首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of adenosine in the development of ischemia induced pathological changes has been examined in Mongolian gerbils. A dramatic increase in the concentrations of adenosine, inosine and hypoxanthine was detected by microdialysis in the dorsal part of hippocampus and in the striatum immediately after 5 min bilateral occlusion of the carotid arteries. From a resting value of about 0.5 microM the concentration of adenosine increased to more than 10 microM. The adenosine levels became normalized within 30 min after ischemia. Inosine and hypoxanthine levels were higher and they increased and also returned towards control somewhat later than adenosine. A second occlusion resulted in a similar but somewhat smaller increase in purine levels. Carotid occlusion for up to 12 min had no major, lasting effect on the binding to adenosine A1-receptors in the CA-regions of the hippocampus, as determined by autoradiography. Neuronal and vascular changes (degeneration of neurons, mitochondrial destruction and ribosomal disaggregation, astroglial oedema) due to ischemia (3-12 min, followed by 48 h recirculation) was studied with light and electron microscopy in the selectively vulnerable CA1 area of hippocampus. In one series of experiments the adenosine antagonist theophylline (20 mg/kg i.p.), given 15 min prior to a 5 min occlusion, significantly enhanced the ischemia induced changes. In another experiment the adenosine uptake inhibitor propentofylline (HWA 285, 10 mg/kg), injected 15 min before a 12 min carotid occlusion, reduced the neuronal (90%) and astroglial changes (84%) due to ischemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Severe forebrain ischemia was produced in rats by occluding both carotid and vertebral arteries. Following 30 min ischemia brains were recirculated for 8 or 24 h. Twelve animals subjected to 8 or 24 h recirculation (n = 6, each group) were given alpha-difluoromethylornithine (DFMO; injected intraperitoneally) immediately before recirculation. At the end of the experiments brains were frozen and samples were taken from the cerebellum, cortex, caudatoputamen and hippocampus. Samples from the left hemisphere were used for measuring ornithine decarboxylase (ODC) activity, and those from the right hemisphere for determining putrescine profiles. During recirculation ODC activity increased markedly in all brain structures, the most pronounced change being in the caudatoputamen after 8 h recirculation. Putrescine increased drastically after 8 h and even more after 24 h recirculation. DFMO-treatment significantly reduced ODC activity after 8 h recirculation and following 24 h recirculation. Putrescine, however, was significantly reduced following 24 h but not after 8 h recirculation. The discrepancy between reduction in ODC activity and putrescine levels in DFMO-treated animals was most prominent in the hippocampus after 8 h recirculation: here DFMO reduced ODC activity to control values without affecting putrescine levels. The results suggest that the observed overshoot in putrescine formation following ischemia is only partly caused by activation of ODC.  相似文献   

3.
Polyamine metabolism in transient focal ischemia of rat brain.   总被引:4,自引:0,他引:4  
W Paschen  L Csiba  G R?hn  D Bereczki 《Brain research》1991,566(1-2):354-357
Polyamine metabolism was studied in rat brains subjected to 30 min transient cerebral ischemia by measuring the activity of the key enzyme ornithine decarboxylase (ODC) and levels of the polyamines putrescine, spermidine and spermine. A transient increase in ODC activity was apparent after 4 h of recirculation in the ipsilateral cortex and striatum (P less than 0.05). Putrescine levels were significantly increased in the ipsilateral striatum after 4 h of recirculation, and after 24 h of recirculation in both the ipsilateral cortex and striatum. During ischemia spermidine levels were significantly reduced in the ipsilateral hemisphere and spermine levels in the ipsilateral cortex. It is suggested that during ischemia polyamines are released from neurons into the extracellular compartment and cleared into the blood.  相似文献   

4.
Mongolian gerbils were anesthetized with halothane and forebrain ischemia was induced by occluding both common carotid arteries. After 2, 4, 6, 8, or 10 min of vascular occlusion clips were removed and animals allowed to recover for 8 or 24 h. At the end of the experiments animals were reanesthetized and their brains frozen in situ. Tissue samples were taken from the cerebral cortex, striatum, hippocampus, and thalamus for determination of ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) activity by measurement of the release of 14CO2 from [14C]ornithine and S-[14C]adenosylmethionine, respectively. A transient increase in ODC activity was found after 8 h of recirculation following cerebral ischemia in all brain structures studied. ODC activity was significantly increased after 8 h of recirculation in the hippocampus of animals subjected to 4 min of ischemia, in the cortex and striatum after 6 min of ischemia, and in the thalamus after 8 min of vascular occlusion. ODC activity had already reached a plateau in the hippocampus after 4 min of vascular occlusion and in the cortex, striatum, and thalamus after 8 min, since there is no further increase in activity even after 10 min of ischemia. After cerebral ischemia and 24 h of recirculation ODC activity returned to control levels throughout the forebrain regardless of the duration of ischemia. SAMDC activity was significantly reduced after 8 h of recirculation following 4 to 10 min of ischemia in the cortex and 8 min of ischemia in the striatum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
(-)-Epigallocatechin gallate has a potent antioxidant property and can reduce free radical-induced lipid peroxidation as a green tea polyphenol. In previous study, systemic administration of (-)-epigallocatechin gallate immediately after ischemia has been shown to inhibit the hippocampal neuronal damage in the gerbil model of global ischemia. Polyamines are thought to be important in the generation of brain edema and neuronal cell damage associated with various types of excitatory neurotoxicity. We examined the effects of delayed administration of (-)-epigallocatechin gallate on the changes in polyamine levels and neuronal damage after transient global ischemia in gerbils. To produce transient global ischemia, both common carotid arteries were occluded for 3 min with micro-clips. The gerbils were treated with (-)-epigallocatechin gallate (50 mg/kg, i.p.) at 1 or 3 h after ischemia. The polyamines; putrescine, spermidine, and spermine levels were examined using high performance liquid chromatography in the cerebral cortex and hippocampus 24 h after ischemia. Putrescine levels in the cerebral cortex and hippocampus were increased significantly after ischemia and the delayed administrations of (-)-epigallocatechin gallate (1 or 3 h after ischemia) attenuated the increases. Only minor changes were noted in the spermidine and spermine levels after ischemia. In histology, neuronal injuries in the hippocampal CA1 regions were evaluated quantitatively 5 days after ischemia. (-)-Epigallocatechin gallate administered 1 h or 3 after ischemia significantly reduced hippocampal neuronal damage. The present results show that the delayed administrations of (-)-epigallocatechin gallate inhibit the transient global ischemia-induced increase of putrescine levels in the cerebral cortex and hippocampus. (-)-Epigallocatechin gallate is neuroprotective against neuronal damage even when administered up to 3 h after global ischemia. These findings suggest that (-)-epigallocatechin gallate may be promising in the acute treatment of stroke.  相似文献   

6.
The use of glutamate antagonists and GABA agonists may protect neurons from the effects of transient ischemia. Felbamate is a new antiepileptic drug with glutamate antagonist and GABA agonist properties, We tested the efficacy of felbamate in a gerbil model of transient forebrain ischemia. Damage assessment was done with silver staining at 7 and 28 days after 5 min of bilateral carotid occlusion, Cerebral cortex, hippocampus (CA1 and CA4), thalamus and striatum were evaluated on a 4-point scoring system, The animals sacrificed at 28 days were also tested in a water-maze task to assess recovery of function, The initial dose of felbamate (300 mg/kg) was given 30 min before the ischemic insult in one set of animals and 30 min after the insult in another set of animals. There were 8 animals tested per group (total: 48 animals). There was significant neuronal protection with the use of felbamate, both before and after ischemia in all regions of the brain. Protection was seen in animals sacrificed at 7 and 28 days, Protection was moderate when felbamate was used before ischemia. It was highly significant when felbamate was given 30 min after the insult. Behavioral studies however did not show any difference in the felbamate treated animals versus the saline treated controls. The structural protection with felbamate was very significant when used in the post-ischemic period. This window for protection merits further evaluation in relation to the clinical setting of stroke.  相似文献   

7.
Somatosensory evoked potentials (SEPs) as well as change following transient cerebral ischemia in the gerbil were characterized in this study. SEPs were measured in each gerbil before ischemia (day -1), during ischemia, 10 min, 2, 4, 8, 24, 48 h and 8 days after recirculation. During bilateral carotid occlusion, SEP amplitude was dramatically reduced and central conduction time was significantly increased. During recirculation these values showed an improvement when compared to ischemic but not to control values. Moreover at 8 days of recirculation they were still statistically different from control values. Felbamate administration at the dose of 150 mg kg(-1), immediately after recirculation was shown to ameliorate neurophysiological recovery following cerebral ischemia.  相似文献   

8.

The present experiments were undertaken to study whether the therapeutic inhibition of ischemic cell injury affects the postischemic disturbances in polyamine metabolism. Near complete forebrain ischemia was produced in Mongolian gerbils (Meriones unguiculatus) by occluding both common carotid arteries. Gerbils were subjected to 5 min cerebral ischemia and then immediately upon recirculation injected intraperitoneally with nimodipine (1.5 mg/kg;n=5) or pentobarbital (50 mg/kg;n=5). Untreated animals received the nimodipine vehicle whilst sham-operated animals served as controls. Following 96 h recirculation animals were reanesthetized and brains were frozen in liquid nitrogen. Polyamines (putrescine, spermidine, and spermine) were measured in samples (2–4 mg each) taken from the cerebral cortex and the CA1-subfield of the hippocampus. In addition, 10 μm thick coronal sections were prepared from the level of the dorsal hippocampus to determine histologically the extent of ischemic neuronal damage; this was quantified in the CA1-subfield of the hippocampus by counting the number of total and viable neurons/mm stratum pyramidale.

In untreated animals reversible cerebral ischemia produced a significant increase in putrescine and a decrease in spermine in the CA1-subfield of the hippocampus (increase in putrescine from 11.3±0.6 to 41.8±3.6 nmol/g,p<0.01; and decrease in spermine from 351±26 to 161±16 nmol/g,p<0.05). Spermidine, in contrast, did not change during recirculation in the hippocampus. In the cerebral cortex postischemic polyamine levels were not significantly different from those found in control animals. In all untreated animals subjected to reversible cerebral ischemia severe cell necrosis could be observed in the CA1-subfield of the hippocampus. It proved possible to inhibit significantly both ischemia-induced disturbances of polyamine metabolism and ischemic cell injury in the CA1-subfield of the hippocampus by barbiturate treatment (p<0.05). The effect of nimodipine on ischemic cell injury and ischemia-induced changes of polyamine levels was not significant. In all experimental animals the putrescine levels in the CA1-sector of the hippocampus correlated with the extent of ischemic cell damage in a threshold relationship: in animals in which the putrescine levels lay below 15 nmol/g less than 5% of neurons were damaged, whereas in animals with putrescine levels above 25 nmol/g only about 5% of neurons in the stratum pyramidale survived the 5 min cerebral ischemic period. We conclude that putrescine may be viewed as an important biochemical correlate of ischemic cell injury.

  相似文献   

9.
Reversible cerebral ischemia was produced in anesthetized Mongolian gerbils by occluding both common carotid arteries. After 5 min of ischemia, brains were recirculated for 8 or 24 h. Treated animals received a single intraperitoneal injection of pentobarbital (50 mg/kg) immediately after the aneurysm clips were removed. At the end of the experiments, animals were reanesthetized and their brains frozen in situ. Tissue samples were taken from the cerebral cortex, lateral striatum, CA1 subfield of the hippocampus, thalamus, and cerebellum for measuring ornithine decarboxylase (ODC) activity and putrescine levels. In addition, 20-microns-thick coronal tissue sections were taken from the level of the striatum and stained with hematoxylin/eosin for evaluating the extent of ischemic neuronal necrosis in the lateral striatum. In control animals ODC activity and putrescine levels amounted, respectively, to 0.32 +/- 0.03 nmol/g/h and 10.2 +/- 0.5 nmol/g in the cerebral cortex; 0.34 +/- 0.02 nmol/g/h and 12.8 +/- 0.5 nmol/g in the lateral striatum; 0.58 +/- 0.05 nmol/g/h and 10.5 +/- 0.7 nmol/g in the hippocampal CA1 subfield; 0.35 +/- 0.01 nmol/g/h and 9.8 +/- 0.4 nmol/g in the thalamus; and 0.25 +/- 0.01 nmol/g/h and 8.3 +/- 0.6 nmol/g in the cerebellum. After 5 min cerebral ischemia and 8 h recirculation, a significant 7- to 16-fold increase in ODC activity was observed in all forebrain structures studied. Following 24 h recirculation, ODC activity normalized in the cortex, striatum, and thalamus but was still significantly above control values in the hippocampal CA1 subfield.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
BACKGROUND AND PURPOSE: We sought to determine the effects of aging on regional cerebral blood flow and ischemic brain damage in transient cerebral ischemia in rats. METHODS: Five adult (5-6 months) and five aged (18-22 months) female spontaneously hypertensive rats were subjected to 20 minutes of bilateral carotid occlusion and 60 minutes of recirculation under amobarbital anesthesia (100 mg/kg i.p.). Regional cerebral blood flow in the hippocampus and striatum was measured using the hydrogen clearance method. Nine adult and 14 aged rats were subjected to 20 minutes of bilateral carotid occlusion or were sham-operated under ether anesthesia. Seven days after 20 minutes of cerebral ischemia, the rats' brains were perfusion fixed. Ischemic damage in the hippocampus and striatum was graded (0 [normal] to 3 [majority of neurons damaged]). RESULTS: After 20 minutes of bilateral carotid occlusion, striatal cerebral blood flow decreased to 9.1 +/- 1.5 and 3.9 +/- 2.0 ml/100 g/min in aged and adult rats, respectively, and hippocampal cerebral blood flow decreased to 8.6 +/- 2.4 and 5.7 +/- 2.4 in aged and adult rats, respectively. Although these ischemic cerebral blood flow values were not significantly different between the two age groups, scores for ischemic damage in the hippocampus CA-1 subfield and striatum were significantly higher in aged than in adult rats (p less than 0.05, Kruskal-Wallis' h test with Bonferroni correction). CONCLUSIONS: We conclude that aging may be a primary factor in the development of greater ischemic neuronal damage observed in aged hypertensive rats.  相似文献   

11.
Summary Twenty mongolian gerbils were anesthetized (1.5% halothane) and severe forebrain ischemia was produced in 15 animals by occluding both common carotid arteries. After 5 min ischemia brains were recirculated spontaneously. Immediately after ischemia nimodipine (1.5 mg/kg) or pentobarbital (50 mg/kg) was injected intraperitoneally into five animals. Four days later animals were reanesthetized (1.5% halothane); the brains were frozen with liquid nitrogen and cut in a cryostat. Ten-micrometer-thick coronal cryostat sections were stained with cresyl violet to assess the extent of ischemic cell damage in the lateral striatum, the CA1-layer of the hippocampus, and the thalamus. In addition, tissue samples (about 4 mg each) were taken from the lateral striatum, CA1 layer of the hippocampus and the thalamus. Putrescine levels were measured in these samples using reversed-phase high performance liquid chromatography and fluorescence detection. Reversible cerebral ischemia produced a significant increase in putrescine in the lateral striatum (from 11.15±0.79 to 44.83±11.76 nmol/g,P0.05), the CA1 subfield of the hippocampus (from 11.27±0.64 to 41.80±3.62 nmol/g,P0.05) and less so in the thalamus (from 11.28±0.70 to 16.50±1.71 nmol/g). Both postischemic nimodipine and barbiturate treatment of animals markedly reduced this increase in the lateral striatum to 14.09±1.41 and 15.75±1.38 nmol/g, respectively (P0.05 cf. untreated animals), to 29.82±6.04 and 23.21±3.12 nmol/g in the CA1-subfield of the hippocampus (P0.05 barbiturate-treated cf. untreated animals), and to 11.92±1.37 and 11.76±0.64 in the thalamus (P<0.05 barbiturate-treated cf. untreated animals). Severe neuronal necroses were apparent in the lateral striatum in four out of five animals but in none of the nimodipine- or barbiturate-treated animals. In the CA1 subfield of the hippocampus the number of necrotic cells/mm stratum pyramidale amounted to 202.1±9.8, 141.9±4.2 and 78.0±33.4 in untreated, nimodipine- or barbiturate-treated animals, respectively (P0.05 barbiturate-treated cf. control animals). It is suggested that putrescine, produced during recirculation following ischemia, contributes to the manifestation of ischemic cell injury. Putrescine may thus be taken as a significant biochemical correlate of ischemic cell damage.Supported by the Deutsche Forschungsgemeinschaft, grant Pa 266/2-4  相似文献   

12.
Temporary cerebral ischemia (15 min) produced by "four-vessel occlusion" in the rat causes neurological disorders, changes in behavior (locomotor hyperactivity), and neuronal damage in the neocortex, striatum, and especially the CA1 zone of the hippocampus. We have studied the effects of two calcium overload blockers, flunarizine (50 mg/kg p.o. twice a day) and cinnarizine (100 mg/kg p.o. twice a day), on these alterations. Cinnarizine markedly improved the functional abnormalities of ischemia but had little or no effect upon the neuronal damage. In contrast, flunarizine provided far greater neuronal protection but with less obvious effects upon behavioral parameters. However, there was evidence of sedation 2 h after treating animals with this dose of flunarizine that might have masked any positive effect of the drug on behavior. We conclude that under the present experimental conditions, there is no correlation between the early and late behavioral changes observed following a temporary cerebral ischemic episode and the histological damage observed in certain vulnerable neurons, particularly in the hippocampus, 72 h after the insult.  相似文献   

13.
Reversible cerebral ischemia was produced in Mongolian gerbils (Meriones unguicultatus) by occluding both common carotid arteries. After 5 min ischemia brains were recirculated, for 8, 24, 48, 72, or 96 h. An additional 6 animals were subjected to 10 min ischemia and 24 h recirculation. Sham-operated animals served as controls. At the end of the experiments, brains were frozenin situ and cut in a cryostat. Coronal sections, 10 μm thick, were taken for histological staining. In addition, tissue samples (2–4 mg each) were taken from the cortex, lateral caudoputamen, CA1-layer of the hippocampus, and thalamus. Polyamines (spermidine, spermine, and the precursor putrescine) were measured in these samples using reverse-phase HPLC and fluorescence detection after extraction and precolumn derivatization. Five-minute cerebral ischemia had no effect on the levels of putrescine, spermidine, or spermine. However, following recirculation, putrescine increased markedly with time, being most pronounced in the CA1-subfield of the hippocampus, less so in the cortex, and even less so in the thalamus. After prolonged recirculation, severe neuronal necroses could be observed only in regions exhibiting high putrescine levels. Spermidine or spermine did not change during recirculation, except in severely damaged regions: Here, spermine levels were markedly reduced following prolonged recirculation. The postischemic increase in putrescine is discussed in respect to the known multiple activities of putrescine.  相似文献   

14.
BACKGROUND AND PURPOSE: I studied the mechanism of postischemic neuronal degeneration in the hippocampus by an electrophysiological method. METHODS: Sequential changes of field potentials evoked by perforant path stimulation in the dentate gyrus and the CA1 region of the hippocampus were evaluated in spontaneously hypertensive rats up to 7 days after transient global ischemia induced by bilateral occlusion of the carotid arteries for 20 minutes after electrocauterization of the vertebral arteries. Animals were treated with vehicle or the excitotoxin antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10 amine (MK-801, 2 mg/kg or 5 mg/kg) intraperitoneally 30 minutes before ischemia. RESULTS: Complete recovery of the population spike was observed in the dentate gyrus within 24 hours after recirculation, followed by a gradual reduction of population spike amplitude. In contrast, population spike in the CA1 region showed partial recovery 24 hours after recirculation, and an abrupt reduction of population spike amplitude occurred on day 2. There was no significant enhancement of population spike amplitude in either region throughout the experiment. Interneuronal recurrent inhibition in the dentate gyrus was enhanced on day 4, and ischemic changes were apparent in the CA1 pyramidal cells on day 7. Pretreatment with 5 mg/kg MK-801 prevented field potential and pathological changes completely in the dentate gyrus and partially in the CA1 region. CONCLUSIONS: My results indicate that pathological changes of the CA1 pyramidal neurons after transient ischemia may not be the result of postischemic overstimulation. However, neuronal transmission in the CA1 region may be persistently impaired during or after transient ischemia.  相似文献   

15.
We examined cerebral lipid peroxidation, estimated by a thiobarbituric acid test, in rat brain regions after 30 minutes of severe forebrain ischemia and at recirculation periods of up to 72 hours. The lipid peroxide levels remained unaltered in all brain regions during ischemia and during the first hour of recirculation but were selectively increased between 8 and 72 hours of recirculation in the ischemia-sensitive regions of the hippocampus, striatum, and cortex. The most pronounced increases (30-37%) were seen at 48 hours of recirculation. In contrast, lipid peroxide levels were unchanged in infarcted brain regions 24 hours after intracarotid injection of microspheres, indicating that reoxygenation of the ischemic brain is a prerequisite for lipid peroxidation. We assessed the lipid peroxidation capacity of cerebral homogenates obtained from rats subjected to ischemia and recirculation by measuring the production of lipid peroxides after aerobic incubation. The homogenates from rats exposed to 30 minutes of ischemia or to 1 hour of recirculation were not more susceptible to peroxidation. However, the production of lipid peroxides was selectively increased in the hippocampus, striatum, and cortex at 8-48 hours of recirculation, suggesting a loss of efficacy of the antioxidant systems. These results, showing a delayed and long-lasting increase in lipid peroxidation that occurs in ischemia-sensitive brain regions and parallels the development of neuronal necrosis, support the hypothesis that free radical processes participate in postischemic neuronal damage.  相似文献   

16.
BACKGROUND AND PURPOSE: Serotonin, via 5-HT2 receptors, exerts an excitatory effect on CA1 neurons and may play a role in ischemia-induced excitotoxic damage. To evaluate the role of serotonin in ischemia, both neurochemical and histopathological studies were performed. METHODS: Neurochemical studies included rats that were subjected to 12.5 or 20 minutes of normothermic ischemia by two-vessel occlusion plus hypotension, and extracellular serotonin levels were measured in the hippocampus (12.5 minutes' ischemia, n = 5) or striatum (20 minutes' ischemia, n = 13) by microdialysis. In the histopathological study the effect of 8 mg/kg ritanserin, a 5-HT2 antagonist, administered continuously from 30 minutes prior to ischemia until 1 hour of recirculation was evaluated in five rats subjected to 10 minutes of ischemia. After 3 days, the numbers of normal-appearing neurons in the CA1 subregions were counted. RESULTS: Ischemia of 12.5 minutes' duration induced a fourfold increase in serotonin in the hippocampus (mean +/- SEM baseline, 1.86 +/- 0.25 pmol/ml perfusate; during ischemia, 8.14 +/- 0.89 pmol/ml; p < 0.05 by analysis of variance). Twenty minutes of ischemia induced a 25-fold increase in serotonin in the dorsolateral striatum (baseline, 0.98 +/- 0.15 pmol/ml; ischemia, 24.4 +/- 5.93 pmol/ml; p < 0.001). The histopathological study demonstrated severe ischemic damage in all CA1 subregions of nontreated animals (medial, 34 +/- 16 normal-appearing neurons, middle, 52.2 +/- 22.9 neurons; lateral, 56.6 +/- 21.8 neurons). Treatment with ritanserin significantly attenuated ischemic damage (medial, 117.6 +/- 6.5 neurons; middle, 131.4 +/- 4.9 neurons; lateral, 130 +/- 7.5 neurons; p < 0.01 different from nontreated). CONCLUSIONS: Taken together, these results suggest that serotonin plays a detrimental role, mediated by 5-HT2 receptors, in the development of ischemic damage.  相似文献   

17.
Recent studies suggest the norepinephrine (NE) may play a regulatory role in neuronal cell death in the hippocampus after transient ischemia. However, ischemia-induced changes in extracellular NE release have not been demonstrated. In the present study, we utilized the microdialysis technique to measure extracellular NE levels in the hippocampus before, during, and after 20 min of global ischemia induced by two-vessel occlusion combined with systemic hypotension in the rat. Stable basal concentrations of extracellular NE were detected in three consecutive samples collected prior to ischemia (1.86 +/- 1.21 pmol/ml of perfusate mean +/- SEM). During ischemia, NE levels increased to 30.1 +/- 5.5 pmol/ml, representing an 18-fold increase. The levels gradually returned to baseline by 40 min of reperfusion. These results are the first to demonstrate that acute and massive extracellular release of NE occurs in the hippocampus during ischemia and early recirculation. These results support the hypothesis that the activation of the noradrenergic system may play a significant role in modulating the development of ischemic neuronal damage.  相似文献   

18.
Sequential alterations of [3H]nimodipine and [3H]ryanodine binding in gerbils were investigated in selectively vulnerable regions, such as the striatum and hippocampus, 1 h to 7 days after 10 min of transient cerebral ischemia. [3H]Nimodipine binding showed no significant changes in the striatum and hippocampus up to 48 h after ischemia. Seven days after ischemia, however, a severe reduction in [3H]nimodipine binding was observed in the dorsolateral striatum, hippocampal CA1 (stratum oriens, stratum pyramidale and stratum radiatum) and hippocampal CA3 sector. On the other hand, [3H]ryanodine binding showed a significant increase in the hippocampus 1 h after ischemia. Five hours after ischemia, a significant reduction in [3H]ryanodine binding was observed only in the hippocampal CA1 sector. Thereafter, the striatum and hippocampus showed no significant alterations in [3H]ryanodine binding up to 48 h after ischemia. After 7 days, a marked reduction in [3H]ryanodine binding was observed in the striatum and hippocampus which were particularly vulnerable to ischemia. These results demonstrate that postischemic alteration in [3H]nimodipine and [3H]ryanodine binding is produced with different processes in the hippocampus. They also suggest that the mechanism for striatal cell damage caused by transient cerebral ischemia may, at least in part, differ from that for hippocampal neuronal damage. Furthermore, our findings suggest that abnormal calcium release from intracellular stores may play a pivotal role in the development of hippocampal neuronal damage.  相似文献   

19.
The effects of an i.p. administration of cyclohexyladenosine (CHA) have been examined upon ischemic brain damage in gerbils. Ischemia was induced for 20 min by occlusion of both carotid arteries, and CHA was administered 5 min after recirculation at a dose of 2 mg/kg. Animals were sacrificed either 1, 3 or 6 days after ischemia and their brains were used for examination of cell morphology and quantitative autoradiography. In animals subject to ischemia, the deterioration of the laminar organization of the hippocampus was associated with a significant decrease in adenosine A1-receptors (labeled with [3H]CHA), G-protein (labeled with [3H]forskolin). The treatment with CHA considerably improved the morphological preservation of cells in the CA1 region of the hippocampus and prevented the reduction in the specific binding of all radioligands. Adenosine, its analogues and other substances modulating adenosine receptors may thus provide new therapeutic approaches to the treatment of ischemia-induced brain injury.  相似文献   

20.
Glutamate (Glu) plays a key role in excitotoxicity-related injury in cerebral ischemia. In the brain, Glu homeostasis depends on Glu transporters, including the excitatory amino acid transporters and the cysteine/Glu antiporter (xc-). We hypothesized that drugs acting on Glu transporters, such as ceftriaxone (CEF, 200 mg/kg, i.p.) and N-acetylcysteine (NAC, 150 mg/kg, i.p.), administered repeatedly for 5 days before focal cerebral ischemia in rats and induced by a 90-min middle cerebral artery occlusion (MCAO), may induce brain tolerance to ischemia. We compared the effects of these drugs on brain infarct volume, neurological deficits and the mRNA and protein expression of the Glu transporter-1 (GLT-1) and xc- with the effects of ischemic preconditioning and chemical preconditioning using 3-nitropropionic acid. Administration of CEF and NAC significantly reduced infarct size and neurological deficits caused by a 90-min MCAO. These beneficial effects were accompanied by changes in GLT-1 expression caused by a 90-min MCAO at both the mRNA and protein levels in the frontal cortex, hippocampus, and dorsal striatum. Thus, the results of this study suggest that the regulation of GLT-1 and xc- plays a role in the development of cerebral tolerance to ischemia and that this regulation may be a novel approach in the therapy of brain ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号