首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results of our previous studies suggest that the circumscribed area in the rostral superior colliculus (SC) of the cat is involved in the control of accommodation. Accommodation is closely linked with vergence eye movements. In this study, we investigated whether or not vergence eye movements are evoked by microstimulation of the rostral SC in the cat. In addition, we studied the effect of chemical inhibition of the rostral SC on visually guided vergence eye movements. This study was conducted on three cats, weighing 2.5-3.5 kg. The animals were trained to carry out visually guided saccade and convergence tasks. Eye movements were measured using search coils placed on both eyes. We recorded eye movements evoked by microstimulation of the rostral SC in the alert cats. Muscimol was injected into the rostral SC, and the effect of SC inactivation on visually guided vergence eye movements was investigated. Convergence eye movements were evoked by low-current stimulation (< 30 microA) of a circumscribed area in the intermediate layers of the rostral SC on one side. Spontaneous saccades were interrupted by the stimulation of the low-threshold area for evoking convergence. Visually guided convergence eye movements were severely diminished by the injection of muscimol into the low-threshold area for evoking convergence of the SC. The rostral SC is related to the control of vergence eye movements as well as accommodation. The rostral SC may be involved in the functional linkage between accommodation, convergence and visual fixation.  相似文献   

2.
Head-fixed gaze shifts were evoked by electrical stimulation of the deeper layers of the cat superior colliculus (SC). After a short latency, saccades were triggered with kinematics similar to those of visually guided saccades. When electrical stimulation was maintained for more than 150–200 ms, postsaccadic smooth eye movements (SEMs) were observed. These movements were characterized by a period of approximately constant velocity following the evoked saccade. Depending on electrode position, a single saccade followed by a slow displacement or a staircase of saccades interspersed by SEMs were evoked. Mean velocity decreased with increasing deviation of the eye in the orbit in the direction of the movement. In the situation where a single evoked saccade was followed by a smooth movement, the duration of the latter depended on the duration of the stimulation train. In the situation where evoked saccades converged towards a restricted region of the visual field (goal-directed or craniocentric saccades), the SEMs were directed towards the centre of this region and their mean velocity decreased as the eye approached the goal. The direction of induced SEMs depended on the site of stimulation, as is the case for saccadic eye movements, and was not modified by stimulation parameters (place code). On the other hand, mean velocity of the movements depended on the site of stimulation and on the frequency and intensity of the current (rate code), as reported for saccades in the cat. The kinematics of these postsaccadic SEMs are similar to the kinematics of slow, postsaccadic correction observed during visually triggered gaze shifts of the alert cat. These results support the hypothesis that the SC is not exclusively implicated in the control of fast refixation of gaze but also in controlling postsaccadic conjugate slow eye movements in the cat.  相似文献   

3.
1. In this paper we describe the movement-related discharges of tectoreticular and tectoreticulospinal neurons [together called TR (S) Ns] that were recorded in the superior colliculus (SC) of alert cats trained to generate orienting movements in various behavioral situations; the cats' heads were either completely unrestrained (head free) or immobilized (head fixed). TR (S) Ns are organized into a retinotopically coded motor map. These cells can be divided into two groups, fixation TR (S) Ns [f TR (S) Ns] and orientation TR (S) Ns [oTR(S)Ns], depending on whether they are located, respectively, within or outside the zero (or area centralis) representation of the motor map in the rostral SC. 2. oTR(S)Ns discharged phasic motor bursts immediately before the onset of gaze shifts in both the head-free and head-fixed conditions. Ninety-five percent of the oTR(S)Ns tested (62/65) increased their rate of discharge before a visually triggered gaze shift, the amplitude and direction of which matched the cell's preferred movement vector. For movements along the optimal direction, each cell produced a burst discharge for gaze shifts of all amplitudes equal to or greater than the optimum. Hence, oTR(S)Ns had no distal limit to their movement fields. The timing of the burst relative to the onset of the gaze shift, however, depended on gaze shift amplitude: each TR(S)N reached its peak discharge when the instantaneous position of the visual axis relative to the target (i.e., instantaneous gaze motor error) matched the cell's optimal vector, regardless of the overall amplitude of the movement. 3. The intensity of the movement-related burst discharge depended on the behavioral context. For the same vector, the movement-related increase in firing was greatest for visually triggered movements and less pronounced when the cat oriented to a predicted target, a condition in which only 76% of the cells tested (35/46) increased their discharge rate. The weakest movement-related discharges were associated with spontaneous gaze shifts. 4. For some oTR(S)Ns, the average firing frequency in the movement-related burst was correlated to the peak velocity of the movement trajectory in both head-fixed and head-free conditions. Typically, when the head was unrestrained, the correlation to peak gaze velocity was better than that to either peak eye or head velocity alone. 5. Gaze shifts triggered by a high-frequency train of collicular microstimulation had greater peak velocities than comparable amplitude movements elicited by a low-frequency train of stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Shifting gaze requires precise coordination of eye and head movements. It is clear that the superior colliculus (SC) is involved with saccadic gaze shifts. Here we investigate its role in controlling both eye and head movements during gaze shifts. Gaze shifts of the same amplitude can be evoked from different SC sites by controlled electrical microstimulation. To describe how the SC coordinates the eye and the head, we compare the characteristics of these amplitude-matched gaze shifts evoked from different SC sites. We show that matched amplitude gaze shifts elicited from progressively more caudal sites are progressively slower and associated with a greater head contribution. Stimulation at more caudal SC sites decreased the peak velocity of the eye but not of the head, suggesting that the lower peak gaze velocity for the caudal sites is due to the increased contribution of the slower-moving head. Eye–head coordination across the SC motor map is also indicated by the relative latencies of the eye and head movements. For some amplitudes of gaze shift, rostral stimulation evoked eye movement before head movement, whereas this reversed with caudal stimulation, which caused the head to move before the eyes. These results show that gaze shifts of similar amplitude evoked from different SC sites are produced with different kinematics and coordination of eye and head movements. In other words, gaze shifts evoked from different SC sites follow different amplitude–velocity curves, with different eye–head contributions. These findings shed light on mechanisms used by the central nervous system to translate a high-level motor representation (a desired gaze displacement on the SC map) into motor commands appropriate for the involved body segments (the eye and the head).  相似文献   

5.
Perturbation of combined saccade-vergence movements by microstimulation in monkey superior colliculus. This study investigated the role of the monkey superior colliculus (SC) in the control of visually (V)-guided combined saccade-vergence movements by assessing the perturbing effects of microstimulation. We elicited an electrical saccade (E) by stimulation (in 20% of trials) in the SC while the monkey was preparing a V-guided movement to a near target. The target was aligned such that E- and V-induced saccades had similar amplitudes but different directions and such that V-induced saccades had a significant vergence component (saccades to a near target). The onset of the E-stimulus was varied from immediately after V-target onset to after V-saccade onset. E-control trials, where stimulation was applied during fixation of a V-target, yielded the expected saccade but no vergence. By contrast, early perturbation trials, where the E-stimulus was applied soon after the onset of the V-target, caused an E-triggered response with a clear vergence component toward the V-target. Midflight perturbation, timed to occur just after the monkey initiated the movement toward the target, markedly curtailed the ongoing vergence component during the saccade. Examination of pooled responses from both types of perturbation trials showed weighted-averaging effects between E- and V-stimuli in both saccade and fast vergence components. Both components exhibited a progression from E- to V-dominance as the E-stimulus was delayed further. This study shows that artificial intervention in the SC, while a three-dimensional (3D) refixation is being prepared or is ongoing, can affect the timing (WHEN) and the metric specification (WHERE) of both saccades and vergence. To explain this we interpret the absence of overt vergence in the E-controls as being caused by a zero-vergence change command rather than reflecting the mere absence of a collicular vergence signal. In the perturbation trials, the E-evoked zero-vergence signal competes with the V-initiated saccade-vergence signal, thereby giving rise to a compromised 3D response. This effect would be expected if the population of movement cells at each SC site is tuned in 3D, combining the well-known topographical code for direction and amplitude with a nontopographical depth representation. On E-stimulation, the local population would yield a net saccade signal caused by the topography, but the cells coding for different depths would be excited equally, causing the vergence change to be zero.  相似文献   

6.
Prior studies have led to the gaze feedback hypothesis, which states that quick orienting movements of the visual axis (gaze shifts) are controlled by a feedback system. We have previously provided evidence for this hypothesis by extending the original study of Mays and Sparks (1980) to the cat with unrestrained head (Pélisson et al. 1989). We showed that cats compensated for a stimulation-induced perturbation of initial gaze position by generating, in the dark, an accurate gaze shift towards the remembered location of a flashed target. In the present study, we investigate goal-directed gaze shifts perturbed in flight by a brief stimulation of the superior colliculus. The microstimulation parameters were tuned such that significant perturbations were induced without halting the movement. The ambient light was turned off at the onset of the gaze shift, suppressing any visual feedback. We observed that, following stimulation offset, the gaze shift showed temporal and spatial changes in its trajectory to compensate for the transient perturbation. Such compensations, which occurred on-line before gaze shift termination, involved both eye and head movements and had dynamic characteristics resembling those of unperturbed saccadic gaze shifts. These on-line compensations maintained gaze accuracy when the stimulation was applied during the early phase of large and medium (about 60 and 40°) movements. These results are compatible with the notion of a gaze feedback loop providing a dynamic gaze error signal.  相似文献   

7.
The goal of this study was to determine which aspects of adaptive eye-head coordination are implemented upstream or downstream from the motor output layers of the superior colliculus (SC). Two monkeys were trained to perform head-free gaze shifts while looking through a 10 degrees aperture in opaque, head-fixed goggles. This training produced context-dependent alterations in eye-head coordination, including a coordinated pattern of saccade-vestibuloocular reflex (VOR) eye movements that caused eye position to converge toward the aperture, and an increased contribution of head movement to the gaze shift. One would expect the adaptations that were implemented downstream from the SC to be preserved in gaze shifts evoked by SC stimulation. To test this, we analyzed gaze shifts evoked from 19 SC sites in monkey 1 and 38 sites in monkey 2, both with and without goggles. We found no evidence that the goggle paradigm altered the basic gaze position-dependent spatial coding of the evoked movements (i.e., gaze was still coded in an eye-centered frame). However, several aspects of the context-dependent coordination strategy were preserved during stimulation, including the adaptive convergence of final eye position toward the goggles aperture, and the position-dependent patterns of eye and head movement required to achieve this. For example, when initial eye position was offset from the learned aperture location at the time of stimulation, a coordinated saccade-VOR eye movement drove it back to the original aperture, and the head compensated to preserve gaze kinematics. Some adapted amplitude-velocity relationships in eye, gaze, and head movement also may have been preserved. In contrast, context-dependent changes in overall eye and head contribution to gaze amplitude were not preserved during SC stimulation. We conclude that 1) the motor output command from the SC to the brain stem can be adapted to produce different position-dependent coordination strategies for different behavioral contexts, particularly for eye-in-head position, but 2) these brain stem coordination mechanisms implement only the default (normal) level of head amplitude contribution to the gaze shift. We propose that a parallel cortical drive, absent during SC stimulation, is required to adjust the overall head contribution for different behavioral contexts.  相似文献   

8.
The role of the primate superior colliculus (SC) in orienting head movements was studied by recording electromyographic (EMG) activity from multiple neck muscles following electrical stimulation of the SC. Combining SC stimulation with neck EMG recordings provides an objective and sensitive measure of the SC drive onto neck muscle motoneurons, particularly in relation to evoked gaze shifts. In this paper, we address how neck EMG responses to SC stimulation in head-restrained monkeys depend on the rostrocaudal, mediolateral, and dorsoventral location of the stimulating electrode within the SC and vary with manipulations of the eye position prior to stimulation onset and changes in stimulation current and duration. Stimulation predominantly evoked EMG responses on the muscles obliquus capitis inferior, rectus capitis posterior major, and splenius capitis. These responses became larger in magnitude and shorter in onset latency for progressively more caudal stimulation locations, consistent with turning the head. However, evoked responses persisted even for more rostral stimulation locations usually not associated with head movements. Manipulating initial eye position revealed that the magnitude of evoked responses became stronger as the eyes attained positions contralateral to the side of stimulation, consistent with a summation between a generic command evoked by SC stimulation and the influence of eye position on tonic neck EMG. Manipulating stimulation current and duration revealed that the relationship between gaze shifts and evoked EMG responses is not obligatory: short-duration (<20 ms) or low-current stimulation evoked neck EMG responses in the absence of gaze shifts. However, long-duration stimulation (>150 ms) occasionally revealed a transient neck EMG response aligned on the onset of sequential gaze shifts. We conclude that the SC drive to neck muscle motoneurons is far more widespread than traditionally supposed and is relayed through intervening elements which may or may not be activated in association with gaze shifts.  相似文献   

9.
In our previous paper we demonstrated that electrical microstimulation of the fixation area at the rostral pole of the cat superior colliculus (SC) elicits no gaze movement but, rather, transiently suppresses eye-head gaze saccades. In this paper, we investigated the more caudal region of the SC and its interaction with the fixation area. In the alert head-free cat, supra-threshold stimulation in the anterior portion of the SC but outside the fixation area evoked small saccadic shifts of gaze consisting mainly of an eye movement, the head's contribution being small. Stimulating more posteriorly elicited large gaze saccades consisting of an ocular saccade combined with a rapid head movement. At these latter stimulation sites, craniocentric (goal-directed) eye movements were evoked when the cat's head was restrained. The amplitude of eye-head gaze saccades elicited at a particular stimulation site increased with stimulus duration, current strength, and pulse rate, until a constant or unit value was reached. The peak velocity of gaze shifts depended on both pulse rate and current strength. The movement direction was not affected by stimulus parameters. The unit gaze vector evoked, in the head-free condition, by stimulating one collicular site was similar to that coded by efferent neurons recorded at that site, thereby indicating a retinotopically coded gaze error representation on the collicular motor map which is not revealed by stimulating the head-fixed animal. Evoked gaze saccades were found to be influenced by fixation behavior. The amplitude of evoked gaze shifts was reduced if stimulation occurred when the hungry animal fixated a food target. Electrical activation of the collicular fixation area was found to mimic well the effects of natural fixation on evoked gaze shifts. Taken together, our results support the view that the overall distribution and level of collicular activity contributes to the encoding of the metrics of gaze saccades. We suggest that the combined levels of activity at the site being stimulated and at the fixation area influence the amplitude of evoked gaze saccades through competition. When stimulation is at low intensities, fixation-related activity reduces the amplitude of evoked gaze saccades. At high activation levels, the site being stimulated dominates and the gaze vector is specified only by that site's collicular output neurons, from which arises the close correspondence between the unit-evoked gaze saccades and the neurally coded gaze vector at that site.  相似文献   

10.
When the head is free to move, electrical stimulation in the frontal eye field (FEF) evokes eye and head movements. However, it is unclear whether FEF stimulation-evoked head movements contribute to shifting the line of sight, like visually guided coordinated eye-head gaze shifts. Here we investigated this issue by systematically varying initial eye (IEP) and head (IHP) positions at stimulation onset. Despite the large variability of IEP and IHP and the extent of stimulation-evoked gaze amplitudes, gaze displacement was entirely accounted for by eye (re head) displacement. Overall, the majority (3/4) of stimulation-evoked gaze shifts consisted of eye-alone movements, in which head movements were below the detection threshold. When head movements did occur, they often started late (re gaze shift onset) and coincided with rapid eye deceleration, resulting in little change in the ensuing gaze amplitudes. These head movements often reached their peak velocities over 100 ms after the end of gaze shifts, indicating that the head velocity profile was temporally dissociated from the gaze drive. Interestingly, head movements were sometimes evoked by FEF stimulation in the absence of gaze shifts, particularly when IEP was deviated contralaterally (re the stimulated side) at stimulation onset. Furthermore, head movements evoked by FEF stimulation resembled a subset of head movements occurring during visually guided gaze shifts. These unique head movements minimized the eye deviation from the center of the orbit and contributed little to gaze shifts. The results suggest that head motor control may be independent from eye control in the FEF.  相似文献   

11.
The brain maintains the accuracy of visually guided movements by using visual feedback to correct for changes in the nervous system and musculature that would otherwise result in dysmetria. In monkeys, evidence suggests that an adaptive mechanism can compensate for weakness in an extraocular muscle by changing the gain of the neural signal to the weakened muscle. The visual effects of such neuromuscular changes have been simulated using a short-term saccade adaptation paradigm, in which the target spot jumps to a new location during the initial saccade. Under these circumstances, over several hundred trials, monkeys gradually change the amplitude of their saccades so that the eye lands closer to the final location of the target spot. There is considerable evidence from lesion and single-unit recording studies that the locus of such saccade adaptation is downstream of the superior colliculus in the cerebellum. Paradoxically, previous research has indicated that saccades evoked by electrical stimulation in the superior colliculus are not modified by short-term saccade adaptation, suggesting that adaptation occurs in the oculomotor system upstream of the superior colliculus or else in a pathway that bypasses the superior colliculus. We tested whether this result was due to using suprathreshold stimulation currents. Stimulating at 44 low-threshold sites in the superior colliculi of three monkeys revealed that using low current levels evoked saccades that were modified by adaptation. Adaptation for visually guided and electrically evoked saccades had similar time courses and tended to be accomplished by a reduction in saccade velocity rather than a decrease in duration. Moreover, the more similar the velocity of electrically evoked and visually guided saccades prior to the start of saccadic adaptation the greater the effect of adaptation on electrically evoked saccades. These results suggest that the superior colliculus is indeed upstream of the locus of adaptation, corroborating previous lesion and single-cell recording studies, but that the mechanism mediating saccade adaptation is sensitive to the parameters of electrical stimulation.  相似文献   

12.
Differences between gaze shifts evoked by collicular electrical stimulation and those triggered by the presentation of a visual stimulus were studied in head-free cats by increasing the head moment of inertia. This maneuver modified the dynamics of these two types of gaze shifts by slowing down head movements. Such an increase in the head moment of inertia did not affect the metrics of visually evoked gaze saccades because their duration was precisely adjusted to compensate for these changes in movement dynamics. In contrast, the duration of electrically evoked gaze shifts remained constant irrespective of the head moment of inertia, and therefore their amplitude was significantly reduced. These results suggest that visually and electrically evoked gaze saccades are controlled by different mechanisms. Whereas the accuracy of visually evoked saccades is likely to be assured by on-line feedback information, the absence of duration adjustment in electrically evoked gaze shifts suggests that feedback information necessary to maintain their metrics is not accessible or is corrupted during collicular stimulation. This is of great importance when these two types of movements are compared to infer the role of the superior colliculus in the control of orienting gaze shifts.  相似文献   

13.
Effect of reversible inactivation of superior colliculus on head movements   总被引:1,自引:0,他引:1  
Because of limitations in the oculomotor range, many gaze shifts must be accomplished using coordinated movements of the eyes and head. Stimulation and recording data have implicated the primate superior colliculus (SC) in the control of these gaze shifts. The precise role of this structure in head movement control, however, is not known. The present study uses reversible inactivation to gain insight into the role of this structure in the control of head movements, including those that accompany gaze shifts and those that occur in the absence of a change in gaze. Forty-five lidocaine injections were made in two monkeys that had been trained on a series of behavioral tasks that dissociate movements of the eyes and head. Reversible inactivation resulted in clear impairments in the animals’ ability to perform gaze shifts, manifested by increased reaction times, lower peak velocities, and increased durations. In contrast, comparable effects were not found for head movements (with or without gaze shifts) with the exception of a very small increase in reaction times of head movements associated with gaze shifts. Eye-head coordination was clearly affected by the injections with gaze onset occurring relatively later with respect to head onset. Following the injections, the head contributed slightly more to the gaze shift. These results suggest that head movements (with and without gaze shifts) can be controlled by pathways that do not involve SC.  相似文献   

14.
Role of the primate superior colliculus in the control of head movements   总被引:1,自引:0,他引:1  
One important behavioral role for head movements is to assist in the redirection of gaze. However, primates also frequently make head movements that do not involve changes in the line of sight. Virtually nothing is known about the neural basis of these head-only movements. In the present study, single-unit extracellular activity was recorded from the superior colliculus while monkeys performed behavioral tasks that permit the temporal dissociation of gaze shifts and head movements. We sought to determine whether superior colliculus contains neurons that modulate their activity in association with head movements in the absence of gaze shifts and whether classic gaze-related burst neurons also discharge for head-only movements. For 26% of the neurons in our sample, significant changes in average firing rate could be attributed to head-only movements. Most of these increased their firing rate immediately prior to the onset of a head movement and continued to discharge at elevated frequency until the offset of the movement. Others discharged at a tonic rate when the head was stable and decreased their activity, or paused, during head movements. For many putative head cells, average firing rate was found to be predictive of head displacement. Some neurons exhibited significant changes in activity associated with gaze, eye-only, and head-only movements, although none of the gaze-related burst neurons significantly modulated its activity in association with head-only movements. These results suggest the possibility that the superior colliculus plays a role in the control of head movements independent of gaze shifts.  相似文献   

15.
Summary It is thought that saccades are controlled by signals representing target and instantaneous eye positions coded with respect to the head. To determine the frame of reference relevant to gaze (= eye + head) control, we extended to the cat whose head is unrestrained the original study of Mays and Sparks (Mays and Sparks 1980). We stimulated the superior colliculus (SC) to perturb initial gaze position before the onset of a gaze shift made in the dark to a flashed target. Gaze shifts compensated for this perturbation and reached the target with normal accuracy, despite the absence of visual feedback. This result indicates that gaze shifts were coded in either a body-centered or spatial frame but we could not distinguish between these two alternatives because the cat's body was fixed.  相似文献   

16.
Summary We investigated the effect of superior colliculus lesions on the performance of a visually guided paw movement. Six cats were trained to perform a paw movement toward a lever moving in front of them at an adjustable speed. The target was visible and accessible for approximately 700 ms, corresponding to the time needed to traverse the aperture situated in front of the animal. To receive a food pellet reward the cat had to press on the lever during this presentation period. Efficient and misguided movements were recorded, and their relative proportions calculated. For each rewarded movement, the response time (delay between the appearance of the lever in the aperture and the cat's press) was automatically computed. After stabilization of their performance, each cat underwent a bilateral electrolytic lesion of the superior colliculi. In all cases it markedly affected precision. The cats first recovered their ability to reach an immobile lever and later on their ability to point to the lever while it was moving. However, even after two months of postoperative training, two cats had still not completely recovered their preoperative precision. All lesioned animals displayed a perturbation in their response time distribution. Anterior lesions, involving area centralis projection, were more effective in producing the deficits than more posterior ones. The results are discussed in relation to the involvement of the superior colliculus in the analysis of peripheral fixed or moving stimuli.  相似文献   

17.
The primate superior colliculus (SC) is a midbrain nucleus crucial for the control of rapid eye movements (saccades). Its neurons are topographically arranged over the rostrocaudal and mediolateral extent of its deeper layers so that saccade metrics (amplitude and direction) are coded in terms of the location of active neurons. We used the quantitative [14C]-deoxyglucose method to obtain a map of the two-dimensional pattern of activity throughout the SC of rhesus monkeys repeatedly executing visually guided saccades of the same amplitude and direction for the duration of the experiment. Increased metabolic activity was confined to a circumscribed region of the two-dimensional reconstructed map of the SC contralateral to the direction of the movement. The precise rostrocaudal and mediolateral location of the area activated depended on saccade metrics. Our data support the notion that the population of active SC cells remains stationary in collicular space during saccades.  相似文献   

18.
The strategies used by the macaca monkey brain in controlling the performance of a reaching movement to a visual target have been studied by the quantitative autoradiographic 14C-DG method. Experiments on visually intact monkeys reaching to a visual target indicate that V1 and V2 convey visuomotor information to the cortex of the superior temporal and parietoccipital sulci which may encode the position of the moving forelimb, and to the cortex in the ventral part and lateral bank of the intraparietal sulcus which may encode the location of the visual target. The involvement of the medial bank of the intraparietal sulcus in proprioceptive guidance of movement is also suggested on the basis of the parallel metabolic effects estimated in this region and in the forelimb representations of the primary somatosensory and motor cortices. The network including the inferior postarcuate skeletomotor and prearcuate oculomotor cortical fields and the caudal periprincipal area 46 may participate in sensory-to-motor and oculomotor-to-skeletomotor transformations, in parallel with the medial and lateral intraparietal cortices. Experiments on split brain monkeys reaching to visual targets revealed that reaching is always controlled by the hemisphere contralateral to the moving forelimb whether it is visually intact or 'blind'. Two supplementary mechanisms compensate for the 'blindness' of the hemisphere controlling the moving forelimb. First, the information about the location of the target is derived from head and eye movements and is sent to the 'blind' hemisphere via inferior parietal cortical areas, while the information about the forelimb position is derived from proprioceptive mechanisms and is sent via the somatosensory and superior parietal cortices. Second, the cerebellar hemispheric extensions of vermian lobules V, VI and VIII, ipsilateral to the moving forelimb, combine visual and oculomotor information about the target position, relayed by the 'seeing' cerebral hemisphere, with sensorimotor information concerning cortical intended and peripheral actual movements of the forelimb, and then send this integrated information back to the motor cortex of the 'blind' hemisphere, thus enabling it to guide the contralateral forelimb to the target.  相似文献   

19.
Neural basis of visually guided head movements studied with fMRI   总被引:3,自引:0,他引:3  
We used event-related fMRI to measure brain activity while subjects performed saccadic eye, head, and gaze movements to visually presented targets. Two distinct patterns of response were observed. One set of areas was equally active during eye, head, and gaze movements and consisted of the superior and inferior subdivisions of the frontal eye fields, the supplementary eye field, the intraparietal sulcus, the precuneus, area MT in the lateral occipital sulcus and subcortically in basal ganglia, thalamus, and the superior colliculus. These areas have been previously observed in functional imaging studies of human eye movements, suggesting that a common set of brain areas subserves both oculomotor and head movement control in humans, consistent with data from single-unit recording and microstimulation studies in nonhuman primates that have described overlapping eye- and head-movement representations in oculomotor control areas. A second set of areas was active during head and gaze movements but not during eye movements. This set of areas included the posterior part of the planum temporale and the cortex at the temporoparietal junction, known as the parieto-insular vestibular cortex (PIVC). Activity in PIVC has been observed during imaging studies of invasive vestibular stimulation, and we confirm its role in processing the vestibular cues accompanying natural head movements. Our findings demonstrate that fMRI can be used to study the neural basis of head movements and show that areas that control eye movements also control head movements. In addition, we provide the first evidence for brain activity associated with vestibular input produced by natural head movements as opposed to invasive caloric or galvanic vestibular stimulation.  相似文献   

20.
The strategies used by the macaca monkey brain in controlling the performance of a reaching movement to a visual target have been studied by the quantitative autoradiographic 14C-DG method.Experiments on visually intact monkeys reaching to a visual target indicate that V1 and V2 convey visuomotor information to the cortex of the superior temporal and parietoccipital sulci which may encode the position of the moving forelimb, and to the cortex in the ventral part and lateral bank of the intraparietal sulcus which may encode the location of the visual target. The involvement of the medial bank of the intraparietal sulcus in proprioceptive guidance of movement is also suggested on the basis of the parallel metabolic effects estimated in this region and in the forelimb representations of the primary somatosensory and motor cortices. The network including the inferior postarcuate skeletomotor and prearcuate oculomotor cortical fields and the caudal periprincipal area 46 may participate in sensory-to-motor and oculomotor-to-skeletomotor transformations, in parallel with the medial and lateral intraparietal cortices.Experiments on split brain monkeys reaching to visual targets revealed that reaching is always controlled by the hemisphere contralateral to the moving forelimb whether it is visually intact or ‘blind'. Two supplementary mechanisms compensate for the ‘blindness' of the hemisphere controlling the moving forelimb. First, the information about the location of the target is derived from head and eye movements and is sent to the ‘blind' hemisphere via inferior parietal cortical areas, while the information about the forelimb position is derived from proprioceptive mechanisms and is sent via the somatosensory and superior parietal cortices. Second, the cerebellar hemispheric extensions of vermian lobules V, VI and VIII, ipsilateral to the moving forelimb, combine visual and oculomotor information about the target position, relayed by the ‘seeing' cerebral hemisphere, with sensorimotor information concerning cortical intended and peripheral actual movements of the forelimb, and then send this integrated information back to the motor cortex of the ‘blind' hemisphere, thus enabling it to guide the contralateral forelimb to the target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号