首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Both human preterm labor (PTL) and term labor are consistently associated with a chemokine-induced inflammatory infiltration of the myometrium. However, what regulates myometrial chemokine expression and whether the increase in expression precedes the onset of labor, and so may have a role in its causation, or occurs after, and is simply a consequence of labor, is uncertain. Therefore, we assessed 1) chemokine expression in nonlaboring and laboring myometrial samples obtained at and before term and 2) the factors that regulate myometrial chemokine expression. We found that term labor was characterized by an increase in CXCL8 and CCL2 in both upper and lower segments, whereas PTL was associated with a distinct pattern of chemokine expression, with increases in CCL5, CXCL5, and CCL20 in the lower segment myometrium only. Further, we found that chemokine expression in myometrial cell cultures was increased by stretch and inflammatory cytokines and reduced by prostglandins and oxytocin and that the primary mediator of stretch and cytokine effects was nuclear factor κB (NF-κB) and to a lesser extent MAPK. These data show that PTL appears to be associated with a distinct pattern of chemokine expression, that stretch and cytokines both drive myometrial chemokine expression primarily via activation of NF-κB. These data suggest that the modulation of NF-κB activity may be of potential benefit in the management of PTL.  相似文献   

4.
5.
6.
The extracellular heterodimeric protein S100A8/A9 activates the innate immune system through activation of the receptor of advanced glycation end products (RAGE) and Toll-like receptors. As activation of RAGE has recently been associated with sustained myocardial inflammation and heart failure (HF) we studied the role of S100A8/A9 in the development of post-ischemic HF. Hypoxia led to sustained induction of S100A8/A9 accompanied by increased nuclear factor (NF-)κB binding activity and increased expression of pro-inflammatory cytokines in cardiac fibroblasts and macrophages. Knockdown of either S100A8/A9 or RAGE rescued the induction of pro-inflammatory cytokines and NF-κB activation after hypoxia. In a murine model of post-ischemic HF both cardiac RNA and protein levels of S100A8/A9 were elevated as soon as 30 min after hypoxia with sustained activation up to 28 days after ischemic injury. Treatment with recombinant S100A8/A9 resulted in reduced cardiac performance following ischemia/reperfusion. Chimera experiments after bone marrow transplantation demonstrated the importance of RAGE expression on immune cells for their recruitment to the injured myocardium aggravating post-ischemic heart failure. Signaling studies in isolated ventricles indicated that MAP kinases JNK, ERK1/2 as well as NF-κB mediate signals downstream of S100A8/A9-RAGE in post-ischemic heart failure. Interestingly, cardiac performance was not affected by administration of S100A8/A9 in RAGE?/?-mice, which demonstrated significantly improved cardiac recovery compared to WT-mice. Our study provides evidence that sustained activation of S100A8/A9 critically contributes to the development of post-ischemic HF driving the progressive course of HF through activation of RAGE.  相似文献   

7.
Ing4 is a member of the inhibitor of growth (ING) family of chromatin-modifying proteins. Biochemical experiments indicate that Ing4 is a subunit of the HB01-JADE-hEAF6 histone acetyltransferase complex responsible for most nucleosomal histone H4 acetylation in eukaryotes, and transfection studies suggest that Ing4 may regulate a wide variety of cellular processes, including DNA repair, apoptosis, cell-cycle regulation, metastasis, angiogenesis, and tumor suppression. However, in vivo evidence for a physiological role for Ing4 in cell-growth regulation is lacking. We have generated Ing4-deficient mice to explore the role of Ing4 in development, tumorigenesis, and in NF-κB signaling. Ing4-null mice develop normally and are viable. Although mice deficient for Ing4 fail to form spontaneous tumors, they are hypersensitive to LPS treatment and display elevated cytokine responses. Macrophages isolated from Ing4-null mice have increased levels of nuclear p65/RelA protein, resulting in increased RelA binding to NF-κB target promoters and up-regulation of cytokine gene expression. However, increased promoter occupancy by RelA in LPS-stimulated, Ing4-null cells does not always correlate with increased NF-κB target-gene expression, as RelA activation of a subset of cytokine promoters also requires Ing4 for proper histone H4 acetylation. Furthermore, activation of the IκBα promoter by RelA is also Ing4-dependent, and LPS-stimulated, Ing4-null cells have reduced levels of IκBα promoter H4 acetylation and IκB gene expression. Thus, Ing4 negatively regulates the cytokine-mediated inflammatory response in mice by facilitating NF-κB activation of IκB promoters, thereby suppressing nuclear RelA levels and the activation of select NF-κB target cytokines.  相似文献   

8.
Liver damage in humans is induced by various insults including alcohol abuse, hepatitis B/C virus infection, autoimmune or metabolic disorders and, when persistent, leads to development of liver fibrosis. Because the nuclear factor-κB (NF-κB) system is activated in response to several of these stresses, we hypothesized that NF-κB activation in hepatocytes may contribute to fibrosis development. To activate the NF-κB signaling pathway in a time- and cell-type-specific manner in the liver, we crossed transgenic mice carrying the tetracycline-responsive transactivator under the control of the liver activator protein promotor with transgenic mice carrying a constitutively active form of the Ikbkb gene (IKK2 protein [CAIKK2]). Double-transgenic mice displayed doxycycline-regulated CAIKK2 expression in hepatocytes. Removal of doxycycline at birth led to activation of NF-κB signaling, moderate liver damage, recruitment of inflammatory cells, hepatocyte proliferation, and ultimately to spontaneous liver fibrosis development. Microarray analysis revealed prominent up-regulation of chemokines and chemokine receptors and this induction was rapidly reversed after switching off the CAIKK2 expression. Turning off the transgene expression for 3 weeks reversed stellate cell activation but did not diminish liver fibrosis. The elimination of macrophages by clodronate-liposomes attenuated NF-κB-induced liver fibrosis in a liver-injury-independent manner. Conclusion: Our results revealed that hepatic activation of IKK/NF-κB is sufficient to induce liver fibrosis by way of macrophage-mediated chronic inflammation. Therefore, agents controlling the hepatic NF-κB system represent attractive therapeutic tools to prevent fibrosis development in multiple chronic liver diseases. (HEPATOLOGY 2012;56:1117-1128).  相似文献   

9.
10.
11.
12.
IkappaB激酶家族(IkappaB kinases, IKKs)是NF-kappaB信号途径最为重要的成员之一, 已发现其在先天性免疫以及炎症反应的调节中发挥关键作用. 除IKKAlpha/beta/gamma之外, 作为IKKs的最新成员, IKKε不仅具有与IKKAlpha/beta/gamma类似的作用, 而且最近的研究数据证实IKKε还能通过凋亡蛋白抑制物(inhibitor of apoptosis proteins, IAPs)调节caspases的活性, 参加caspases的凋亡和非凋亡依赖性信号途径.  相似文献   

13.
14.
15.
16.
17.
18.
19.
《Pancreatology》2004,4(1):49-56
Bile-pancreatic duct ligation in rats excludes bile-pancreatic juice from the gut and induces acute pancreatitis. Bile-pancreatic juice exclusion from the gut results in increased plasma cholecystokinin (CCK) levels. CCK-A receptor-mediated exocrine pancreatic hyperstimulation is implicated in disease pathogenesis. In the present study, we show for the first time a progressive rise in CCK-A receptor protein expression in ligation-induced acute pancreatitis in rats. As CCK-A receptor induction could amplify CCK-mediated acinar hyperstimulation and exacerbate acinar cell stress with activation of the p38MAPK stress kinase pathway, we studied CCK-A receptor protein expression and p38MAPK activation in duct ligation-induced acute pancreatitis in rats. Compared to sham-operated controls, acute pancreatitis induced by bile-pancreatic duct ligation associates with a temporal increase in pancreatic CCK-A receptor protein expression, p38MAPK expression and activation, and NF-κB activation. These findings may have significance in the mechanism of disease pathogenesis in this experimental model.  相似文献   

20.
Myocardial contractile dysfunction is a major consequence of septic shock, which is mainly mediated by nuclear factor-kappa B (NF-кB)-dependent production of inflammatory mediators in the heart. A novel zinc-finger protein, MCP-1-induced protein (MCPIP), is thought to have NF-кB inhibitory activity in certain cell cultures, but its pathophysiological consequence in vivo remains undefined. This study aims to clarify whether the anti-inflammatory potency of MCPIP contribute to amelioration of septic myocardial inflammation and dysfunction in vivo. Transgenic mice (TG) with cardiac-specific expression of MCPIP and their littermate wild-type (WT) controls were challenged with Escherichia coli LPS (10 mg/kg ip) and myocardial function was assessed 18 h later using echocardiography. LPS administration markedly deteriorated myocardial contractile function evidenced by reduction of the percentage of left ventricular fractional shortening, which was significantly attenuated by myocardial expression of MCPIP. MCPIP TG mice exhibited a markedly reduced myocardial inflammatory cytokines, less of iNOS expression and peroxynitrite formation, decreased caspase-3/7 activities and apoptotic cell death compared with LPS-treated WT mice. Activation of cardiac NF-кB observed in LPS-challenged WT mice was suppressed by the presence of MCPIP, as evidenced by decreased phosphorylation of IкB kinase (IKKα/β), reduced degradation of the cytosolic IкBα, and decreased nuclear translocation of NF-кB p65 subunit and its target DNA-binding activity. These results suggest that MCPIP has therapeutic values to protect heart from inflammatory pathologies, possibly through inhibition of IкB kinase complex, leading to blockade of NF-кB activation, and subsequently, attenuation of the proinflammatory state and nitrosative stress in the myocardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号