首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 507 毫秒
1.
Controversy exists whether recruitment of a large muscle mass in dynamic exercise may outstrip the pumping capacity of the heart and require neurogenic vasoconstriction in exercising muscle to prevent a fall in arterial blood pressure. To elucidate this question, seven healthy young men cycled for 70 minutes at a work load of 5540%VO2max. At 30 to 50 minutes, arm cranking was added and total work load increased to (mean ± SE) 82 ± 4% of Vo2max. During leg exercise, leg blood flow average 6.15 4.511 minutes-1, mean arterial blood pressure 137 ± 4 mmHg and leg conductance 42.3 ± 2.2 ml minutes-1 mmHg-1. When arm cranking was added to leg cycling, leg blood flow did not change significantly, mean arterial blood pressure increased transiently to 147 ± 5 mmHg and leg vascular conductance decreased transiently to 33.5 ± 3.1 ml minutes-1 mmHg-1. Furthermore, arm cranking doubled leg noradrenaline spillover. When arm cranking was discontinued and leg cycling continued, leg blood flow was unchanged but mean arterial blood pressure decreased to values significantly below those measured in the first leg exercise period. Furthermore, leg vascular conductance increased transiently, and noradrenaline spillover decreased towards values measured during the first leg exercise period. It is concluded that addition of arm cranking to leg cycling increases leg noradrenaline spillover and decreases leg vascular conductance but leg blood flow remains unchanged because of a simultaneous increase in mean arterial blood pressure. The decrease in leg vascular conductance observed when arm cranking increased mean arterial blood pressure could be regarded more as a measure to prevent overperfusion than a measure to maintain arterial blood pressure.  相似文献   

2.
Calcitonin gene-related peptide is a potent vasodilator and its distribution in perivascular nerves suggests a role in the regulation of vascular tone. We evaluated leg vascular resistance together with total peripheral resistance and the arterial plasma concentrations of calcitonin gene-related peptide and catecholamines during 50 degrees head-up tilt induced hypotension in 7 males. During tilt mean arterial pressure, heart rate, total peripheral resistance, leg vascular resistance and plasma noradrenaline increased, while cardiac output and leg blood flow decreased. After 45 +/- 9 min (mean +/- SE) presyncopal symptoms appeared together with decreases in mean arterial pressure (81 +/- 6 to 56 +/- 9 mmHg), heart rate (97 +/- 6 to 73 +/- 8 beats min-1), leg vascular resistance (158 +/- 9 to 109 +/- 8 mmHg min l-1) and total peripheral resistance (17 +/- 3 to 10 +/- 2 mmHg min l-1) (P less than 0.01). Plasma calcitonin gene-related peptide increased from 32 +/- 3 to 35 +/- 3 pmol l-1 (P less than 0.01) and adrenaline from 1.1 +/- 0.2 to 1.7 +/- 0.3 nmol l-1 (P less than 0.01), while noradrenaline did not change. The results indicate that presyncopal symptoms induced by head-up tilt are associated with regional as well as total decreases in vascular resistance accompanied by moderate increases in arterial plasma concentrations of calcitonin gene-related peptide and adrenaline.  相似文献   

3.
The purpose of the present study was to examine the oxygen uptake kinetics during heavy arm exercise using appropriate modelling techniques, and to compare the responses to those observed during heavy leg exercise at the same relative intensity. We hypothesised that any differences in the response might be related to differences in muscle fibre composition that are known to exist between the upper and lower body musculature. To test this, ten subjects completed several bouts of constant-load cycling and arm cranking exercise at 90% of the mode specific V(O(2)) peak. There was no difference in plasma [lactate] at the end of arm and leg exercise. The time constant of the fast component response was significantly longer in arm exercise compared to leg exercise (mean+/-S.D., 48+/-12 vs. 21+/-5 sec; P < 0.01), while the fast component gain was significantly greater in arm exercise (12.1+/-1.0 vs. 9.2+/-0.5 ml min(-1) W(-1); P < 0.01). The V(O(2)) slow component emerged later in arm exercise (126+/-27 vs. 95+/-20 sec; P < 0.01) and, in relative terms, increased more per unit time (5.5 vs. 4.4% min(-1); P < 0.01). These differences between arm crank and leg cycle exercise are consistent with a greater and/or earlier recruitment of type II muscle fibres during arm crank exercise.  相似文献   

4.
To test the hypothesis that the increased sympathetic tonus elicited by chronic hypoxia is needed to match O(2) delivery with O(2) demand at the microvascular level eight male subjects were investigated at 4559 m altitude during maximal exercise with and without infusion of ATP (80 mug (kg body mass)(-1) min(-1)) into the right femoral artery. Compared to sea level peak leg vascular conductance was reduced by 39% at altitude. However, the infusion of ATP at altitude did not alter femoral vein blood flow (7.6 +/- 1.0 versus 7.9 +/- 1.0 l min(-1)) and femoral arterial oxygen delivery (1.2 +/- 0.2 versus 1.3 +/- 0.2 l min(-1); control and ATP, respectively). Despite the fact that with ATP mean arterial blood pressure decreased (106.9 +/- 14.2 versus 83.3 +/- 16.0 mmHg, P < 0.05), peak cardiac output remained unchanged. Arterial oxygen extraction fraction was reduced from 85.9 +/- 5.3 to 72.0 +/- 10.2% (P < 0.05), and the corresponding venous O(2) content was increased from 25.5 +/- 10.0 to 46.3 +/- 18.5 ml l(-1) (control and ATP, respectively, P < 0.05). With ATP, leg arterial-venous O(2) difference was decreased (P < 0.05) from 139.3 +/- 9.0 to 116.9 +/- 8.4(-1) and leg .VO(2max) was 20% lower compared to the control trial (1.1 +/- 0.2 versus 0.9 +/- 0.1 l min(-1)) (P = 0.069). In summary, at altitude, some degree of vasoconstriction is needed to match O(2) delivery with O(2) demand. Peak cardiac output at altitude is not limited by excessive mean arterial pressure. Exercising leg .VO(2peak) is not limited by restricted vasodilatation in the altitude-acclimatized human.  相似文献   

5.
7 young, healthy, male subjects performed exercise on bicycle ergometers in two 20 min periods with an interval of 1 h. The first 10 min of each 20 min period consisted of arm exercise (38–62% of Vdot;o2 max for arm exercise) or leg exercise (58–78% of Vdot;o2 max for leg exercise). During the last 10 min the subjects performed combined arm and leg exercise (71–83% of Vdot;o2 max for this type of exercise). The following variables were measured during each type of exercise: oxygen uptake, heart rate, mean arterial blood pressure, cardiac output, leg blood flow (only during leg exercise and combined exercise), arterio-venous concentration differences for O2 and lactate at the levels of the axillary and the external iliac vessels. Superimposing a sufficiently strenuous arm exercise (oxygen uptake for arm exercise 40% of oxygen uptake for combined exercise) on leg exercise caused a reduction in blood flow and oxygen uptake in the exercising legs with unchanged mean arterial blood pressure. Superimposing leg exercise on arm exercise caused a decrease in mean arterial blood pressure and an increased axillary arterio-venous oxygen difference. These findings indicate that the oxygen supply to one large group of exercising muscles may be limited by vasoconstriction or by a fall in arterial pressure, when another large group of muscles is exercising simultaneously.  相似文献   

6.
Vasoconstrictor responsiveness to acute sympathetic stimulation declines with advancing age in resting skeletal muscle. The purpose of the present study was to determine if age-related reductions in sympathetic vasoconstrictor responsiveness also occur in exercising skeletal muscle. Thirteen younger (20–30 years) and seven older (62–74 years) healthy non-endurance-trained men performed cycle ergometer exercise at ∼60 % of peak oxygen uptake while leg blood flow (femoral vein thermodilution), mean arterial blood pressure (radial artery catheter), and plasma adrenaline and noradrenaline concentrations were measured. After steady state was reached (i.e. ∼4 min), acute sympathetic stimulation was achieved by immersing a hand in ice water for 2–4 min (cold pressor test, CPT). CPT tended to cause a larger increase in mean arterial blood pressure in older men (older (O): 16 ± 3 mmHg; younger (Y): 10 ± 2 mmHg) during exercise, but increases in arterial noradrenaline were similar (O: 2.56 ± 0.96 nM; Y: 1.98 ± 0.40 nM). However, the older men demonstrated a larger percentage reduction in exercising leg vascular conductance (leg blood flow/mean arterial pressure) during CPT compared to younger men (O: -13.6 ± 3.1%; Y: -1.5 ± 4.3%; P = 0.04). Leg blood flow tended to increase in the younger men, but not in the older men ( P = 0.10). These results suggest, in contrast to what has been observed in resting skeletal muscle, that vasoconstrictor responsiveness to sympathetic stimulation is not reduced, but may be augmented in exercising muscle of healthy older humans. This could reflect a reduced ability of local substances (e.g. nitric oxide) to impair vasoconstriction in response to sympathetic stimulation during exercise in older humans.  相似文献   

7.
AIM: During arm cranking (A) blood pressure is higher than during combined arm and leg exercise (A + L), while the carotid baroreflex (CBR) is suggested to reset to control a higher blood pressure in direct relation to work intensity and the engaged muscle mass. METHOD: This study evaluated the function of the CBR by using neck pressure and neck suction during upright A, L and A + L in 12 subjects and, in order to evaluate a potential influence of the central blood volume on the CBR, also during supine A in five subjects. Exercise intensities for A and L were planned to elicit a heart rate response of c. 100 and 120 beats min(-1), respectively, in the upright position and both workloads were maintained during A + L and supine A. RESULTS: The CBR operating point, corresponding to the pre-stimulus blood pressure, was 88 +/- 6 mmHg (mean +/- SE) at rest. During upright A, L and A + L and supine A it increased to 109 +/- 9, 95 +/- 7, 103 +/- 7 and 104 +/- 4 mmHg, respectively, and it was thus higher during upright A than during A + L and supine A (P < 0.05). In addition, the CBR threshold and saturation pressures, corresponding to the minimum and maximum carotid sinus pressure, respectively, were higher during upright A than during supine A, A + L, L and at rest (P < 0.05) with no significant change in the maximal reflex gain. CONCLUSION: These findings demonstrate that during combined arm and leg and exercise in the upright position the CBR resets to a lower blood pressure than during arm cranking likely because the central blood volume is enhanced by the muscle pump of the legs.  相似文献   

8.
Metabolism in exercising arm vs. leg muscle   总被引:5,自引:0,他引:5  
Arm and leg metabolism were compared by arterial and venous catheterization and blood flow measurements (by dye dilution techniques) in two groups of subjects performing 30-min continuous arm or leg exercise of increasing intensity corresponding to approximately 30, 50 and 80% of max oxygen uptake for arm or leg exercise. The absolute work-loads were 2.5-3 times higher during leg compared to arm exercise. Heart rates were the same in both types of exercise. r-Values were 0.97-1.07 during arm exercise. Arterial noradrenaline and adrenaline levels became higher during leg compared to arm exercise (P less than 0.05-0.01). Arterial lactate concentration was 50% higher for arm exercise at the two lower intensities (P less than 0.001) and the same at the highest intensity compared to leg exercise. Arm lactate release was three times higher (P less than 0.01) or the same as leg lactate output at corresponding exercise intensities. Arm and leg glucose uptake during exercise were of the same magnitude at the lower intensities. In contrast to the leg substrate exchange, arm lactate output was higher than the simultaneous glucose uptake (P less than 0.05-0.001), indicating a relatively higher rate of glycogen degradation. In conclusion, exercising arm compared to leg muscles working at the same relative intensities utilize more carbohydrate, mainly muscle glycogen resulting in higher lactate release by the exercising extremity. This cannot solely be explained on the basis of differences in the degree of training and occurs with lower catecholamine levels compared to leg exercise.  相似文献   

9.
Aim: As a consequence of enhanced local vascular conductance, perfusion of muscles increases with exercise intensity to suffice the oxygen demand. However, when maximal oxygen uptake (VO2max) and cardiac output are approached, the increase in conductance is blunted. Endurance training increases muscle metabolic capacity, but to what extent that affects the regulation of muscle vascular conductance during exercise is unknown. Methods: Seven weeks of one‐legged endurance training was carried out by twelve subjects. Pulmonary VO2 during cycling and one‐legged cycling was tested before and after training, while VO2 of the trained leg (TL) and control leg (CL) during cycling was determined after training. Results: VO2max for cycling was unaffected by training, although one‐legged VO2max became 6.7 (2.3)% (mean ± SE) larger with TL than with CL. Also TL citrate synthase activity was higher [30 (12)%; P < 0.05]. With the two legs working at precisely the same power during cycling at high intensity (n = 8), leg oxygen uptake was 21 (8)% larger for TL than for CL (P < 0.05) with oxygen extraction being 3.5 (1.1)% higher (P < 0.05) and leg blood flow tended to be higher by 16.0 (7.0)% (P = 0.06). Conclusion: That enhanced VO2max for the trained leg had no implication for cycling VO2max supports that there is a central limitation to VO2max during whole‐body exercise. However, the metabolic balance between the legs was changed during high‐intensity exercise as oxygen delivery and oxygen extraction were higher in the trained leg, suggesting that endurance training ameliorates blunting of leg blood flow and oxygen uptake during whole‐body exercise.  相似文献   

10.
Exercise-induced increases in cardiac output (CO) and oxygen uptake (VO2) are tightly coupled, as also in absence of central motor activity and neural feedback from skeletal muscle. Neuromodulators of vascular tone and cardiac function - such as calcitonin gene related peptide (CGRP) - may be of importance. Spinal cord injured individuals (six tetraplegic and four paraplegic) performed electrically induced cycling (FES) with their paralyzed lower limbs for 29 +/- 2 min to fatigue. Voluntary cycling performed both at VO2 similar to FES and at maximal exercise in six healthy subjects served as control. In healthy subjects, CGRP in plasma increased only during maximal exercise (33.8 +/- 3.1 pmol l(-1) (rest) to 39.5 +/- 4.3 (14%, P<0.05)) with a mean extraction over the working leg of 10% (P<0.05). Spinal cord injured individuals had more pronounced increase in plasma CGRP (33.2 +/- 3.8 to 46.9 +/- 3.6 pmol l-1, P<0.05), and paraplegic and tetraplegic individuals increased in average by 23% and 52%, respectively, with a 10% leg extraction in both groups (P<0.05). The exercise induced increase in leg blood flow was 10-12 fold in both spinal cord injured and controls at similar VO2 (P<0.05), whereas CO increased more in the controls than in spinal man. Heart rate (HR) increased more in paraplegic subjects (67 +/- 7 to 132 +/- 15 bpm) compared with controls and tetraplegics (P<0.05). Mean arterial pressure (MAP) was unchanged during submaximal exercise and increased during maximal exercise in healthy subjects, but decreased during the last 15 min of exercise in the tetraplegics. It is concluded that plasma CGRP increases during exercise, and that it is taken up by contracting skeletal muscle. The study did not allow for a demonstration of the origin of the CGRP, but its release does not require activation of motor centres. Finally, the more marked increase in plasma CGRP and the decrease in blood pressure during exercise in tetraplegic humans may indicate a role of CGRP in regulation of vascular tone during exercise.  相似文献   

11.
The role of adenosine in exercise-induced human skeletal muscle vasodilatation remains unknown. We therefore evaluated the effect of theophylline-induced adenosine receptor blockade in six subjects and the vasodilator potency of adenosine infused in the femoral artery of seven subjects. During one-legged, knee-extensor exercise at approximately 48% of peak power output, intravenous (i.v.) theophylline decreased (P < 0.003) femoral artery blood flow (FaBF) by approximately 20%, i.e. from 3.6 +/- 0.5 to 2.9 +/- 0.5 L min(-1), and leg vascular conductance (VC) from 33.4 +/- 9.1 to 27.7 +/- 8.5 mL min-1 mmHg-1, whereas heart rate (HR), mean arterial pressure (MAP), leg oxygen uptake and lactate release remained unaltered (P = n.s.). Bolus injections of adenosine (2.5 mg) at rest rapidly increased (P < 0.05) FaBF from 0.3 +/- 0.03 L min(-1) to a 15-fold peak elevation (P < 0.05) at 4.1 +/- 0.5 L min(-1). Continuous infusion of adenosine at rest and during one-legged exercise at approximately 62% of peak power output increased (P < 0.05) FaBF dose-dependently to level off (P = ns) at 8.3 +/- 1.0 and 8.2 +/- 1.4 L min(-1), respectively. One-legged exercise alone increased (P < 0.05) FaBF to 4.7 +/- 1.7 L min(-1). Leg oxygen uptake was unaltered (P = n.s.) with adenosine infusion during both rest and exercise. The present findings demonstrate that endogenous adenosine controls at least approximately 20% of the hyperaemic response to submaximal exercise in skeletal muscle of humans. The results also clearly show that arterial infusion of exogenous adenosine has the potential to evoke a vasodilator response that mimics the increase in blood flow observed in response to exercise.  相似文献   

12.
The aim of the present investigation was to test the hypothesis that long-term modulation (LTM) of the exercise ventilatory response, evidenced as an augmentation in minute ventilation (V(I)) and tidal volume (VT) during the early phase of exercise, is only evident when the muscle groups recruited are the same during testing and during hypercapnic exercise conditioning. Measurements of cardiorespiratory variables were made at rest and during leg cycling (fH=107+/-5) exercise in eight male subjects, 1 week before and 1 h after conditioning. Conditioning involved either: (a) ten trials of arm cranking exercise (V(I)=29.0+/-4.4), or (b) ten trials of arm cranking exercise paired with external respiratory dead space (1400 ml; V(I)=57.3+/-6.5). Neither arm conditioning paradigm evoked any of the modulatory responses described in previous studies. We, therefore, conclude that the general upregulation of the spinal respiratory motoneuron pool excitability after conditioning (the "final common pathway" hypothesis), may be inadequate to fully explain the underlying mechanisms of LTM of ventilation in humans.  相似文献   

13.
Perfusion to exercising skeletal muscle is regulated to match O(2) delivery to the O(2) demand, but this regulation might be compromised during or approaching maximal whole-body exercise as muscle blood flow for a given work rate is blunted. Whether muscle perfusion is restricted when there is an extreme metabolic stimulus to vasodilate during supramaximal exercise remains unknown. To examine the regulatory limits of systemic and muscle perfusion in exercising humans, we measured systemic and leg haemodynamics, O(2) transport, and , and estimated non-locomotor tissue perfusion during constant load supramaximal cycling (498 +/- 16 W; 110% of peak power; mean +/- S.E.M.) in addition to both incremental cycling and knee-extensor exercise to exhaustion in 13 trained males. During supramaximal cycling, cardiac output (Q), leg blood flow (LBF), and systemic and leg O(2) delivery and reached peak values after 60-90 s and thereafter levelled off at values similar to or approximately 6% (P < 0.05) below maximal cycling, while upper body blood flow remained unchanged (approximately 5.5 l min(-1)). In contrast, Q and LBF increased linearly until exhaustion during one-legged knee-extensor exercise accompanying increases in non-locomotor tissue blood flow to approximately 12 l min(-1). At exhaustion during cycling compared to knee-extensor exercise, Q, LBF, leg vascular conductance, leg O(2) delivery and leg for a given power were reduced by 32-47% (P < 0.05). In conclusion, locomotor skeletal muscle perfusion is restricted during maximal and supramaximal whole-body exercise in association with a plateau in Q and limb vascular conductance. These observations suggest that limits of cardiac function and muscle vasoconstriction underlie the inability of the circulatory system to meet the increasing metabolic demand of skeletal muscles and other tissues during whole-body exercise.  相似文献   

14.
Heart rate (HR) is higher during dynamic arm exercise than during leg exercise at equal oxygen consumption levels, but the physiological background for this difference is not completely understood. The vagally mediated beat-to-beat R-R interval fluctuation decreases until the level of approximately 50% of maximal oxygen consumption during an incremental bicycle exercise, but the vagal responses to arm exercise are not well known. Changes in autonomic modulation of HR were compared during arm and leg exercise by measuring beat-to-beat R-R interval variability from a Poincaré plot normalized for the average R-R interval (SD1n), a measure of vagal activity, in 14 healthy male subjects (age 20 +/- 4 years) who performed graded bicycle and arm cranking tests until exhaustion. Seven of the subjects also performed the dynamic arm and leg tests after beta-adrenergic blockade (propranolol 0.2 mg kg-1 i.v.). More rapid reduction occurred in SD1n during the low-intensity level of dynamic arm exercise than during dynamic leg exercise without beta-blockade (e.g. 11 +/- 6 vs. 20 +/- 10 at the oxygen consumption level of 1.2 l min-1; P < 0.001) and with beta-blockade (e.g. 13 +/- 4 vs. 25 +/- 10 at the level of 1.0 l min-1; P < 0.05), and the mean HR was significantly higher during submaximal arm work than during leg work in both cases (e.g. during beta-blockade 81 +/- 12 vs. 74 +/- 6 beats min-1 at the level of 1.0 l min-1; P < 0.05). These data show that dynamic arm exercise results in more rapid withdrawal of vagal outflow than dynamic leg exercise.  相似文献   

15.
During arm exercise (A), mean arterial pressure (MAP) is higher than during leg exercise (L). We evaluated the effect of central blood volume on the MAP response to exercise by determining plasma atrial natriuretic peptide (ANP) during moderate upright and supine A, L and combined arm and leg exercise (A + L) in 11 male subjects. In the upright position, MAP was higher during A than at rest (102 +/- 6 versus 89 +/- 6 mmHg; mean +/- s.d.) and during L (95 +/- 7 mmHg; P < 0.05), but similar to that during A + L (100 +/- 6 mmHg). There was no significant change in plasma ANP during A, while plasma ANP was higher during L and A + L (42.7 +/- 12.2 and 43.3 +/- 17.1 pg ml(-1), respectively) than at rest (34.6 +/- 14.3 pg ml(-1), P < 0.001). In the supine position, MAP was also higher during A than at rest (100 +/- 7 versus 86 +/- 5 mmHg) and during L (92 +/- 5 mmHg; P < 0.01) but similar to that during A + L (102 +/- 6 mmHg). During supine A, plasma ANP was higher than at rest and during L but lower than during A + L (73.1 +/- 22.5 versus 47.2 +/- 15.9, 67.4 +/- 18.3 and 78.1 +/- 25.0 pg ml(-1), respectively; P < 0.05). Thus, upright A was the exercise mode that did not enhance plasma ANP, suggesting that central blood volume did not increase. The results suggest that the similar blood pressure response to A and to A + L may relate to the enhanced central blood volume following the addition of leg to arm exercise.  相似文献   

16.
Twelve chair-restrained baboons (Papio cynocephalus) were conditioned with operant techniques and a food reward to perform 4 min of dynamic leg exercise. During the last minute of exercise, blood flow through the left renal artery, measured by an electromagnetic flow transducer, was decreased 19 +/- 2% SEM with respect to the minute of rest preceding the exercise. This response occurred within 1.5 min, was maintained throughout the exercise, and recovered to control within 2 min. Mean arterial blood pressure rose 17 +/- 2%; renal vascular resistance, 46 +/- 6%; heart rate, 42 +/- 4%; and whole-body oxygen consumption, 233 +/- 19%. Behavioral situations simulating the arousal and feeding components of the exercise task, but not requiring muscular exertion, did not alter renal blood flow. In four animals, blood flow to the contralateral but surgically denervated kidney was measured; it increased transiently at the onset of exercise, but returned to control by the last minute of work. Thus, the baboon, like man, shows a decrease in renal blood flow during exercise. This response has a rapid onset and recovery and is primarily neurally mediated.  相似文献   

17.
The purpose of this study was to compare the rates of muscle deoxygenation in the exercising muscles during incremental arm cranking and leg cycling exercise in healthy men and women. Fifteen men and 10 women completed arm cranking and leg cycling tests to exhaustion in separate sessions in a counterbalanced order. Cardiorespiratory measurements were monitored using an automated metabolic cart interfaced with an electrocardiogram. Tissue absorbency was recorded continuously at 760?nm and 850?nm during incremental exercise and 6?min of recovery, with a near infrared spectrometer interfaced with a computer. Muscle oxygenation was calculated from the tissue absorbency measurements at 30%, 45%, 60%, 75% and 90% of peak oxygen uptake (V˙O2) during each exercise mode and is expressed as a percentage of the maximal range observed during exercise and recovery (%Mox). Exponential regression analysis indicated significant inverse relationships (P?2 during arm cranking and leg cycling in men (multiple R?=??0.96 and ?0.99, respectively) and women (R?=?0.94 and ?0.99, respectively). No significant interaction was observed for the %Mox between the two exercise modes and between the two genders. The rate of muscle deoxygenation per litre of V˙O2 was 31.1% and 26.4% during arm cranking and leg cycling, respectively, in men, and 26.3% and 37.4% respectively, in women. It was concluded that the rate of decline in %Mox for a given increase in V˙O2 between 30% and 90% of the peak V˙O2 was independent of exercise mode and gender.  相似文献   

18.
The purpose of this study was to compare the incidence of entrainment of breathing (ENT) between cyclists (C; n=8) and non-cyclists (NC; n=8) during leg cycling (LC) and arm cycling (AC). No subjects were training regularly in upper body endurance exercise. Day 1 consisted of spirometry and a VO2max test on both an arm and leg ergometer in random order separated by at least 60 min. On Day 2, subjects performed both AC and LC exercise with each session consisting of 5 min of warm-up at 20% and three consecutive 6 min loads at 40%, 60%, and 80% of task specific peak power output (WL1, WL2, WL3, respectively). Sessions were separated by at least 45 min. The final 3 min of each load were analyzed for entrainment of pedal and breathing frequencies using integer and half-integer ratios. A total of six subjects were unable to complete at least one exercise session at WL3 and therefore this load was excluded from analysis. Mean % VO2max during exercise was not different between cyclists and controls with respect to intensity and mode (AC= approximately 50% and 70%; LC= approximately 55% and 75% at WL1 and WL2, respectively). A repeated measures ANOVA revealed no effect on incidence of entrainment (%ENT) by group, mode of exercise, or exercise intensity (p=0.12, 0.24, and 0.88, respectively). %ENT was highest in cyclists during leg exercise (cyclists: LC=32%; AC=19%; controls: LC=18%; AC=21%) however this difference was not significant (p=0.07). In all situations that would be considered unfamiliar for both groups %ENT was similar. These results suggest that during cycling exercise at intensities of 75% VO2max or less, regular training may result in higher %ENT and that ENT is not transferable to an unfamiliar mode of exercise using different muscle groups.  相似文献   

19.
Our objective was to assess the importance of arterial baroreflexes in maintaining vasoconstriction in active muscle during moderate to severe exercise. Eight subjects exercised for 8-15 min on a cycle ergometer at three levels (averages 94, 194, 261 W) requiring 40-88% of VO2 max. Four times during each exercise level pulsatile negative pressure (-50 mmHg) was applied over the carotid sinuses for 30 s; suction was applied at each ECG R-wave for 250-400 ms. Before and during each neck suction, femoral venous blood flow (FVBF) was measured by constant infusion thermal dilution. At 94 W neck suction significantly reduced blood pressure (BP) (15 mmHg) and heart rate (HR) (7 beats min-1), and raised leg vascular conductance (LVC) (11.4%) without changing FVBF. At 194 W, neck suction reduced BP (9 mmHg), HR (4 beats min-1) and FVBF (5.1%, 240 ml min-1), and raised LVC (5.2%). At 261 W, LVC was unchanged by neck suction, but BP and FVBF both fell (9 mmHg and 650 ml min-1 or 7.4%). We conclude that competing local vasodilation and sympathetic vasoconstriction control muscle blood flow during moderate exercise, and vasoconstrictor tone can be withdrawn by baroreceptor stimulation. High levels of vasoconstrictor outflow to muscle in severe exercise may not originate from baroreflexes.  相似文献   

20.
The differences in cardiorespiratory responses were examined during and after intermittent progressive maximal arm-crank and cycle exercise. Arm-crank exercise was performed in a standing position using no torso restraints to maximize the amount of active skeletal muscle mass. Recovery was followed for 16 min. In the tests a variety of ventilatory gas exchange variables, heart rate, the blood pressure, and the arm venous blood lactate concentration were measured in 21 untrained healthy men aged 24-45 years. At equal submaximal external workloads for arm cranking and cycling (50 and 100 W) the respiratory frequency, tidal volume, pulmonary ventilation, oxygen uptake, carbon dioxide output, the respiratory exchange ratio, heart rate, the arm venous blood lactate concentration, and the ventilatory equivalent for oxygen were higher (P less than 0.001) during arm cranking than cycling. The maximal workload for arm cranking was 44% lower than that for cycling (155 +/- 37 vs 277 +/- 39 W, P less than 0.001) associated with significantly (P less than 0.001) lower maximal tidal volume (-20%), oxygen uptake (-22%), carbon dioxide output (-28%), systolic blood pressure (-17%) and oxygen pulse (-22%) but a higher ventilatory equivalent for carbon dioxide (+22%) and arm venous blood lactate concentration (+37%). However, these responses after arm-crank and cycle exercises behaved almost similarly during recovery. The high cardiorespiratory stress induced by arm work should be taken into account when the work stress and work-rest regimens in actual manual tasks are assessed, and when arm work is used for clinical testing, and in physiotherapy particularly for patients with heart or pulmonary diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号