首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The position of rifampicin with respect to the biopharmaceutics classification system (BCS) was explored on the basis of its aqueous solubility and intestinal permeability. The aqueous solubility was determined between pH 1 and 7 by the conventional shake-flask method. Permeability coefficients of rifampicin and the US FDA listed low (furosemide, ranitidine) and high permeable (caffeine, naproxen) model drugs were determined in the three segments of the rat intestine by employing the everted gut sac model. The samples were analyzed by HPLC. The maximum human single dose of rifampicin (600 mg) was insoluble in 250 ml of aqueous media between pH 3 and 7. The determined apparent permeability coefficient (Papp) values for rifampicin were 4.856×10?6, 2.117×10?6, and 2.149×10?6 cm/sec in the rat duodenum, jejunum and ileum, respectively. These values were similar to those of the low permeable drugs, ranitidine and furosemide, for which Papp values were determined to be 1.767×10?6?2.426×10?6 and 2.469×10?6?3.008×10?6 cm/sec, respectively. The determined values for high permeable model drugs, viz., caffeine and naproxen, were ~10–20 folds higher than rifampicin or even ranitidine and furosemide. The study suggests that rifampicin is a drug with low solubility and even low intestinal permeability and hence qualifies to be classified in BCS Class IV, instead of Class II where it is being categorized presently. The contention is supported by the reported data on the permeability of the drug through cell monolayers, the mass balance and the absolute bioavailability values in the literature, and the data for rifampicin according to “Lipinski's rule of five”.  相似文献   

2.
Biopharmaceutics Classification System and Biopharmaceutics Drug Distribution Classification System are complimentary, not competing, classification systems that aim to improve, simplify, and speed drug development. Although both systems are based on classifying drugs and new molecular entities into four categories using the same solubility criteria, they differ in the criterion for permeability and have different purposes. Here, the details and applications of both systems are reviewed with particular emphasis of their role in drug development. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:34–42, 2013  相似文献   

3.

Aims

Evidence suggests that the rate of oral drug absorption changes during early childhood. Yet, respective clinical implications are currently unclear, particularly for preterm neonates. The objective of this study was to evaluate changes in oral drug absorption after birth for different Biopharmaceutics Classification System (BCS) class I and II compounds to better understand respective implications for paediatric pharmacotherapy.

Methods

Two paradigm compounds were selected for BCS class I (paracetamol (acetaminophen) and theophylline) and II (indomethacin and ibuprofen), respectively, based on the availability of clinical literature data following intravenous and oral dosing. A comparative population pharmacokinetic analysis was performed in a step‐wise manner in nonmem® 7.2 to characterize and predict changes in oral drug absorption after birth for paracetamol, theophylline and indomethacin.

Results

A one compartment model with an age‐dependent maturation function for oral drug absorption was found appropriate to characterize the pharmacokinetics of paracetamol. Our findings indicate that the rate at which a drug is absorbed from the GI tract reaches adult levels within about 1 week after birth. The maturation function for paracetamol was found applicable to theophylline and indomethacin once solubility limitations were overcome via drug formulation. The influence of excipients on solubility and, hence, oral bioavailability was confirmed for ibuprofen, a second BCS class II compound.

Conclusions

The findings of our study suggest that the processes underlying changes in oral drug absorption after birth are drug‐independent and that the maturation function identified for paracetamol may be generally applicable to other BCS class I and II compounds for characterizing drug absorption in preterm as well as term neonates.  相似文献   

4.
The workshop “Drug Permeability - Best Practices for Biopharmaceutics Classification System (BCS) Based Biowaivers” was held virtually on December 6, 2021, organized by the University of Maryland Center of Excellence in Regulatory Science and Innovation (M-CERSI), and the Food and Drug Administration (FDA). The workshop focused on the industrial, academic, and regulatory experiences in generating and evaluating permeability data, with the aim to further facilitate implementation of the BCS and efficient development of high-quality drug products globally. As the first international permeability workshop since the BCS based biowaivers was finalized as the ICH M9 guideline, the workshop included lectures, panel discussions, and breakout sessions. Lecture and panel discussion topics covered case studies at IND, NDA, and ANDA stages, typical deficiencies relating to permeability assessment supporting BCS biowaiver, types of evidence that are available to demonstrate high permeability, method suitability of a permeability assay, impact of excipients, importance of global acceptance of permeability methods, opportunities to expand the use of biowaivers (e.g. non-Caco-2 cell lines, totality-of-evidence approach to demonstrate high permeability) and future of permeability testing. Breakout sessions focused on 1) in vitro and in silico intestinal permeability methods; 2) potential excipient effects on permeability and; 3) use of label and literature data to designate permeability class.  相似文献   

5.
6.
通过构建基于分子属性的分类树模型以鉴别化合物的生物药剂分类系统(biopharmaceutics classification system,BCS)的穿透性分类.将从不同文献采集的Caco-2穿透性数据构成训练集,建立分类树模型,并应用此模型对外部测试集——美国食品药品监督管理局BCS的标准化合物进行分类测试.由此建立的鉴别化合物的BCS穿透性分类的规则为如果氢键供体原子数量<4、正性范德华极性表面积和<40.71并且溶解能>-33.89,那么该化合物为高穿透性,否则为低穿透性.本分类结构属性关系模型的105个化合物的训练集和17个化合物的外部测试集的识别正确率分别91.43%和82.35%.本模型成功应用于鉴定BCS标准化合物高低穿透性分类药物的分子属性,为药物穿透性的识别提供了简便、有效的分类方法.  相似文献   

7.
No Heading The Biopharmaceutics Classification System (BCS) was developed to allow prediction of in vivo pharmacokinetic performance of drug products from measurements of permeability (determined as the extent of oral absorption) and solubility. Here, we suggest that a modified version of such a classification system may be useful in predicting overall drug disposition, including routes of drug elimination and the effects of efflux and absorptive transporters on oral drug absorption; when transporter-enzyme interplay will yield clinically significant effects (e.g., low bioavailability and drug-drug interactions); the direction, mechanism, and importance of food effects; and transporter effects on postabsorption systemic drug concentrations following oral and intravenous dosing. These predictions are supported by a series of studies from our laboratory during the past few years investigating the effect of transporter inhibition and induction on drug metabolism. We conclude by suggesting that a Biopharmaceutics Drug Disposition Classification System (BDDCS) using elimination criteria may expand the number of Class 1 drugs eligible for a waiver of in vivo bioequivalence studies and provide predictability of drug disposition profiles for Classes 2, 3, and 4 compounds.  相似文献   

8.
The current BSC guidance issued by the FDA allows for biowaivers based on conservative criteria. Possible new criteria and class boundaries are proposed for additional biowaivers based on the underlying physiology of the gastrointestinal tract. The proposed changes in new class boundaries for solubility and permeability are as follows: 1. Narrow the required solubility pH range from 1.0-7.5 to 1.0-6.8. 2. Reduce the high permeability requirement from 90% to 85%. The following new criterion and potential biowaiver extension require more research: 1. Define a new intermediate permeability class boundary. 2. Allow biowaivers for highly soluble and intermediately permeable drugs in IR solid oral dosage forms with no less than 85% dissolved in 15 min in all physiologically relevant dissolution media, provided these IR products contain only known excipients that do not affect the oral drug absorption. The following areas require more extensive research: 1. Increase the dose volume for solubility classification to 500 mL. 2. Include bile salt in the solubility measurement. 3. Use the intrinsic dissolution method for solubility classification. 4. Define an intermediate solubility class for BCS Class II drugs. 5. Include surfactants in in vitro dissolution testing.  相似文献   

9.
The workshop "Bioequivalence, Biopharmaceutics Classification System, and Beyond" was held May 21-23, 2007 in North Bethesda, MD, USA. This workshop provided an opportunity for pharmaceutical scientists to discuss the FDA guidance on the Biopharmaceutics Classification System (BCS), bioequivalence of oral products, and related FDA initiatives such as the FDA Critical Path Initiative. The objective of this Summary Workshop Report is to document the main points from this workshop. Key highlights of the workshop were (a) the described granting of over a dozen BCS-based biowaivers by the FDA for Class I drugs whose formulations exhibit rapid dissolution, (b) continued scientific support for biowaivers for Class III compounds whose formulations exhibit very rapid dissolution, (c) scientific support for a number of permeability methodologies to assess BCS permeability class, (d) utilization of BCS in pharmaceutical research and development, and (e) scientific progress in in vitro dissolution methods to predict dosage form performance.  相似文献   

10.
11.
12.
Abstract: A Biopharmaceutics Drug Disposition Classification System (BDDCS) was proposed to serve as a basis for predicting the importance of transporters in determining drug bioavailability and disposition. BDDCS may be useful in predicting: routes of drug elimination; efflux and absorptive transporters effects on oral absorption; when transporter‐enzyme interplay will yield clinically significant effects (e.g. low drug bioavailability and drug‐drug interactions); and transporter effects on post‐absorptive systemic drug levels following oral and i.v. dosing. For highly soluble, highly permeable Class 1 compounds, metabolism is the major route of elimination and transporter effects on drug bioavailability and hepatic disposition are negligible. In contrast for the poorly permeable Class 3 and 4 compounds, metabolism only plays a minor role in drug elimination. Uptake transporters are major determinants of drug bioavailability for these poorly permeable drugs and both uptake and efflux transporters could be important for drug elimination. Highly permeable, poorly soluble, extensively metabolized Class 2 compounds present the most complicated relationship in defining the impact of transporters due to a marked transporter‐enzyme interplay. Uptake transporters are unimportant for Class 2 drug bioavailability, (ensure space after,) but can play a major role in hepatic and renal elimination. Efflux transporters have major effects on drug bioavailability, absorption, metabolism and elimination of Class 2 drugs. It is difficult to accurately characterize drugs in terms of the high permeability criteria, i.e. ≥90% absorbed. We suggest that extensive metabolism may substitute for the high permeability characteristic, and that BDDCS using elimination criteria may provide predictability in characterizing drug disposition profiles for all classes of compounds.  相似文献   

13.
Pharmaceutical Research - To develop a dose dependent version of BCS and identify a critical dose after which the amount absorbed is independent from the dose. We utilized a mathematical model of...  相似文献   

14.
The Biopharmaceutical Classification System (BCS) has been a prognostic tool for assessing the potential effects of formulation on the human drug oral bioavailability. When used in conjunction with in vitro dissolution tests, the BCS can support the prediction of in vivo product performance and the development of mechanistic models that support formulation assessments through the generation of “what if” scenarios. To date, the applicability of existing human BCS criteria has not been evaluated in dogs, thereby limiting its use in canine drug development. Therefore, we examined 50 drugs for which absolute bioavailability (F) was available both in dogs and humans. The drugs were also evaluated for any potential association between solubility (calculated from the dose number, Do) or lipophilicity (LogP) and F in dogs. In humans, solubility is determined in 250 mL of fluid. However, the appropriate volume for classifying drug solubility in dogs has not been established. In this analysis, the estimated volume of a water flush administered to fasted dogs (6 mL) and a volume of 250 mL scaled to a Beagle dog (35 mL) were examined. In addition, in humans, a Do value greater than 1.0 is used to define a compound as highly soluble and a LogP value greater than 1.72 as high permeability. These same criteria were applied for defining highly soluble and highly permeable in dogs. Whether using 35 or 6 mL to determine Do, the canine solubility classification remained unchanged for all but seven compounds. There were no clear associations between a drug’s F in dogs and humans or between the canine value of F and either its human BCS classification, its LogP value, or the canine Do estimate. There was a tendency for those drugs with canine values of F equal to or greater than 80% to have LogP values equal to or greater than 1.0. Exceptions to this observation tended to be those compounds known to be absorbed via mechanisms other than passive diffusion (e.g., via transporters or paracellular transporters). Although there are limitations to the approach used in this study, the results of our assessment strongly suggest that the human BCS classification system requires substantial modification before it can be reliably applied to dogs.KEY WORDS: BCS, dogs, canine, permeability, solubility  相似文献   

15.
PURPOSE: To develop a quantitative biopharmaceutics drug classification system (QBCS) based on fundamental parameters controlling rate and extent of absorption. METHODS: A simple absorption model that considers transit flow, dissolution, and permeation processes stochastically was used to illustrate the primary importance of dose/solubility ratio and permeability on drug absorption. Simple mean time considerations for dissolution, uptake, and transit were used to identify relationships between the extent of absorption and a drug's dissolution and permeability characteristics. RESULTS: The QBCS developed relies on a (permeability, dose/ solubility ratio) plane with cutoff points 2 x 10(-6)-10(-5) cm/s for the permeability and 0.5-1 (unitless) for the dose/solubility ratio axes. Permeability estimates, P(app) are derived from Caco-2 studies, and a constant intestinal volume content of 250 ml is used to express the dose/solubility ratio as a dimensionless quantity, q. A physiologic range of 250-500 ml was used to account for variability in the intestinal volume. Drugs are classified into the four quadrants of the plane around the cutoff points according to their P(app), q values, establishing four drug categories. i.e., I (P(app) > 10(-5) cm/s, q < or = 0.5), II (P(app) > 10(-5) cm/s, q > 1), III (P(app) < 2 x 10(-6) cm/s. q < or = 0.5), and IV (P(app) < 2 x 10(-6) cm/s, q > 1). A region for borderline drugs (2 x 10(-6) < P(app) < 10(-5) cm/s, 0.5 < q < 1) was defined too. For category I, complete absorption is anticipated, whereas categories II and III exhibit dose/ solubility ratio-limited and permeability-limited absorption, respectively. For category IV, both permeability and dose/solubility ratio are controlling drug absorption. Semiquantitative predictions of the extent of absorption were pointed out on the basis of mean time considerations for dissolution, uptake, and transit in conjunction with drug's dose/solubility ratio and permeability characteristics. A set of 42 drugs were classified into the four categories, and the predictions of intestinal drug absorption were in accord with the experimental observations. CONCLUSIONS: The QBCS provides a basis for compound classification into four explicitly defined drug categories using the fundamental biopharmaceutical properties, permeability, and dose/solubility ratio. Semiquantitative predictions for the extent of absorption are essentially based on these drug properties, which either determine or are strongly related to the in vivo kinetics of drug dissolution and intestinal wall permeation.  相似文献   

16.
The biopharmaceutical properties of an in-house developed new crystal modification of torasemide (Torasemide N) were investigated in comparison with the most well known crystal modification form of torasemide (Torasemide I) in order to classify the drug according to the Biopharmaceutics Classification System (BCS), and to evaluate the data in line with current US Food and Drug Administration (FDA) guidance (with biowaiver provision for Class I drugs) to determine if the biowaiver provision could be improved. The solubility profiles of Torasemide I and Torasemide N were determined, and tablets prepared from both forms of the drug were studied for in-vitro release characteristics in media recommended by the current FDA guidance for biowaiver of generic products, and in other media considered more appropriate for the purpose than the ones recommended by the FDA. Two separate bioequivalence studies in healthy humans (following oral administration) were performed with two test products (both prepared from Torasemide I) against a single reference product (prepared from Torasemide N). The absorption profiles of the drug from the tablets were determined by deconvolution for comparison with the in-vitro release profiles to determine the appropriateness of some dissolution media for predicting in-vivo performance and to determine the comparative rate and extent of absorption. The drug was absorbed from the tested products quickly and almost completely (about 95% within 3.5 h of administration). However, one test product failed to meet the bioequivalence criteria and had a significant initial lower absorption rate profile compared with the reference product (P< or =0.05), whereas the other product was bioequivalent and had a similar absorption profile to the reference product. A dissolution medium at pH 5.0, in which torasemide has minimum solubility, was found to be more discriminatory than the media recommended by the FDA. Torasemide has been classified as a Class I drug according to the BCS up to a maximum dose of 40 mg and the data suggest that the current FDA guidance could be improved by giving more emphasis to selection of appropriate dissolution media than is given in its current form for approving biowaiver to generic products of Class I drugs.  相似文献   

17.
18.
19.
BackgroundLopinavir/ritonavir (LPV/r-A, Kaletra®), a fixed dose, co-formulated antiviral therapy for the treatment of HIV infection has been used worldwide for over two decades. Both active substances have low solubility in water and low membrane permeability. LPV/r-A tablets contain key excipients critical to ensuring acceptable bioavailability of lopinavir and ritonavir in humans. An established dog pharmacokinetic model demonstrated several generic LPV/r tablet formulations have significant oral bioavailability variability compared to LPV/r-A.MethodsAnalytical characterizations of LPV/r-B tablets were performed and a clinical study was conducted to assess the relative bioavailability of Kalidavir® (LPV/r-B) 400/100 mg tablets relative to Kaletra® (LPV/r-A) 400/100 mg tablets under fasting conditions.ResultsThe presence of active substances were confirmed in LPV/r-B tablets in an apparent amorphous state at essentially the labeled amounts, and dissolution profiles were generally similar to LPV/r-A tablets. Excipients in the tablet formulation were found to be variable and deviate from the labeled composition. Lopinavir and ritonavir exposures (AUC) following LPV/r-B administration were approximately 90% and 20% lower compared to that of LPV/r-A.ConclusionsLPV/r-B was not shown to be bioequivalent to LPV/r-A.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号