首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The force-plate actometer is a relatively new computer-based instrument with high temporal and spatial resolution that has been used to measure the behavioral effects of genetic restriction (e.g., inbred mice) and drugs (e.g., dopaminergic agonists and antagonists) on a variety of behaviors in rodents, including locomotor activity, stereotypies, tremor, and wall rearing. In the present study, the force-plate actometer was used to measure the differential effects of amphetamine-induced (10.0mg/kg) vertical leaping in five inbred mouse strains (BALB/cJ, C57BL/6J, DBA/2J, 129X1/SvJ, and C3H/HeJ) and one outbred stock (CD-1). Across a 13-day, five-injection procedure, mice of the BALB/cJ strain leaped an average of 82 times per 60-min session; the C57BL/6J, DBA/2J, 129X1/SvJ, C3H/HeJ strains and CD-1 stock always showed zero or near zero levels of vertical leaping following amphetamine treatment. The quantitative precision afforded by the force-plate actometer revealed that the mean duration of the leaps by the BALB/cJ strain was 0.18 second, and the corresponding peak force averaged 87.4 gram per leap, which was more than 400% of the average body weight of this strain. Although no evidence of behavioral sensitization was indicated for amphetamine's effects on vertical leaping, sensitization to amphetamine's effects on spatial confinement (i.e., bouts of low mobility) was observed in all mouse types. Results indicate that the force-plate actometer is an instrument well suited for detecting and quantifying both vertical leaping and collateral behaviors induced by amphetamine in mice.  相似文献   

2.
3.
Little is known about the genetics of social approach-avoidance behaviors. We measured social approach-avoidance of prepubescent female C57BL/6J, DBA/2J, FVB/NJ, AKR/J, A/J, and BALB/cJ mice towards prepubescent DBA/2J female mice. C57BL/6J mice showed the greatest predominance of approach, while BALB/cJ mice showed the greatest predominance of avoidance. Thus, this phenotype is affected by spontaneous genetic variation in mice and can be measured in an assay useful for future neurogenetic studies.  相似文献   

4.
BACKGROUND: The tail suspension test (TST) is a simple screening test for the behavioral effects of antidepressants in rodents. This experiment investigated the interindividual differences in responses to stressful situations measured by duration of immobility in the TST and the effects of imipramine (30 mg/kg intraperitoneally) in reducing immobility among 11 inbred strains of mice. The 11 inbred strains were 129S6/SvEvTac, A/J, AKR/J, Balb/cJ, C3H/HeJ, C57BL/6J, DBA/2J, FVB/NJ, NMRI, SencarA/PtJ, and SWR/J. METHODS: All mice underwent two trials of TST: 1) spontaneous, basal TST and 2) imipramine or saline TST. The duration of immobility was the trait measured during a 6-min test. RESULTS: In the four strains tested, female mice had longer duration of immobility than male mice in basal TST duration of immobility. For male mice (n = 11 strains), significant strain differences in immobility duration were found for both basal TST and imipramine response TST, with heritability estimates of .31 and .60, respectively. Immobility duration for the DBA/2J, FVB/NJ, and NMRI strains were significantly reduced by imipramine, relative to saline. Surprisingly, this reduction of immobility by imipramine was independent of the basal immobility. CONCLUSIONS: These results suggest that the responses on basal TST and the imipramine-mediated responses on TST are mediated by separate genetic pathways.  相似文献   

5.
The purposes of this research were to quantify gravity receptor function in inbred mouse strains and compare vestibular and auditory function for strain- and age-matched animals. Vestibular evoked potentials (VsEPs) were collected for 19 inbred strains at ages from 35 to 389 days old. On average, C57BL/6J (35 to 190 days), BALB/cByJ, C3H/HeSnJ, CBA/J, and young LP/J mice had VsEP thresholds comparable to normal. Elevated VsEP thresholds were found for elderly C57BL/6J, NOD.NONH2(kb), BUB/BnJ, A/J, DBA/2J, NOD/LtJ, A/WySnJ, MRL/MpJ, A/HeJ, CAST/Ei, SJL/J, elderly LP/J, and CE/J. These results suggest that otolithic function varies among inbred strains and several strains displayed gravity receptor deficits by 90 days old. Auditory brainstem response (ABR) thresholds were compared to VsEP thresholds for 14 age-matched strains. C57BL/6J mice (up to 190 days) showed normal VsEPs with normal to mildly elevated ABR thresholds. Four strains (BUB/BnJ, NOD/LtJ, A/J, elderly LP/J) had significant hearing loss and elevated VsEP thresholds. Four strains (DBA/2J, A/WySnJ, NOD.NONH2(kb), A/HeJ) had elevated VsEP thresholds (including absent VsEPs) with mild to moderate elevations in ABR thresholds. Three strains (MRL/MpJ, Ce/J, SJL/J) had significant vestibular loss with no concomitant hearing loss. These results suggest that functional change in one sensory system does not obligate change in the other. We hypothesize that genes responsible for early onset hearing loss may affect otolithic function, yet the time course of functional change may vary. In addition, some genetic mutations may produce primarily gravity receptor deficits. Potential genes responsible for selective gravity receptor impairment demonstrated herein remain to be identified.  相似文献   

6.
Three defining clinical symptoms of autism are aberrant reciprocal social interactions, deficits in social communication, and repetitive behaviors, including motor stereotypies and insistence on sameness. We developed a set of behavioral tasks designed to model components of these core symptoms in mice. Male mice from 10 inbred strains were characterized in assays for sociability, preference for social novelty, and reversal of the spatial location of the reinforcer in T-maze and Morris water maze tasks. Six strains, C57BL/6J, C57L/J, DBA/2J, FVB/NJ, C3H/HeJ, and AKR/J, showed significant levels of sociability, while A/J, BALB/cByJ, BTBR T(+)tf/J, and 129S1/SvImJ mice did not. C57BL/6J, C57L/J, DBA/2J, FVB/NJ, BALB/cByJ, and BTBR T(+)tf/J showed significant preference for social novelty, while C3H/HeJ, AKR/J, A/J, and 129S1/SvImJ did not. Normal scores on relevant control measures confirmed general health and physical abilities in all strains, ruling out artifactual explanations for social deficits. Elevated plus maze scores confirmed high anxiety-like behaviors in A/J, BALB/cByJ, and 129S1/SvImJ, which could underlie components of their low social approach. Strains that showed high levels of performance on acquisition of a T-maze task were also able to reach criterion for reversal learning. On the Morris water maze task, DBA/2J, AKR/J, BTBR T(+)tf/J, and 129S1/SvImJ failed to show significant quadrant preference during the reversal probe trial. These results highlight a dissociation between social task performance and reversal learning. BTBR T(+)tf/J is a particularly interesting strain, displaying both low social approach and resistance to change in routine on the water maze, consistent with an autism-like phenotype. Our multitask strategy for modeling symptoms of autism will be useful for investigating targeted and random gene mutations, QTLs, and microarray analyses.  相似文献   

7.
Genotypic influences on dopaminergic-induced behaviors and striatal dopaminergic receptors were evaluated in CBA/J, C57BL/6J and BALB/cJ male mice. CBA/J mice were less behaviorally sensitive to apomorphine (stereotypic behavior), but more sensitive to haloperidol (catalepsy) than C57BL/6J and BALB/cJ mice. Striatal dopaminergic receptors, assayed by binding of [3H]spiroperidol (antagonist) and [3H]ADTN (agonist), were 50% fewer in CBA/J compared to BALB/cJ mice; C57BL/6J mice had low to intermediate numbers of receptors.

Striatal dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) concentrations were similar in all strains. However, a 20% higher DOPAC/dopamine ratio in CBA/J mice suggests greater dopamine turnover. Median eminence dopamine was similar in all strains, but norepinephrine was 30% higher in BALB/cJ mice.

CBA/J mice failed to show antagonist-induced supersensitivity-type responses to chronic haloperidol treatment: enhanced stereotypic response to apomorphine and a 30% increase of dopaminergic receptors occurred in C57BL/6J and BALB/cJ mice, but not in CBA/J mice. These data suggest that CBA/J mice either cannot respond to chronic haloperidol treatment or have an elevated threshold for induction of supersensitivity response.

Chronic treatment with the dopamine agonist bromocriptine (7d) depressed apomorphine-induced stereotypic behavior in C57BL/6J mice and eliminated stereotypy in BALB/cJ mice, but caused no change in stereotypic behavior in CBA/J mice. Dopaminergic receptors were 15% lower after bromocriptine treatment in all strains.

These results suggest that some striatal dopaminergic functions are impaired in CBA/J mice relative to BALB/cJ and C57BL/6J mice. The impaired haloperidol-induced supersensitivity responses in the CBA/J mouse may be a useful model for analyzing similar impairments of supersensitivity responses in old rodents.  相似文献   


8.
BACKGROUND: Impairments in social behaviors are highly disabling symptoms of autism, schizophrenia, and other psychiatric disorders. Mouse model systems are useful for identifying the many genes and environmental factors likely to affect complex behaviors, such as sociability (the tendency to seek social interaction). To progress toward developing such a model system, we tested the hypothesis that C57BL/6J inbred mice show higher levels of sociability than BALB/cJ inbred mice. METHODS: Mice tested for sociability were 4- and 9-week-old, male and female C57BL/6J and BALB/cJ mice. On 2 consecutive days, the sociability of each test mouse toward an unfamiliar 4-week-old DBA/2J stimulus mouse was assessed with a social choice paradigm conducted in a three-chambered apparatus. Measures of sociability included the time that the test mouse spent near versus far from the stimulus mouse, the time spent directly sniffing the stimulus mouse, and the time spent in contact between test and stimulus mice in a free interaction. RESULTS: C57BL/6J mice showed higher levels of sociability than BALB/cJ mice overall in each of these measures. CONCLUSIONS: We propose that C57BL/6J and BALB/cJ mice will be a useful mouse model system for future genetic and neurobiological studies of sociability.  相似文献   

9.
Maximal electroshock seizure threshold (MEST) is a classical measure of seizure sensitivity with a wide range of experimental applications. We determined MEST in nine inbred mouse strains and one congenic strain using a procedure in which mice are given one shock per day with an incremental (1 mA) current increase in each successive trial until a maximal seizure (tonic hindlimb extension) is elicited. C57BL/6J and DBA/2J mice exhibited the highest and lowest MEST, respectively, with the values of other strains falling between these two extremes. The relative rank order of MEST values by inbred strain (highest to lowest) is as follows: C57BL/6J > CBA/J = C3H/HeJ > A/J > Balb/cJ = 129/SvIMJ = 129/SvJ > AKR/J > DBA/2J. Results of experiments involving a single electroconvulsive shock given to separate groups of mice at different current intensities suggest that determination of MEST by the method used is not affected by repeated sub-maximal seizures. Overall, results document a distinctive mouse strain distribution pattern for MEST. Additionally, low within strain variability suggests that environmental factors which affect quantification of MEST are readily controlled under the conditions of this study. We conclude that MEST represents a useful tool for dissecting the multifactorial nature of seizure sensitivity in mice.  相似文献   

10.

Background  

The aim of this study was to investigate the effects of prenatal alcohol exposure on radial-maze learning and hippocampal neuroanatomy, particularly the sizes of the intra- and infrapyramidal mossy fiber (IIPMF) terminal fields, in three inbred strains of mice (C57BL/6J, BALB/cJ, and DBA/2J).  相似文献   

11.
Recent advances in understanding the composition of the human and mouse genomes have paved the way to a more detailed understanding of the influence of genes on behavior, particularly learning and memory. One problem with many learning paradigms is the great length of training time required to generate a stable baseline. Our goal for the current studies was to develop a method of rapidly assessing learning and to use it to compare various strains of mice. The acquisition of a simple nose-poke was determined in operant chambers with two nose-poke holes illuminated: a single nose poke in one hole resulted in the presentation of 0.01 ml evaporated milk; responses in the other hole did not result in dipper presentation. All mice of the B6JxImJ F1, C57BL/6J, 129X1/SvJ and C3H/HeJ mice emitted 50 or more correct operant responses, whereas fewer than 50% of 129X1/SvJ and 75-90% of mice of Balb/cByJ, DBA/2J and the outbred CD-1 mice emitted 50 or more correct operant responses. On average, C57BL/6J emitted 50 operative responses in less than 30 min, whereas DBA/2J mice required nearly 1 h to complete 50 operative responses. Other strains performed at intermediate levels. There was no apparent relationship between operant activity and locomotor activity that may have influenced response acquisition. These findings are consistent with those reported using other learning paradigms and provide a rapid method of learning assessment.  相似文献   

12.
Sociability—the tendency to seek social interaction—propels the development of social cognition and social skills, but is disrupted in autism spectrum disorders (ASD). BALB/cJ and C57BL/6J inbred mouse strains are useful models of low and high levels of juvenile sociability, respectively, but the neurobiological and developmental factors that account for the strains’ contrasting sociability levels are largely unknown. We hypothesized that BALB/cJ mice would show increasing sociability with age but that C57BL/6J mice would show high sociability throughout development. We also hypothesized that littermates would resemble one another in sociability more than non-littermates. Finally, we hypothesized that low sociability would be associated with low corpus callosum size and increased brain size in BALB/cJ mice. Separate cohorts of C57BL/6J and BALB/cJ mice were tested for sociability at 19-, 23-, 31-, 42-, or 70-days-of-age, and brain weights and mid-sagittal corpus callosum area were measured. BALB/cJ sociability increased with age, and a strain by age interaction in sociability between 31 and 42 days of age suggested strong effects of puberty on sociability development. Sociability scores clustered according to litter membership in both strains, and perinatal litter size and sex ratio were identified as factors that contributed to this clustering in C57BL/6J, but not BALB/cJ, litters. There was no association between corpus callosum size and sociability, but smaller brains were associated with lower sociability in BALB/cJ mice. The associations reported here will provide directions for future mechanistic studies of sociability development.  相似文献   

13.
CBA/J and BALB/cJ mice have quantitative differences in the nigrostriatal projection. The number of nigral tyrosine hydroxylase reactive neurons, nigral and striatal tyrosine hydroxylase activity and the density of striatal D-2 dopamine receptors are all less in the CBA/J compared to the BALB/cJ mouse. An unrelated strain, the C57BL/6J, has a striatal D-2 dopamine receptor density that is intermediate to that of CBA/J and BALB/cJ mice. CBA/J mice also show deficits in the ability of brain monoaminergic receptor systems to develop supersensitivity. Calmodulin may participate in several striatal dopaminergic receptor mechanisms. Thus, striatal calmodulin was examined in CBA/J, C57BL/6J and BALB/cJ mice. Striatal calmodulin was greater in CBA/J mice than in C57BL/6J or BALB/cJ. In all three strains, cerebral cortical calmodulin was similar. The percent distribution of total striatal calmodulin between soluble and particulate fractions was similar in the three strains. Calcium redistributed soluble striatal calmodulin into the particulate fraction and EGTA shifted calmodulin from the particulate into the soluble fraction. The percent of total striatal calmodulin redistributed by either treatment was similar in all three strains. Gel filtration chromatography of heat-treated soluble extracts from CBA/J and BALB/cJ striatum was similar in elution pattern, although more calmodulin was observed in extracts from the CBA/J. Possible mechanisms for the strain differences in calmodulin are discussed along with their relationship to strain differences in striatal dopamine receptor subtypes.  相似文献   

14.
Genetic factors and early life adversity both play a major role in the etiology of mood and anxiety disorders. Previous studies have shown that postnatal maternal separation (MS) can produce lasting abnormalities in emotion-related behavior and neuroendocrine responses to stress in rodents. The present study sought to examine the effects of repeated MS in eight different inbred strains of mice (129S1/SvImJ, 129P3/J, A/J, BALB/cJ, BALB/cByJ C57BL/6J, DBA/2J, FVB/NJ). Pups were separated from their dam and littermates for 180 min/day ('MS') or 15 min/day ('handling'), or left undisturbed ('facility-reared') from postnatal days P0-P13, and tested as adults for anxiety- and depression-related behaviors. Results demonstrated no clear and consistent effects of MS or handling on behavioral phenotypes in any of the strains tested. In all strains, MS produced an increase in maternal care on reunion with pups, which may have modified MS effects. Data demonstrate that the MS procedure employed does not provide a robust model of early life stress effects on the anxiety- and depression-related behaviors in the mouse strains tested.  相似文献   

15.
Although the blood-brain barrier and blood cerebrospinal fluid barrier maintain the central nervous system (CNS) as an immunologically privileged site, T lymphocytes can migrate through unstimulated brain endothelium and epithelium to perform immune surveillance or initiate inflammation. Our prior results suggested that early CNS migration of a CD4 Th1 cell line was facilitated by P selectin (CD62P) in (PL/JxSJL/J)F1 mice. Here, quantitative analysis of migration 2 h following adoptive transfer of fluorescently labeled cells revealed a 53-72% decrease in activated splenocyte, CD4 Th1 and CD8 migration, but not CD4 Th2, in CD62P-deficient C57BL6/J mice. Immunohistochemistry revealed constitutive expression of CD62P within the meninges and choroid plexus epithelia in C57BL6/J and SJL/J, but not BALB/cJ, mice. Activated splenocyte migration was approximately three- to four-fold greater in SJL/J as compared to BALB/cJ mice. Anti-CD62P treatment normalized this difference. Based on these results, we hypothesize that genetically determined kinetics of immune surveillance may regulate the phenotype of subsequent CNS inflammation.  相似文献   

16.
Genotypic influences on pituitary responsiveness to haloperidol in mice   总被引:1,自引:0,他引:1  
Previous studies from this laboratory demonstrated that CBA/J mice have impaired striatal dopaminergic supersensitivity in response to subchronic haloperidol administration. Others have speculated that the peripheral hyperprolactinemia produced by haloperidol is necessary for the striatal dopamine receptor supersensitization produced by dopamine antagonists. In the present experiments, we tested the hypothesis that the impaired supersensitization response to haloperidol in CBA/J mice was secondary to an impaired hyperprolactinemic response by comparing the CBA/J mice with other mice that show normal supersensitization responses: the BALB/cJ and C57BL/6J strains. Acute haloperidol treatments increased serum prolactin levels 60 min later in all three strains, with the greatest response in CBA/J mice. After longer haloperidol treatment (2 or 21 days), serum prolactin remained elevated in CBA/J and, to a lesser extent, in C57BL/6J mice; levels remained low throughout treatment in BALB/cJ mice. Although, the basal density of pituitary dopamine receptors [( 3H]spiperone or D-2 binding sites) was greater in CBA/J than BALB/cJ mice, only BALB/cJ mice showed increased pituitary D-2 binding sites following chronic haloperidol administration. Taken together with previous studies of dopamine and noradrenaline receptors in these mouse strains, we conclude that CBA/J mice have a generalized impairment in their supersensitization responses to pharmacologic blockade of receptors. These data do not support the involvement of prolactin in haloperidol-induced dopamine receptor up-regulation.  相似文献   

17.
Etiopathogenesis of depression and the cause of insensitivity to treatment remain poorly understood, although genetic makeup has been established as a contributing factor. The isogenicity of inbred mouse strains provides a useful tool for investigating the link between genes and behavior or drug response. Hence, our aim was to identify inbred mouse strains (among A/J, BALB/c, C3H, C57BL/6, CBA, DBA and FVB) sensitive to a 9-week period of unpredictable chronic mild stress (UCMS) and, from the fifth week onward, to the reversal effect of an antidepressant (AD) (imipramine, 20 mg/kg/day i.p.) on various depression-related changes: physical, behavioral and neuroendocrine states. UCMS induced a significant deterioration of the coat state (in all the strains), blunted emotional reactivity in the novelty-suppressed feeding (NSF) test (A/J, BALB/c, C57BL/6), and changes in the level of fecal corticosterone metabolites (BALB/c, C57BL/6, DBA, FVB). Imipramine treatment reversed the UCMS-induced alterations of the coat state (BALB/c, DBA), in the NSF test (A/J, BALB/c, C57BL/6) and in fecal corticosterone metabolites (BALB/c, C57BL/6). C3H, CBA and FVB mice were irresponsive to imipramine treatment. It is noteworthy that UCMS-induced physical or behavioral changes occurred without hypothalamo–pituitary–adrenal (HPA) axis alterations in some strains (A/J, C3H, CBA), although the AD-induced reversal of these changes in BALB/c and C57BL/6 was associated with HPA axis normalization. Finally, UCMS is shown to discriminate various alterations and to replicate in a strain-dependent manner diverse profiles reminiscent of human disease subtypes. UCMS may thus enable the selection of strains suitable for investigating specific depression-related features and could be an appropriate model for identifying genetic factors associated with increased vulnerability, specific symptoms of affective disorders, and AD resistance.  相似文献   

18.
Capsaicin is the active substance responsible for the pungent sensation produced by red pepper. In order to approach the underlying genetic mechanism for preference of red pepper, we conducted a 12-h, 1-bottle intake test of capsaicin solution using both male and female animals from the Mishima battery of mouse strains: 10 wild-derived inbred strains (PGN2, BFM/2, HMI, CAST/Ei, NJL, BLG2, CHD, SWN, KJR, MSM), 1 strain derived from the so-called fancy mouse (JF1), and 3 widely used laboratory strains (C57BL/6J, DBA/1J and BALB/cAnN). The concentration of capsaicin was increased from 0.5 to 15 microM successively. Gender differences were not observed in this test, but we found striking strain differences in capsaicin intake. Relative to baseline water intake, C57BL/6J and DBA/1J consumed 10%, whereas two wild strains, KJR and MSM, ingested approximately 60% of the 15-microM capsaicin solution. In a 2-bottle fluid preference test, both C57BL/6J and MSM strains reject capsaicin fluid even at the 0.5-microM concentration, which indicates that the receptors for capsaicin in these strains recognize capsaicin at a similar level. Thus, the strain differences at higher capsaicin concentrations in the 1-bottle test may reflect differences in central nervous system response to the capsaicin solution. The genetic difference in intake of capsaicin observed in these strains may provide a useful tool for identifying genes underlying response to red pepper in mice and other mammalian species.  相似文献   

19.
Studies describing variations in fear-related memory in inbred mouse strains typically focus upon 24 h retention. As a consequence, little is known about strain differences in the establishment of longer lasting memories of aversive events. In the present study, male mice from the strains A/Ibg, AKR/J, BALB/cByJ, CBA/J, C3H/HeIbg, C57BL/6J, DBA/2J, LP/J, SJL/J and 129/SvevTac were tested 24 h, 14, or 60 days after contextual and auditory-cued fear conditioning. Consistent with previous data, 24 h after conditioning these strains exhibited substantial variation in levels of memory for the context and the auditory cue as measured by freezing scores. Sixty days after training, most strains exhibited some forgetting of the context and auditory cue, and again there was significant strain variation. Strain rankings at 60-day retention were similar to that at 24 h with a significant genetic correlation between freezing values for the two time periods. Fourteen days following training, nearly all strains exhibited generalized freezing, a behavioral phenotype originally observed in C57BL/6 but not DBA/2 mice. These data confirm that cognitive differences exist between several popular inbred mouse strains during 24 h contextual fear recall. In addition, they extend these differences into retention time frames longer than those typically used and reveal several unique learning profiles of mouse strains that may be useful in furthering our understanding of how memories are formed. Emotionally arousing situations are often recalled a great deal of time after an event. Therefore, a more complete picture of the biochemical and genetic underpinnings of learning and memory will benefit from studies using time points that assess time points beyond 24 h retention. The utility of the 14-day hyper responsiveness phenotype as a potential model for fear-related psychopathology is also discussed.  相似文献   

20.
Developments in the genetic manipulation of mice have intensified interest in the relation between genes, environment and learned behavior, which in turn has led to exploration of experimental procedures for assessing genetic influences on learning using methods such as response acquisition. The requirement for multiple experimental control groups in such genetic comparisons studies amplifies the need for reliable, instrument-directed, learning assessment paradigms. The purpose of the present experiment was to implement such a procedure in several successive phases, including pre-food basal rates of interaction with sensors in a chamber, food-hopper training, and a simple disk-baiting procedure that produced differentially food-reinforced disk pressing (FR1) and provided quantitative measures of learning in outbred (CD-1) and inbred (C57BL/6J, BALB/cJ) mice. Response acquisition performances were measured in terms of the number of correct food-producing responses (disk press to hopper entry in less than 5s). The three mouse types showed differences in several performance measures prior to response acquisition training. Pre-food basal performances did not predict subsequent rate of acquisition of the target response. On average, CD-1 mice met a criterion of 50 food-producing responses slightly, but not significantly, faster than BALB/cJ mice. The C57BL/6J mice took significantly longer to meet the learning criterion and had slower response rates, due to longer after-reinforcement pausing. Procedural differences (massed versus partial/distributed training) and reinforcement parameters (duration of access) may differentially affect different mouse types independently of genetic differences in response acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号