22(1):9-19
Background/objectivesPancreatic ductal adenocarcinoma (PDAC) is characterized by excessive desmoplasia and autophagy-dependent tumorigenic growth. Pancreatic stellate cells (PSCs) as a predominant stromal cell type play a critical role in PDAC biology. We have previously reported that autophagy facilitates PSC activation, however, the mechanism remains unknown. We investigated the mechanism of autophagy in PSC activation.MethodsWe compared gene expression profiles between patient-derived PSCs from pancreatic cancer and chronic pancreatitis using a microarray. The stromal expression of target gene in specimen of PDAC patients (n = 63) was analyzed. The effect of target gene on autophagy and activation of PSCs was investigated by small interfering RNAs transfection, and the relationship between autophagy and ER stress was investigated. We analyzed the growth and fibrosis of xenografted tumor by orthotopic models.ResultsIn analysis of gene expression microarray, endoplasmic reticulum aminopeptidase 2 (ERAP2) upregulated in cancer-associated PSCs was identified as the target gene. High stromal ERAP2 expression is associated with a poor prognosis of PDAC patients. Knockdown of ERAP2 inhibited unfolded protein response mediated autophagy, and led to inactivation of PSCs, thereby attenuating tumor-stromal interactions by inhibiting production of IL-6 and fibronectin. In vivo, the promoting effect of PSCs on xenografted tumor growth and fibrosis was inhibited by ERAP2 knockdown.ConclusionsOur findings demonstrate a novel mechanism of PSCs activation regulated by autophagy. ERAP2 as a promising therapeutic target may provide a novel strategy for the treatment of PDAC.  相似文献   

9.
The cDNAs encoding Xenopus laevis prolactin (PRL) and the alpha and beta subunits of thyroid-stimulating hormone (TSH alpha and TSH beta, respectively) have been cloned from a pituitary library. Results of developmental RNA blot analysis contradict the long-held biological role for PRL as a juvenilizing hormone in amphibia. The pituitary gland of a premetamorphic tadpole expresses PRL mRNA at very low levels. The abundance of PRL mRNA increases late in metamorphosis as a response to thyroid hormone (TH), suggesting that PRL is more likely to have a function in the frog than in the tadpole. TSH alpha and -beta mRNA levels increase through prometamorphosis; this rise does not appear to be regulated directly by TH. At climax, both TH and TSH mRNA levels drop. The sequential morphological changes that characterize prometamorphosis depend upon the gradual increase of endogenous TH, which peaks at climax. This increase in TH in turn depends upon the lack of a traditional thyroid-pituitary negative-feedback loop throughout prometamorphosis.  相似文献   

10.
Cancer-testis (CT) genes have a restricted expression in normal tissues except testis and a wide range of tumor types. Testis is an immune-privileged site as a result of a blood barrier and lack of HLA class I expression on the surface of germ cells. Hence, if testis-specific genes are expressed in other tissues, they can be immunogenic. Expression of some CT genes in a high percentage of brain tumors makes them potential targets for immunotherapy. In addition, expression of CT genes in cancer stem cells may provide special targets for treatment of cancer recurrences and metastasis. The presence of antibodies against different CT genes in patients with advanced tumors has raised the possibility of polyvalent antitumor vaccine application.  相似文献   

11.
Our previous studies suggested the importance of gonadotropin-releasing hormones (GnRHs) for initiation of spawning migration of chum salmon, although supporting evidence had been not available from oceanic fish. In farmed masu salmon, the amounts of salmon GnRH (sGnRH) mRNAs in the forebrain increased in the pre-pubertal stage from winter through spring, followed by a decrease toward summer. We thus hypothesized that gene expression for GnRHs in oceanic chum salmon changes similarly, and examined this hypothesis using brain samples from winter chum salmon in the Gulf of Alaska and summer fish in the Bering Sea. They were classified into sexually immature and maturing adults, which had maturing gonads and left the Bering Sea for the natal river by the end of summer. The absolute amounts of GnRH mRNAs were determined by real-time PCRs. The amounts of sGnRH mRNA in the maturing winter adults were significantly larger than those in the maturing summer adults. The amounts of sGnRH and chicken GnRH mRNAs then peaked during upstream migration from the coast to the natal hatchery. Such changes were observed in various brain loci including the olfactory bulb, terminal nerve, ventral telencephalon, nucleus preopticus parvocellularis anterioris, nucleus preopticus magnocellularis and midbrain tegmentum. These results suggest that sGnRH neurons change their activity for gonadal maturation prior to initiation of homing behavior from the Bering Sea. The present study provides the first evidence to support a possible involvement of neuropeptides in the onset of spawning migration.  相似文献   

12.
Intrinsic or resting state functional connectivity MRI and structural covariance MRI have begun to reveal the adult human brain's multiple network architectures. How and when these networks emerge during development remains unclear, but understanding ontogeny could shed light on network function and dysfunction. In this study, we applied structural covariance MRI techniques to 300 children in four age categories (early childhood, 5-8 y; late childhood, 8.5-11 y; early adolescence, 12-14 y; late adolescence, 16-18 y) to characterize gray matter structural relationships between cortical nodes that make up large-scale functional networks. Network nodes identified from eight widely replicated functional intrinsic connectivity networks served as seed regions to map whole-brain structural covariance patterns in each age group. In general, structural covariance in the youngest age group was limited to seed and contralateral homologous regions. Networks derived using primary sensory and motor cortex seeds were already well-developed in early childhood but expanded in early adolescence before pruning to a more restricted topology resembling adult intrinsic connectivity network patterns. In contrast, language, social-emotional, and other cognitive networks were relatively undeveloped in younger age groups and showed increasingly distributed topology in older children. The so-called default-mode network provided a notable exception, following a developmental trajectory more similar to the primary sensorimotor systems. Relationships between functional maturation and structural covariance networks topology warrant future exploration.  相似文献   

13.
14.
Epilepsy is the most common neurological disorder of young humans. Each year 150,000 children in the United States experience their first seizure. Antiepileptic drugs (AEDs), used to treat seizures in children, infants, and pregnant women, cause cognitive impairment, microcephaly, and birth defects. The cause of unwanted effects of therapy with AEDs is unknown. Here we reveal that phenytoin, phenobarbital, diazepam, clonazepam, vigabatrin, and valproate cause apoptotic neurodegeneration in the developing rat brain at plasma concentrations relevant for seizure control in humans. Neuronal death is associated with reduced expression of neurotrophins and decreased concentrations of survival-promoting proteins in the brain. beta-Estradiol, which stimulates pathways that are activated by neurotrophins, ameliorates AED-induced apoptotic neurodegeneration. Our findings present one possible mechanism to explain cognitive impairment and reduced brain mass associated with prenatal or postnatal exposure of humans to antiepileptic therapy.  相似文献   

15.
The aim of this study was to determine whether expression of prostanoid receptor genes varied with gestational age or labour in the decidua and chorion of baboons. Tissues were obtained at the time of Caesarean hysterectomy in 15 baboons, 10 prior to the onset of labour in the last third of pregnancy and 5 in spontaneous labour at term. Expression of prostanoid receptor genes was determined using Northern blot analysis and the level of expression was related to each of three housekeeping genes. Expression of the genes encoding the EP(1) and FP receptor in decidua and the EP(4) receptor in chorion was lower with advancing gestational age. Expression of the EP(2) receptor gene was lower in labour in decidua, whereas expression of the IP receptor gene was higher in labour in both decidua (twofold) and chorion (fourfold). It is concluded that there is a complex pattern of change in expression of prostanoid receptor genes in chorion and decidua with advancing gestational age and in association with labour. It seems likely that direct effects of prostaglandins on the choriodecidua may have an important role in parturition in the primate.  相似文献   

16.
17.
自噬是广泛存在于真核细胞中通过溶酶体机制降解自身成分的一种代谢途径.自噬不仅可通过激活经典的自噬小体-溶酶体途径,而且还可通过影响凋亡和坏死的发生、发展对细胞死亡进行调控.目前,自噬在急性脑缺血缺氧后神经元损伤方面的作用及其具体机制尚不明确.研究表明,缺血缺氧后的自噬具有神经保护作用,如维持神经元稳态、减少神经元死亡等;但也有研究认为,自噬能通过激活多种通路加重缺血缺氧后神经元损伤,甚至诱导神经元死亡.  相似文献   

18.
Genome-wide association studies have highlighted a number of genes involved in autophagy, which are of potential importance in the pathogenesis of Crohn's disease (CD). The associated polymorphisms in ATG16L1 and IRGM have been confirmed, and functional studies have begun to shed light on how they link to CD pathogenesis. In this review we consider the most salient aspects of this rapidly expanding field.  相似文献   

19.
BACKGROUND: In utero exposure to ethanol can result in severe fetal brain defects. Previous studies showed that ethanol induces apoptosis in differentiated cortical neurons. However, we know little about ethanol's effects on proliferating embryonic cortical progenitors. This study investigated the impact of ethanol exposure on the Fas/Apo-1/CD95 suicide receptor pathway, and on the survival of proliferating cortical neuroepithelial progenitors. METHODS: Murine embryonic-derived primary cortical neuroepithelial cells were maintained as neurosphere cultures and exposed to a dose range of ethanol for periods ranging from 1 to 5 days. Programmed cell death was measured by 4 independent means (Annexin-V staining, caspase activation, DNA fragmentation, and autophagic vacuole formation). Surface Fas/Apo-1 suicide receptor expression was measured by flow cytometry. Expression of Fas/Apo-1-associated DISC-complex genes was measured by quantitative polymerase chain reaction. RESULTS: Ethanol exposure did not substantially increase apoptosis, necrosis, or surface Fas/Apo-1 expression. Moreover, ethanol significantly decreased caspase activation and autophagic activity. Finally, ethanol exposure induced mRNA expression of genes that constitute the death receptor complex. CONCLUSIONS: This study provides surprising evidence that ethanol does not induce either programmed cell death or necrosis of immature progenitors during neurogenesis, although ethanol may render neural progenitors susceptible to future apoptotic insults. Furthermore, our novel observation that ethanol suppresses autophagy is consistent with a hypothesis that ethanol promotes premature neural progenitor maturation. Taken together with our previous data regarding the role of the Fas/Apo-1 receptor in neural development, we conclude that ethanol disrupts basic proliferation and differentiation machinery rather than initiating cell death per se.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号