首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epigenome of testicular germ cell tumors   总被引:1,自引:0,他引:1  
Gene expression is tightly regulated in normal cells, and epigenetic changes disturbing this regulation are a common mechanism in the development of cancer. Testicular germ cell tumor (TGCT) is the most common malignancy among young males and can be classified into two main histological subgroups: seminomas, which are basically devoid of DNA methylation, and nonseminomas, which in general have methylation levels comparable with other tumor tissues, as shown by restriction landmark genome scanning (RLGS). In general, DNA methylation seems to increase with differentiation, and among the nonseminomas, the pluripotent and undifferentiated embryonal carcinomas harbor the lowest levels of DNA promoter hypermethylation, whereas the well-differentiated teratomas display the highest. In this regard, TGCTs resemble the early embryogenesis. So far, only a limited number of tumor suppressor genes have been shown to be inactivated by DNA promoter hypermethylation in more than a minor percentage of TGCTs, including MGMT, SCGB3A1, RASSF1A, HIC1, and PRSS21. In addition, imprinting defects, DNA hypomethylation of testis/cancer associated genes, and the presence of unmethylated XIST are frequent in TGCTs. Aberrant DNA methylation has the potential to improve current diagnostics by noninvasive testing and might also serve as a prognostic marker for treatment response.  相似文献   

2.
Hypermethylation of tumor-suppressor genes has been implicated in the pathogenesis of human cancers. Although a growing number of genes showing hypermethylation is being reported in human cancer, methylation profiles of tumor-related genes in testicular neoplasms have not been well elucidated. This study was designed to show the methylation profiles of multiple CpG islands in testicular germ cell tumors (TGCTs) in comparison with those in testicular malignant lymphomas. We studied the methylation status of E-cadherin, CDKN2B, CDKN2A, BRCA1, RB1, VHL, RASSF1A, RARB, and GSTP1 by use of TGCT tissues and testicular malignant lymphoma tissues (25 primary TGCT tissues and three primary testicular lymphoma tissues). Methylation was not observed in E-cadherin, CDKN2B, CDKN2A, BRCA1, RB1, VHL, RASSF1A, RARB, and GSTP1 in any of the TGCT tissues. In contrast, all three (100%) of the testicular lymphoma tissues demonstrated hypermethylation of E-cadherin, RASSF1A, and RARB, but not CDKN2B, CDKN2A, BRCA1, RB1, VHL, and GSTP1. These data demonstrate that a distinctive epigenetic phenotype underlies the TGCTs and testicular lymphomas at the CpG sites of E-cadherin, RASSF1A, and RARB; a distinctive epigenetic phenotype was not observed among seminomatous TGCTs and non-seminomatous TGCTs at the CpG sites examined.  相似文献   

3.
Testicular germ cell tumors of adolescents and adults (TGCTs) can be classified into seminomatous and nonseminomatous tumors. Various nonseminomatous cell lines, predominantly embryonal carcinoma, have been established and proven to be valuable for pathobiological and clinical studies. So far, no cell lines have been derived from seminoma which constitutes more than 50% of invasive TGCTs. Such a cell line is essential for experimental investigation of biological characteristics of the cell of origin of TGCTs, i.e., carcinoma in situ of the testis, which shows characteristics of a seminoma cell. Before a cell line can be used as model, it must be verified regarding its origin and characteristics. Therefore, a multidisciplinary approach was undertaken on TCam-2 cells, supposedly the first seminoma cell line. Fluorescence in situ hybridization, array comparative genomic hybridization, and spectral karyotyping demonstrated an aneuploid DNA content, with gain of 12p, characteristic for TGCTs. Genome wide mRNA and microRNA expression profiling supported the seminoma origin, in line with the biallelic expression of imprinted genes IGF2/H19 and associated demethylation of the imprinting control region. Moreover, the presence of specific markers, demonstrated by immunohistochemistry, including (wild type) KIT, stem cell factor, placental alkaline phosphatase, OCT3/4 (also demonstrated by a specific Q-PCR) and NANOG, and the absence of CD30, SSX2-4, and SOX2, confirms that TCam-2 is a seminoma cell line. Although mutations in oncogenes and tumor suppressor genes are rather rare in TGCTs, TCam-2 had a mutated BRAF gene (V600E), which likely explains the fact that these cells could be propagated in vitro. In conclusion, TCam-2 is the first well-characterized seminoma-derived cell line, with an exceptional mutation, rarely found in TGCTs.  相似文献   

4.
To determine the methylation status of female germ cells in reference to the programmed reversal of X chromosome inactivation in these cells, we examined human fetal ovaries at developmental stages from the time germ cells initiate meiosis to when they cease to synthesize DNA (8–21 weeks gestation). Using methylation-sensitive restriction enzymes, we analyzed 57 MspI sites (32 sites in the CpG islands, and 25 nonclustered sites) from five X-linked housekeeping genes (HPRT, G6PD, P3, PGK, and GLA) and two tissue specific genes (X-linked F9 and autosomal EPO). Methylation patterns were compared to those of male germ cells, sperm, and somatic tissues of both sexes. All 32 MspI sites in CpG islands were unmethylated in germ-cell fractions of fetal ovary and adult testes, which could explain the reversibility of X inactivation in these tissues. However, whereas male meiotic germ cells were extensively methylated outside the islands (in the body of genes) and the methylation patterns resembled those of most somatic tissues, none of the 25 nonclustered CpGs was methylated in DNA contributed by the germ-cell component of fetal ovaries. The presence of faint MspI-like fragments in HpaII digests of fetal testes as well as fetal ovary prior to the onset of meiosis suggests that DNA of primordial germ cells is unmethylated in both sexes. Our observations of meiotic germ cells suggest that the female germ cells remain unmethylated, but that methylation in male germ cells occurs postnatally, prior to or during the early stages of spermatogenesis. In any event, the striking sex difference in methylation status of endogenous single-copy genes in meiotic germ cells could provide a molecular basis for parental imprinting of the mammalian genome.  相似文献   

5.
The molecular mechanisms underlying the histogenesis of nonurothelial carcinomas of the urinary bladder are not yet clearly understood. There is a growing body of evidence that, generally, epigenetic regulation mediated by methylation of normally unmethylated CpG islands at the 5' promoter regions of genes is involved in the modification of tumorigenesis. This prompted the current study to explore the methylation status of a broad panel of various genes implicated in cell differentiation and tumor suppression in 10 adenocarcinomas and 6 signet ring cell carcinomas of the bladder. Using methylation-specific PCR, we were able to detect a high frequency of promoter methylation of the 14-3-3 sigma (100%) and CAGE-1 (80%) genes in adenocarcinomas, and in nearly all signet ring cell carcinomas. The SYK and hDAB2IP genes proved to be hypermethylated in only single cases, whereas the caveolin-1 gene failed to be hypermethylated in all cases. The present data suggest that promoter methylation of the 14-3-3 sigma and CAGE-1 genes plays a crucial role during the phenotypical morphogenesis of vesical adenocarcinomas including signet ring cell carcinomas by an epigenetic mechanism.  相似文献   

6.
Lyon has proposed that long interspersed nuclear element 1 (LINE-1 or L1) repeats may be mediators for the spread of X chromosome inactivation. Cells from ICF patients who are deficient in one of the DNA methyltransferases, DNMT3B, provide an opportunity to explore and refine this hypothesis. Southern blot and bisulfite methylation analyses indicate that, in normal somatic cells, X-linked L1s are hypermethylated on both the active and inactive X chromosomes. In contrast, ICF syndrome cells with DNMT3B mutations have L1s that are hypomethylated on the inactive X, but not on the active X or autosomes. The DNMT3B methyltransferase, therefore, is required for methylation of L1 CpG islands on the inactive X, whereas methylation of the corresponding L1 loci on the active X, as well as most autosomal L1s, is accomplished by another DNA methyltransferase. This unique phenomenon of identical allelic modifications by different enzymes has not been previously observed. Apart from CpG island methylation, the ICF inactive X is basically normal in that it forms a Barr body, is associated with XIST RNA, mostly replicates late, and its X-inactivated genes are mostly silent. Because the unmethylated state of the ICF inactive X L1s probably reflects their methylation status at the time of X inactivation, these data suggest that unmethylated L1 elements, but not methylated L1s, may have a role in the spreading of X chromosome inactivation.  相似文献   

7.
The recent demonstration of genomic imprinting of DLK1 and MEG3 on human chromosome 14q32 indicates that these genes might contribute to the discordant phenotypes associated with uniparental disomy (UPD) of chromosome 14. Regulation of imprinted expression of DLK1 and MEG3 involves a differentially methylated region (DMR) that encompasses the MEG3 promoter. We exploited the normal differential methylation of the DLK1/MEG3 region to develop a rapid diagnostic PCR assay based upon an individual's epigenetic profile. We used methylation-specific multiplex PCR in a retrospective analysis to amplify divergent lengths of the methylated and unmethylated MEG3 DMR in a single reaction and accurately identified normal, maternal UPD14, and paternal UPD14 in bisulfite converted DNA samples. This approach, which is based solely on differential epigenetic profiles, may be generally applicable for rapidly and economically screening for other imprinting defects associated with uniparental disomy, determining loss of heterozygosity of imprinted tumor suppressor genes, and identifying gene-specific hypermethylation events associated with neoplastic progression.  相似文献   

8.
Cytosine in CpG dinucleotides is frequently found to be methylated in the DNA of higher eukaryotes and differential methylation has been proposed to be a key element in the organization of gene expression in man. To address this question systematically, we used bisulfite genomic sequencing to study the methylation patterns of three X-linked genes and one autosomal pseudogene in two adult individuals and across nine different tissues. Two of the genes, SLC6A8 and MSSK1, are tissue-specifically expressed. CDM is expressed ubiquitously. The pseudogene, psi SLC6A8, is exclusively expressed in the testis. The promoter regions of the SLC6A8, MSSK1 and CDM genes were found to be essentially unmethylated in all tissues, regardless of their relative expression level. In contrast, the pseudogene psi SLC6A8 shows high methylation of the CpG islands in all somatic tissues but complete demethylation in testis. Methylation profiles in different tissues are similar in shape but not identical. The data for the two investigated individuals suggest that methylation profiles of individual genes are tissue specific. Taken together, our findings support a model in which the bodies of the genes are predominantly methylated and thus insulated from the interaction with DNA-binding proteins. Only unmethylated promoter regions are accessible for binding and interaction. Based on this model we propose to use DNA methylation studies in conjunction with large-scale sequencing approaches as a tool for the prediction of cis-acting genomic regions, for the identification of cryptic and potentially active CpG islands and for the preliminary distinction of genes and pseudogenes.  相似文献   

9.
10.
Microarray analysis of promoter methylation in lung cancers   总被引:3,自引:0,他引:3  
Aberrant DNA methylation is an important event in carcinogenesis. Of the various regions of a gene that can be methylated in cancers, the promoter is the most important for the regulation of gene expression. Here, we describe a microarray analysis of DNA methylation in the promoter regions of genes using a newly developed promoter-associated methylated DNA amplification DNA chip (PMAD). For each sample, methylated Hpa II-resistant DNA fragments and Msp I-cleaved (unmethylated + methylated) DNA fragments were amplified and labeled with Cy3 and Cy5 respectively, then hybridized to a microarray containing the promoters of 288 cancer-related genes. Signals from Hpa II-resistant (methylated) DNA (Cy3) were normalized to signals from Msp I-cleaved (unmethylated + methylated) DNA fragments (Cy5). Normalized signals from lung cancer cell lines were compared to signals from normal lung cells. About 10.9% of the cancer-related genes were hypermethylated in lung cancer cell lines. Notably, HIC1, IRF7, ASC, RIPK3, RASSF1A, FABP3, PRKCDBP, and PAX3 genes were hypermethylated in most lung cancer cell lines examined. The expression profiles of these genes correlated to the methylation profiles of the genes, indicating that the microarray analysis of DNA methylation in the promoter region of the genes is convenient for epigenetic study. Further analysis of primary tumors indicated that the frequency of hypermethylation was high for ASC (82%) and PAX3 (86%) in all tumor types, and high for RIPK3 in small cell carcinoma (57%). This demonstrates that our PMAD method is effective at finding epigenetic changes during cancer.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

11.
Human testicular germ cell tumour (TGCT) of adolescents and young adults develop from precursor lesions called carcinoma in situ (CIS), which is believed to originate from diploid primordial germ cells during foetal life. CIS is initiated by an aneuploidisation event accompanied by extensive chromosome instability. The further transformation of CIS into invasive TGCT (seminomas and nonseminomas) is associated with increased copy number of chromosome arm 12p, most often seen as isochromosome 12p. Despite the morphological distinctions between seminomatous and nonseminomatous TGCTs, they have many of the same regional genomic disruptions, although frequencies may vary. However, the two histological subtypes have quite distinct epigenomes, which is further evident from their different gene expression patterns. CIS develops from cells with erased parental imprinting, and the seminoma genome is under-methylated compared to that of the nonseminoma genome. High throughput microarray technologies have already pinpointed several genes important to TGCT, and will further unravel secrets of how specific genes and pathways are regulated and deregulated throughout the different stages of TGCT tumourigenesis. In addition to acquiring new insights into the molecular mechanisms of TGCT development, understanding the TGCT genome will also provide clues to the genetics of human embryonic development and of chemotherapy response, as TGCT is a good model system to both.  相似文献   

12.
Testicular germ cell tumours (TGCTs) are classified into two main histological subgroups: seminomas and non-seminomas. The latter comprise several subtypes: embryonal carcinomas, yolk sac tumours, choriocarcinomas, and teratomas. These embryonal and extra-embryonal-like differentiation lineages represent a caricature of early normal development, and inactivation of gene expression through promoter hypermethylation may therefore be of particular importance in germ cell tumourigenesis. The promoter methylation status of ten candidate genes-CDH13, DLX6, EMX2, HOXA9, HOXB5, MSX1, MSX2, RASSF1A, RUNX3, and SCGB3A1 (alias HIN-1)-was assessed by methylation-specific PCR in seven intratubular germ cell neoplasias and 55 primary TGCTs. Furthermore, by a discovery-based global approach, comparing cDNA microarray expression profiles of two germ cell tumour cell lines before and after treatment with the demethylating agent 5-aza-2'-deoxycytidine, a gene list of potentially epigenetic targets was identified, from which CGGBP1, CGRRF1, SMARCC2, SORBS1, and XPA were analysed further. Overall, the non-seminomas were significantly more often methylated than were seminomas (p < 0.001). The three most frequently methylated genes among this subtype were SCGB3A1 (54%), RASSF1A (29%), and HOXA9 (26%). CDH13 and HOXB5 were methylated at low frequencies (10-15%), and EMX2, MSX1, RUNX3, SORBS1, and XPA only rarely (<10%). In conclusion, this study has identified several novel epigenetically deregulated target genes in TGCT development, including homeobox genes and SCGB3A1, suggesting that epigenetic inactivation of key genes in normal development also has an important role in TGCTs.  相似文献   

13.
COMMENTS     
Human testicular germ cell tumour (TGCT) of adolescents and young adults develop from precursor lesions called carcinoma in situ (CIS), which is believed to originate from diploid primordial germ cells during foetal life. CIS is initiated by an aneuploidisation event accompanied by extensive chromosome instability. The further transformation of CIS into invasive TGCT (seminomas and nonseminomas) is associated with increased copy number of chromosome arm 12p, most often seen as isochromosome 12p. Despite the morphological distinctions between seminomatous and nonseminomatous TGCTs, they have many of the same regional genomic disruptions, although frequencies may vary. However, the two histological subtypes have quite distinct epigenomes, which is further evident from their different gene expression patterns. CIS develops from cells with erased parental imprinting, and the seminoma genome is under-methylated compared to that of the nonseminoma genome. High throughput microarray technologies have already pinpointed several genes important to TGCT, and will further unravel secrets of how specific genes and pathways are regulated and deregulated throughout the different stages of TGCT tumourigenesis. In addition to acquiring new insights into the molecular mechanisms of TGCT development, understanding the TGCT genome will also provide clues to the genetics of human embryonic development and of chemotherapy response, as TGCT is a good model system to both.  相似文献   

14.
15.
16.
17.
TMS1/ASC is an intracellular signaling molecule with proposed roles in the regulation of apoptosis, nuclear factor-kappaB activation, and cytokine maturation. Previous studies have shown that TMS1/ASC is silenced by epigenetic means in human breast tumors. In this study, we examined methylation and expression of TMS1/ASC in glioblastoma multiforme (GBM). Whereas normal brain tissue was unmethylated at the TMS1 locus and expressed TMS1 message, 11 of 23 human GBM cell lines exhibited reduced or absent expression of TMS1 that was associated with aberrant methylation of a CpG island in the promoter of the TMS1 gene. Quantitative analysis showed that there was an inverse correlation between the degree of methylation and level of TMS1 expression. Treatment of GBM cell lines lacking TMS1 expression with the methyltransferase inhibitor 5-aza-2'deoxycytidine resulted in partial demethylation and re-expression of TMS1. Analysis of primary tissues indicated that the TMS1 gene is unmethylated and expressed in normal brain, where its expression is restricted to astrocytes. In contrast, TMS1 was aberrantly methylated in 43% (10 of 23) primary GBM specimens. Tumors that exhibited aberrant methylation of TMS1 generally expressed reduced or absent expression of TMS1 as compared to unmethylated cases. Methylation of TMS1 was not associated with patient age, gender, or treatment status. Although the relationship did not reach statistical significance, there was a trend toward increased overall survival for patients with unmethylated tumors. For one patient, disease progression from astrocytic astrocytoma (World Health Organization grade III) to GBM (World Health Organization grade IV) was associated with selective expansion of TMS1-negative cells. The data suggest a role for the epigenetic silencing of TMS1 in the pathogenesis of human GBM. Methylation of TMS1 may prove to be a useful prognostic marker and/or predictor of patient survival and tumor malignancy.  相似文献   

18.
19.
20.
The molecular basis for the exquisite sensitivity of testicular germ cell tumours of adolescents and adults (TGCTs), ie seminomas and non‐seminomatous germ cell tumours, to chemo/radiotherapy has not been fully clarified so far. It has been suggested that it may be dependent on factors involved in the regulation of apoptosis. Seladin‐1 is a multi‐functional protein involved in various biological processes, including apoptosis. The aim of our study was to assess the expression of seladin‐1 in different histological types of TGCTs, known to have varying treatment sensitivity, in order to establish whether this protein may influence cisplatin responsiveness in vitro. Seladin‐1 expression levels, both at the mRNA and at the protein level, were higher in the adjacent normal parenchyma than in the pathological counterparts. In tumoural tissues, the level of expression differed among TGCT histological types. The highest tumour‐expression level was found in teratoma, whereas the lowest was detected in seminoma, corresponding to the different chemo/and radiosensitivities of these tumour types. In common with other cancers, in TGCT‐derived cell lines seladin‐1 showed anti‐apoptotic properties through inhibition of caspase‐3 activation. We confirmed our results using a non‐seminomatous cell line model (NT2) before and after differentiation with retinoic acid. Significantly higher seladin‐1 expression was observed in the differentiated derivatives (teratoma) and an inverse relationship was found between seladin‐1 expression and the amount of cleaved caspase‐3. Seladin‐1 silencing or overexpression in this cell line supports involvement of seladin‐1 in cisplatin responsiveness. Seladin‐1 silencing was associated with greater cisplatin responsiveness demonstrated by decreased cell viability and increased expression of apoptotic markers. In contrast, overexpression of seladin‐1 was associated with a higher survival rate and a clear anti‐apoptotic effect. In conclusion, we have demonstrated for the first time an important role for seladin‐1 in the biology of TGCTs and provided new insights into cisplatin responsiveness of these tumours. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号