首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and aims: Several types of gastric surgeries have been associated with early satiety, dyspepsia and food intolerances. We aimed to examine alterations in gastric vagal afferents following gastric surgery–fundus ligation.  相似文献   

2.
IntroductionThe aim of the study was to evaluate the correlation between the nutritional status of patients with anorexia nervosa (AN) and levels of vaspin (VASP), neuropeptide B (NPB), neuropeptide W (NPW) and total antioxidant status (TAS).Material and methodsNinety serum samples collected from 30 teenage female patients during the acute stage of AN and 30 healthy persons (CONTR) were subjected to biochemical analysis; patients with AN were examined at the beginning of the study (AN-I) and after hospitalization (AN-II), as a result of which partial stabilization of anthropometric measurements was achieved (an increase of body mass index (BMI) by 3.5 kg/m2).ResultsVaspin levels dropped at the end of the hospitalization (compared to AN-I, p < 0.05), achieving values comparable to the CONTR; moreover there was a positive correlation between VASP level and the achieved body weight in AN-II (p < 0.05). Positive correlations were also noted with regard to VASP vs. NPB in AN-I (p < 0.02) (and AN-II, p < 0.013), as well as in the case of VASP vs. NPW in the same groups (p < 0.02 and p < 0.015, respectively). NPB concentration was higher in AN-I (p < 0.05) and AN-II (p < 0.018) than in CONTR, whereas there were no differences (p > 0.05) with regard to levels of VASP, NPW, or TAS.ConclusionsThe high level of NPB despite treatment and normalization of VASP level may suggest that there are chronic neuroendocrine disorders at play in anorexia nervosa.  相似文献   

3.
Neuropeptide W is the endogenous ligand for G‐protein‐coupled receptors GPR7 and GPR8. In this review, we summarize findings on the distribution of neuropeptide W and its receptors in the central nervous system and the periphery, and discuss the role of NPW in food intake and energy homeostasis.  相似文献   

4.
GABA(B) receptors inhibit mechanosensitivity of visceral afferents. This is associated with reduced triggering of events that lead to gastro-esophageal reflux, with important therapeutic consequences. In other neuronal systems, GABA(B) receptor activation may be linked via G-proteins to reduced N-type Ca(2+) channel opening, increased inward rectifier K(+) channel opening, plus effects on a number of intracellular messengers. Here we aimed to determine the role of Ca(2+) and K(+) channels in the inhibition of vagal afferent mechanoreceptor function by the GABA(B) receptor agonist baclofen. The responses of three types of ferret gastro-esophageal vagal afferents (mucosal, tension and tension mucosal receptors) to graded mechanical stimuli were investigated in vitro. The effects of baclofen (200 microM) alone on these responses were quantified, and the effects of baclofen in the presence of the G-protein-coupled inward rectifier potassium channel blocker Rb(+) (4.7 mM) and/or the N-type calcium channel blocker omega-conotoxin GVIA (0.1 microM). Baclofen inhibition of mucosal receptor mechanosensitivity was abolished by both blockers. Its inhibitory effect on tension mucosal receptors was partly reduced by both. The inhibitory effect of baclofen on tension receptors was unaffected. The data indicate that the inhibitory action of GABA(B) receptors is mediated via different pathways in mucosal, tension and tension mucosal receptors via mechanisms involving both N-type Ca(2+) channels and inwardly rectifying K(+) channels and others.  相似文献   

5.
The primary objective of this study was to determine whether circulating factors gain direct access to and affect the activity of vagal afferent cell bodies in the nodose ganglia and glossopharyngeal afferents cell bodies in the petrosal ganglia, of the rat. We found that the occipital and internal carotid arteries provided the sole blood supply to the nodose ganglia, and that i.v. injections of the tracer, Basic Blue 9, elicited strong cytoplasmic staining in vagal and glossopharyngeal afferent cell bodies that was prevented by prior ligation of the occipital but not the internal carotid arteries. We also found that occipital artery injections of 5-HT elicited pronounced dose-dependent reductions in heart rate and diastolic arterial blood pressure that were (1) virtually abolished after application of the local anesthetic, procaine, to the ipsilateral nodose and petrosal ganglia, (2) markedly attenuated after transection of the ipsilateral vagus between the nodose ganglion and brain and virtually abolished after subsequent transection of the ipsilateral glossopharyngeal nerve between the petrosal ganglion and the brain, (3) augmented after ipsilateral transection of the aortic depressor and carotid sinus nerves, and (4) augmented after transection of all ipsilateral glossopharyngeal and vagal afferent nerves except for vagal cardiopulmonary afferents. These findings suggest that blood-borne 5-HT in the occipital artery gains direct access to and activates the cell bodies of vagal cardiopulmonary afferents of the rat and glossopharyngeal afferents of undetermined modalities.  相似文献   

6.
Summary Single and repetitive stimulation of the solitary tract nucleus produced a long lasting hyperexcitability (LLH) of the superior laryngeal (SL) fibres terminating within the same nucleus but not of the terminals of afferent fibres from the cervical vagus and depressor nerve. LLH was independent of the number of SL fibres activated by the conditioning stimulus and was depressed by preceding stimulation of peripheral afferents. It is suggested that LLH results from activation of interneurones making axo-axonic synapses with the SL terminals.  相似文献   

7.
Acute bilateral subdiaphragmatic vagotomy in the conscious fistula rat greatly reduced gastric acid secretion, stimulated by the combined intravenous infusion of pentagastrin (10 μg/kg/h), histamine dihydrochloride (3 mg/kg/h) and carbachol (50 μg/kg/h). The reduction of acid output was immediate (within 15 min after vagotomy). The greatly reduced acid response to these secretagogues persisted for at least 8 weeks after vagal denervation (longest time studied). The sudden and dramatic effect of vagotomy on acid secretion is not related to a possible deficiency of either acetylcholine or histamine at the respective receptor site since the combined infusion of gastrin, histamine and carbachol did not prevent the suppression of acid secretion. Since the decline in acid output following vagal denervation was immediate, it probably reflects a sudden inaccessibility rather than loss of muscarinic or H2-receptors. The acid output obviously depends upon intramural “transducer” systems that respond to and transmit the vagal input. It is likely that the intramural ganglia represent such “transducer” systems. In the absence of a vagal drive these neuronal “transducers” cease to fire and as a result the parietal cells become almost unresponsive to stimuli.  相似文献   

8.
The gut-peptide, cholecystokinin (CCK), reduces food intake by acting at CCK-1 receptors on vagal afferent neurons, whereas the feeding effects of the adipokine hormone, leptin, are associated primarily with its action on receptors (ObRb) in the hypothalamus. Recently, however, ObRb mRNA has been reported in vagal afferent neurons, some of which also express CCK-1 receptor, suggesting that leptin, alone or in cooperation with CCK, might activate vagal afferent neurons, and influence food intake via a vagal route. To evaluate these possibilities we have been examining the cellular and behavioral effects of leptin and CCK on vagal afferent neurons. In cultured vagal afferent neurons leptin and CCK evoked short latency, transient depolarizations, often leading to action potentials, and increases in cytosolic calcium. There was a much higher prevalence of CCK and leptin sensitivity amongst cultured vagal afferent neurons that innervate stomach or duodenum than there was in the overall vagal afferent population. Furthermore, almost all leptin-responsive gastric and duodenal vagal afferents also were sensitive to CCK. Leptin, infused into the upper GI tract arterial supply, reduced meal size, and enhanced satiation evoked by CCK. These results indicate that vagal afferent neurons are activated by leptin, and that this activation is likely to participate in meal termination, perhaps by enhancing vagal sensitivity to CCK. Our findings are consistent with the view that leptin and CCK exert their influence on food intake by accessing multiple neural systems (viscerosensory, motivational, affective and motor) at multiple points along the neuroaxis.  相似文献   

9.
Occipital artery (OA) injections of 5-HT elicit pronounced reductions in heart rate and mean arterial blood pressure (MAP) in urethane-anesthetized rats by activation of vagal afferent cell bodies in the ipsilateral nodose ganglion. In contrast, internal carotid artery (ICA) and i.v. injections elicit similar cardiovascular responses by activation of peripheral vagal afferent terminals. The aim of this study was to examine the roles of 5-HT3 and 5-HT2 receptors in the 5-HT-induced activation of vagal afferent cell bodies and peripheral afferent terminals in urethane-anesthetized rats. OA, ICA and i.v. injections of 5-HT elicited dose-dependent reductions in heart rate and MAP that were virtually abolished after i.v. administration of the 5-HT3 receptor antagonists, MDL 7222 or ICS 205-930. The responses elicited by the OA injections of 5-HT were markedly diminished after i.v. injection of the 5-HT2 receptor antagonists, xylamidine or ketanserin, whereas the responses elicited by i.v. or ICA injections of 5-HT were not affected. The present findings suggest that (1) 5-HT3 and 5-HT2 receptor antagonists gain ready access to nodose ganglion cells upon i.v. administration, and (2) functional 5-HT3 and 5-HT2 receptors exist on the cell bodies of vagal afferent neurons mediating the cardiovascular responses elicited by OA injections of 5-HT. These findings also support a wealth of evidence that 5-HT3 receptors exist on the peripheral terminals of vagal afferents, and although they do not discount the possibility that 5-HT2 receptors exist on peripheral vagal afferent terminals, it appears that activation of these receptors does not have pronounced effects on 5-HT3 receptor activity on terminals that mediate the hemodynamic responses to 5-HT.  相似文献   

10.
11.
Obesity increases the risk of a number of chronic diseases in humans including several cancers. Biological mechanisms responsible for such increased risks are not well understood at present. Increases in systemic inflammation and oxidative stress, endogenous production of mutagenic metabolites, altered signaling in proliferative pathways, and increased sensitivity to exogenous mutagens and carcinogens are some of the potential contributing factors. We hypothesize that obesity creates an endogenously mutagenic environment in addition to increasing the sensitivity to environmental mutagens. To test this hypothesis, we examined two in vivo genotoxicity endpoints. Pig‐a mutant frequencies and micronucleus frequencies were determined in blood cells in two independent experiments in 30‐week old male mice reared on either a high‐fat diet (60% calories from fat) that exhibit an obese phenotype or a normal‐fat diet (10% calories from fat) that do not exhibit an obese phenotype. Mice were assayed again at 52 weeks of age in one of the experiments. N‐ethyl‐N‐nitrosourea (ENU) was used as a positive mutation control in one experiment. ENU induced a robust Pig‐a mutant and micronucleus response in both phenotypes. Obese, otherwise untreated mice, did not differ from non‐obese mice with respect to Pig‐a mutant frequencies in reticulocytes or micronucleus frequencies. However, such mice, had significantly higher and sustained Pig‐a mutant frequencies (increased 2.5‐3.7‐fold, p < 0.02) in erythrocytes as compared to non‐obese mice (based on measurements collected at 30 weeks or 30 and 52 weeks of age). This suggests that obesity, in the absence of exposure to an exogenous mutagen, is itself mutagenic. Environ. Mol. Mutagen. 57:668–677, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
13.
We determined the interaction of exercise and diet on glucose transporter (GLUT‐4) protein and mRNA expression in type I (soleus) and type II [extensor digitorum longus (EDL)] skeletal muscle. Forty‐eight Sprague Dawley rats were randomly assigned to one of two dietary conditions: high‐fat (FAT, n=24) or high‐carbohydrate (CHO, n=24). Animals in each dietary condition were allocated to one of two groups: control (NT, n=8) or a group that performed 8 weeks of treadmill running (4 sessions week–1 of 1000 m @ 28 m min–1, RUN, n=16). Eight trained rats were killed after their final exercise bout for determination of GLUT‐4 protein and mRNA expression: the remainder were killed 48 h after their last session for measurement of muscle glycogen and triacylglycerol concentration. GLUT‐4 protein expression in NT rats was similar in both muscles after 8 weeks of either diet. However, there was a main effect of training such that GLUT‐4 protein was increased in the soleus of rats fed with either diet (P < 0.05) and in the EDL in animals fed with CHO (P < 0.05). There was a significant diet–training interaction on GLUT‐4 mRNA, such that expression was increased in both the soleus (100% ↑P < 0.05) and EDL (142% ↑P < 0.01) in CHO‐fed animals. Trained rats fed with FAT decreased mRNA expression in the EDL (↓ 45%, P < 0.05) but not the soleus (↓ 14%, NS). We conclude that exercise training in CHO‐fed rats increased both GLUT‐4 protein and mRNA expression in type I and type II skeletal muscle. Despite lower GLUT‐4 mRNA in muscles from fat‐fed animals, exercise‐induced increases in GLUT‐4 protein were largely preserved, suggesting that control of GLUT‐4 protein and gene expression are modified independently by exercise and diet.  相似文献   

14.
Glutamate is the neurotransmitter responsible for fast excitatory transmission from vagal afferents to second order neurons in the NTS. Antagonism of NMDA-type glutamate receptors in the NTS increases food intake and attenuates reduction of food intake by vagally mediated satiation signals, such as cholecystokinin. Although, the cellular location(s) of NMDA receptors that participate in satiation is uncertain, recent findings suggest that attenuation of satiation by NMDA receptor antagonists is due, at least in part, to their action on primary vagal afferents themselves. While evidence is accumulating that NMDA receptors located on vagal afferent endings in the hindbrain are involved in control of food intake, there also is preliminary evidence that peripheral NMDA receptors also may influence vagal control of food intake. Hence, NMDA receptor expression on central and perhaps peripheral vagal afferent endings could provide a parsimonious mechanism for modulation of satiation signals by endogenously released glutamate.  相似文献   

15.
The present study examined the effects of dietary manipulation on the age of onset of weaning in rat pups. In Experiment 1, female rats were placed on a standard chow (SC) or high-fat (HF) diet 1 week following mating. Pups were weighed daily from birth to Day 12, then animals were placed into specialized cages for separate recording of food intake of pups and dams. Pups were offered the same diet as their dam, and food intake and body weight were determined twice daily until Day 25. The results demonstrated that pups reared by dams fed the HF diet initiated independent ingestion on Day 16, approximately 24 hr before pups reared by dams fed the SC diet. There were no differences in body weight in pups across the two diets. While few differences were noted across diets in pups' or dams' behavior, HF pups appeared to demonstrate a delay in the establishment of circadian patterns of food intake. In Experiment 2, all dams were maintained on an SC diet until the day after parturition. At that time, dams and litters were placed into specialized cages and divided into four groups: HF/HF, HF/SC, SC/SC, and SC/HF (dam's diet/pup's diet, respectively). The results demonstrated that dams given the HF diet had pups that initiated food intake approximately 2 days before the pups of dams given the SC diet. In addition, pups offered the HF diet, independent of the dam's diet, initiated food intake approximately 0.8 days prior to pups offered the SC diet. Further, by Day 12, HF dams had pups that were heavier than SC dams. The results suggest that the onset of weaning in rats is affected by maternal diet and the weaning diet available to the pup.  相似文献   

16.
17.
Obesity is a worldwide nutritional disorder affecting body performance, including skeletal muscle. Inhibition of myostatin not only increases the muscle mass but also it reduces body fat accumulation. We examined the effect of high‐fat diet on the phenotypic properties of forelimb muscles from myostatin null mice. Male wild‐type and myostatin null mice were fed on either a normal diet or a high‐fat diet (45% fat) for 10 weeks. Musculus triceps brachii Caput longum; M. triceps brachii Caput laterale; M. triceps brachii Caput mediale; M. extensor carpi ulnaris and M. flexor carpi ulnaris were processed for fiber type composition using immunohistochemistry and morphometric analysis. Although the muscle mass revealed no change under a high‐fat diet, there were morphometric alterations in the absence of myostatin. We show that high‐fat diet reduces the cross‐sectional area of the fast (IIB and IIX) fibers in M. triceps brachii Caput longum and M. triceps brachii Caput laterale of both genotypes. In contrast, increases of fast fiber areas were observed in both M. extensor carpi ulnaris of wild‐type and M. flexor carpi ulnaris of myostatin null mice. Meanwhile, a high‐fat diet increased the area of the fast IIA fibers in wild‐type mice; myostatin null mice display a muscle‐dependent alteration in the area of the same fiber type. The combined high‐fat diet and myostatin deletion shows no effect on the area of slow type I fibers. Although a high‐fat diet causes a reduction in the area of the peripheral IIB fibers in both genotypes, only myostatin null mice show an increase in the area of the central IIB fibers. We provide evidence that a high‐fat diet induces a muscle‐dependent fast to slow myofiber shift in the absence of myostatin. The data suggest that the morphological alterations of muscle fibers under a combined high‐fat diet and myostatin deletion reflect a functional adaptation of the muscle to utilize the high energy intake.  相似文献   

18.
19.
20.
To study whether free fatty acids (FFAs) contribute to glucose intolerance in high‐fat fed mice, the derivative of nicotinic acid, acipimox, which inhibits lipolysis, was administered intraperitoneally (50 mg kg?1) to C57BL/6J mice which had been on a high‐fat diet for 3 months. Four hours after administration of acipimox, plasma FFA levels were reduced to 0.46 ± 0.06 mmol L?1 compared with 0.88 ± 0.10 mmol L?1 in controls (P < 0.001). At this point, the glucose elimination rate after an intravenous glucose load (1 g kg?1) was markedly improved. Thus, the elimination constant (KG) for the glucose disposal between 1 and 50 min after the glucose challenge was increased from 0.54 ± 0.01% min?1 in controls to 0.66 ± 0.01% min?1 by acipimox (P < 0.001). In contrast, the acute insulin response to glucose (1–5 min) was not significantly different between the groups, although the area under the insulin for the entire 50‐min period after glucose administration was significantly reduced by acipimox from 32.1 ± 2.9 to 23.9 ± 1.2 nmol L?1 × 50 min (P=0.036). This, however, was mainly because of lower insulin levels at 20 and 50 min because of the lowered glucose levels. In contrast, administration of acipimox to mice fed a normal diet did not affect plasma levels of FFA or the glucose elimination or insulin levels after the glucose load. It is concluded that reducing FFA levels by acipimox in glucose intolerant high‐fat fed mice improves glucose tolerance mainly by improving insulin sensitivity making the ambient islet function adequate, suggesting that increased FFA levels are of pathophysiological importance in this model of glucose intolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号