首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a 6,000-yr record of changing water balance in the Pacific Northwest inferred from measurements of carbonate δ18O and grayscale on a sediment core collected from Castor Lake, Washington. This subdecadally resolved drought record tracks the 1,500-yr tree-ring-based Palmer Drought Severity Index reconstructions of Cook et al. [Cook ER, Woodhouse CA, Eakin CM, Meko DM, Stahle DW (2004) Science 306:1015–1018] in the Pacific Northwest and extends our knowledge back to 6,000 yr B.P. The results demonstrate that low-frequency drought/pluvial cycles, with occasional long-duration, multidecadal events, are a persistent feature of regional climate. Furthermore, the average duration of multidecadal wet/dry cycles has increased since the middle Holocene, which has acted to increase the amplitude and impact of these events. This is especially apparent during the last 1,000 yr. We suggest these transitions were driven by changes in the tropical and extratropical Pacific and are related to apparent intensification of the El Niño Southern Oscillation over this interval and its related effects on the Pacific Decadal Oscillation. The Castor Lake record also corroborates the notion that the 20th century, prior to recent aridity, was a relatively wet period compared to the last 6,000 yr. Our findings suggest that the hydroclimate response in the Pacific Northwest to future warming will be intimately tied to the impact of warming on the El Niño Southern Oscillation.  相似文献   

2.
This paper presents a discussion of the status of the field of coral geochemistry as it relates to the recovery of past records of ocean chemistry, ocean circulation, and climate. The first part is a brief review of coral biology, density banding, and other important factors involved in understanding corals as proxies of environmental variables. The second part is a synthesis of the information available to date on extracting records of the carbon cycle and climate change. It is clear from these proxy records that decade time-scale variability of mixing processes in the oceans is a dominant signal. That Western and Eastern tropical Pacific El Ni?o-Southern Oscillation (ENSO) records differ is an important piece of the puzzle for understanding regional and global climate change. Input of anthropogenic CO2 to the oceans as observed by 13C and 14C isotopes in corals is partially obscured by natural variability. Nonetheless, the general trend over time toward lower delta18O values at numerous sites in the world's tropical oceans suggests a gradual warming and/or freshening of the surface ocean over the past century.  相似文献   

3.
More than half (52%) of the spatial and temporal variance in multidecadal drought frequency over the conterminous United States is attributable to the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). An additional 22% of the variance in drought frequency is related to a complex spatial pattern of positive and negative trends in drought occurrence possibly related to increasing Northern Hemisphere temperatures or some other unidirectional climate trend. Recent droughts with broad impacts over the conterminous U.S. (1996, 1999-2002) were associated with North Atlantic warming (positive AMO) and northeastern and tropical Pacific cooling (negative PDO). Much of the long-term predictability of drought frequency may reside in the multidecadal behavior of the North Atlantic Ocean. Should the current positive AMO (warm North Atlantic) conditions persist into the upcoming decade, we suggest two possible drought scenarios that resemble the continental-scale patterns of the 1930s (positive PDO) and 1950s (negative PDO) drought.  相似文献   

4.
Detection and attribution of past changes in cyclone activity are hampered by biased cyclone records due to changes in observational capabilities. Here, we relate a homogeneous record of Atlantic tropical cyclone activity based on storm surge statistics from tide gauges to changes in global temperature patterns. We examine 10 competing hypotheses using nonstationary generalized extreme value analysis with different predictors (North Atlantic Oscillation, Southern Oscillation, Pacific Decadal Oscillation, Sahel rainfall, Quasi-Biennial Oscillation, radiative forcing, Main Development Region temperatures and its anomaly, global temperatures, and gridded temperatures). We find that gridded temperatures, Main Development Region, and global average temperature explain the observations best. The most extreme events are especially sensitive to temperature changes, and we estimate a doubling of Katrina magnitude events associated with the warming over the 20th century. The increased risk depends on the spatial distribution of the temperature rise with highest sensitivity from tropical Atlantic, Central America, and the Indian Ocean. Statistically downscaling 21st century warming patterns from six climate models results in a twofold to sevenfold increase in the frequency of Katrina magnitude events for a 1 °C rise in global temperature (using BNU-ESM, BCC-CSM-1.1, CanESM2, HadGEM2-ES, INM-CM4, and NorESM1-M).  相似文献   

5.
Regional climate responses to large-scale forcings, such as precessional changes in solar irradiation and increases in anthropogenic greenhouse gases, may be nonlinear as a result of complex interactions among earth system components. Such nonlinear behaviors constitute a major source of climate “surprises” with important socioeconomic and ecological implications. Paleorecords are key for elucidating patterns and mechanisms of nonlinear responses to radiative forcing, but their utility has been greatly limited by the paucity of quantitative temperature reconstructions. Here we present Holocene July temperature reconstructions on the basis of midge analysis of sediment cores from three Alaskan lakes. Results show that summer temperatures during 10,000–5,500 calibrated years (cal) B.P. were generally lower than modern and that peak summer temperatures around 5,000 were followed by a decreasing trend toward the present. These patterns stand in stark contrast with the trend of precessional insolation, which decreased by ∼10% from 10,000 y ago to the present. Cool summers before 5,500 cal B.P. coincided with extensive summer ice cover in the western Arctic Ocean, persistence of a positive phase of the Arctic Oscillation, predominantly La Niña-like conditions, and variation in the position of the Alaskan treeline. These results illustrate nonlinear responses of summer temperatures to Holocene insolation radiative forcing in the Alaskan sub-Arctic, possibly because of state changes in the Arctic Oscillation and El Niño-Southern Oscillation and associated land–atmosphere–ocean feedbacks.  相似文献   

6.
Potential paleoclimatic driving mechanisms acting on human evolution present an open problem of cross-disciplinary scientific interest. The analysis of paleoclimate archives encoding the environmental variability in East Africa during the past 5 Ma has triggered an ongoing debate about possible candidate processes and evolutionary mechanisms. In this work, we apply a nonlinear statistical technique, recurrence network analysis, to three distinct marine records of terrigenous dust flux. Our method enables us to identify three epochs with transitions between qualitatively different types of environmental variability in North and East Africa during the (i) Middle Pliocene (3.35–3.15 Ma B.P.), (ii) Early Pleistocene (2.25–1.6 Ma B.P.), and (iii) Middle Pleistocene (1.1–0.7 Ma B.P.). A deeper examination of these transition periods reveals potential climatic drivers, including (i) large-scale changes in ocean currents due to a spatial shift of the Indonesian throughflow in combination with an intensification of Northern Hemisphere glaciation, (ii) a global reorganization of the atmospheric Walker circulation induced in the tropical Pacific and Indian Ocean, and (iii) shifts in the dominating temporal variability pattern of glacial activity during the Middle Pleistocene, respectively. A reexamination of the available fossil record demonstrates statistically significant coincidences between the detected transition periods and major steps in hominin evolution. This result suggests that the observed shifts between more regular and more erratic environmental variability may have acted as a trigger for rapid change in the development of humankind in Africa.  相似文献   

7.
Abrupt climate transitions, known as Dansgaard-Oeschger and Heinrich events, occurred frequently during the last glacial period, specifically from 80–11 thousand years before present, but were nearly absent during interglacial periods and the early stages of glacial periods, when major ice-sheets were still forming. Here we show, with a fully coupled state-of-the-art climate model, that closing the Bering Strait and preventing its throughflow between the Pacific and Arctic Oceans during the glacial period can lead to the emergence of stronger hysteresis behavior of the ocean conveyor belt circulation to create conditions that are conducive to triggering abrupt climate transitions. Hence, it is argued that even for greenhouse warming, abrupt climate transitions similar to those in the last glacial time are unlikely to occur as the Bering Strait remains open.  相似文献   

8.
Interannual and interdecadal prediction are major challenges of climate dynamics. In this article we develop a prediction method for climate processes that exhibit low-frequency variability (LFV). The method constructs a nonlinear stochastic model from past observations and estimates a path of the “weather” noise that drives this model over previous finite-time windows. The method has two steps: (i) select noise samples—or “snippets”—from the past noise, which have forced the system during short-time intervals that resemble the LFV phase just preceding the currently observed state; and (ii) use these snippets to drive the system from the current state into the future. The method is placed in the framework of pathwise linear-response theory and is then applied to an El Niño–Southern Oscillation (ENSO) model derived by the empirical model reduction (EMR) methodology; this nonlinear model has 40 coupled, slow, and fast variables. The domain of validity of this forecasting procedure depends on the nature of the system’s pathwise response; it is shown numerically that the ENSO model’s response is linear on interannual time scales. As a result, the method’s skill at a 6- to 16-month lead is highly competitive when compared with currently used dynamic and statistic prediction methods for the Niño-3 index and the global sea surface temperature field.  相似文献   

9.
Climate variability and anomalies are known drivers of the emergence and outbreaks of infectious diseases. In this study, we investigated the potential association between climate factors and anomalies, including El Niño Southern Oscillation (ENSO) and land surface temperature anomalies, as well as the emergence and spillover events of bat-borne viral diseases in humans and livestock in the Asia–Pacific region and the Arabian Peninsula. Our findings from time series analyses, logistic regression models, and structural equation modelling revealed that the spillover patterns of the Nipah virus in Bangladesh and the Hendra virus in Australia were differently impacted by climate variability and with different time lags. We also used event coincidence analysis to show that the emergence events of most bat-borne viral diseases in the Asia–Pacific region and the Arabian Peninsula were statistically associated with ENSO climate anomalies. Spillover patterns of the Nipah virus in Bangladesh and the Hendra virus in Australia were also significantly associated with these events, although the pattern and co-influence of other climate factors differed. Our results suggest that climate factors and anomalies may create opportunities for virus spillover from bats to livestock and humans. Ongoing climate change and the future intensification of El Niño events will therefore potentially increase the emergence and spillover of bat-borne viral diseases in the Asia–Pacific region and the Arabian Peninsula.  相似文献   

10.
A suite of the historical simulations run with the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) models forced by greenhouse gases, aerosols, stratospheric ozone depletion, and volcanic eruptions and a second suite of simulations forced by increasing CO2 concentrations alone are compared with observations for the reference interval 1965–2000. Surface air temperature trends are disaggregated by boreal cold (November-April) versus warm (May-October) seasons and by high latitude northern (N: 40°–90 °N) versus southern (S: 60 °S–40 °N) domains. A dynamical adjustment is applied to remove the component of the cold-season surface air temperature trends (over land areas poleward of 40 °N) that are attributable to changing atmospheric circulation patterns. The model simulations do not simulate the full extent of the wintertime warming over the high-latitude Northern Hemisphere continents during the later 20th century, much of which was dynamically induced. Expressed as fractions of the concurrent trend in global-mean sea surface temperature, the relative magnitude of the dynamically induced wintertime warming over domain N in the observations, the simulations with multiple forcings, and the runs forced by the buildup of greenhouse gases only is 7∶2∶1, and roughly comparable to the relative magnitude of the concurrent sea-level pressure trends. These results support the notion that the enhanced wintertime warming over high northern latitudes from 1965 to 2000 was mainly a reflection of unforced variability of the coupled climate system. Some of the simulations exhibit an enhancement of the warming along the Arctic coast, suggestive of exaggerated feedbacks.  相似文献   

11.
Indian Ocean warming modulates Pacific climate change   总被引:5,自引:0,他引:5  
It has been widely believed that the tropical Pacific trade winds weakened in the last century and would further decrease under a warmer climate in the 21st century. Recent high-quality observations, however, suggest that the tropical Pacific winds have actually strengthened in the past two decades. Precise causes of the recent Pacific climate shift are uncertain. Here we explore how the enhanced tropical Indian Ocean warming in recent decades favors stronger trade winds in the western Pacific via the atmosphere and hence is likely to have contributed to the La Niña-like state (with enhanced east–west Walker circulation) through the Pacific ocean–atmosphere interactions. Further analysis, based on 163 climate model simulations with centennial historical and projected external radiative forcing, suggests that the Indian Ocean warming relative to the Pacific’s could play an important role in modulating the Pacific climate changes in the 20th and 21st centuries.  相似文献   

12.
Freshwater discharge from the continents is a key component of Earth’s water cycle that sustains human life and ecosystem health. Surprisingly, owing to a number of socioeconomic and political obstacles, a comprehensive global river discharge observing system does not yet exist. Here we use 13 years (1994–2006) of satellite precipitation, evaporation, and sea level data in an ocean mass balance to estimate freshwater discharge into the global ocean. Results indicate that global freshwater discharge averaged 36,055 km3/y for the study period while exhibiting significant interannual variability driven primarily by El Niño Southern Oscillation cycles. The method described here can ultimately be used to estimate long-term global discharge trends as the records of sea level rise and ocean temperature lengthen. For the relatively short 13-year period studied here, global discharge increased by 540 km3/y2, which was largely attributed to an increase of global-ocean evaporation (768 km3/y2). Sustained growth of these flux rates into long-term trends would provide evidence for increasing intensity of the hydrologic cycle.  相似文献   

13.
Widespread amphibian extinctions in the mountains of the American tropics have been blamed on the interaction of anthropogenic climate change and a lethal pathogen. However, limited meteorological records make it difficult to conclude whether current climate conditions at these sites are actually exceptional in the context of natural variability. We use stable oxygen isotope measurements from trees without annual rings to reconstruct a century of hydroclimatology in the Monteverde Cloud Forest of Costa Rica. High-resolution measurements reveal coherent isotope cycles that provide annual chronological control and paleoclimate information. Climate variability is dominated by interannual variance in dry season moisture associated with El Niño Southern Oscillation events. There is no evidence of a trend associated with global warming. Rather, the extinction of the Monteverde golden toad (Bufo periglenes) appears to have coincided with an exceptionally dry interval caused by the 1986–1987 El Niño event.  相似文献   

14.
Greenland ice-core δ18O-temperature reconstructions suggest a dramatic cooling during the Younger Dryas (YD; 12.9–11.7 ka), with temperatures being as cold as the earlier Oldest Dryas (OD; 18.0–14.6 ka) despite an approximately 50 ppm rise in atmospheric CO2. Such YD cooling implies a muted Greenland climate response to atmospheric CO2, contrary to physical predictions of an enhanced high-latitude response to future increases in CO2. Here we show that North Atlantic sea surface temperature reconstructions as well as transient climate model simulations suggest that the YD over Greenland should be substantially warmer than the OD by approximately 5 °C in response to increased atmospheric CO2. Additional experiments with an isotope-enabled model suggest that the apparent YD temperature reconstruction derived from the ice-core δ18O record is likely an artifact of an altered temperature-δ18O relationship due to changing deglacial atmospheric circulation. Our results thus suggest that Greenland climate was warmer during the YD relative to the OD in response to rising atmospheric CO2, consistent with sea surface temperature reconstructions and physical predictions, and has a sensitivity approximately twice that found in climate models for current climate due to an enhanced albedo feedback during the last deglaciation.  相似文献   

15.
Plague is a vector-borne, highly virulent zoonotic disease caused by the bacterium Yersinia pestis. It persists in nature through transmission between its hosts (wild rodents) and vectors (fleas). During epizootics, the disease expands and spills over to other host species such as humans living in or close to affected areas. Here, we investigate the effect of large-scale climate variability on the dynamics of human plague in the western United States using a 56-year time series of plague reports (1950–2005). We found that El Niño Southern Oscillation and Pacific Decadal Oscillation in combination affect the dynamics of human plague over the western United States. The underlying mechanism could involve changes in precipitation and temperatures that impact both hosts and vectors. It is suggested that snow also may play a key role, possibly through its effects on summer soil moisture, which is known to be instrumental for flea survival and development and sustained growth of vegetation for rodents.  相似文献   

16.

Background

Hospitalization burden associated with influenza and respiratory syncytial virus (RSV) is uncertain due to ambiguity in the inference methodologies employed for its estimation.

Objectives

Utilization of a new method to quantitate the above burden.

Methods

Weekly hospitalization rates for several principal diagnoses from 2003 to 2011 in New York City by age group were regressed linearly against incidence proxies for the major influenza subtypes and RSV adjusting for temporal trends and seasonal baselines.

Results

Average annual rates of influenza-associated respiratory hospitalizations per 100 000 were estimated to be 129 [95% CI (79, 179)] for age <1, 36·3 (21·6, 51·4) for ages 1–4, 10·6 (7·5, 13·7) for ages 5–17, 25·6 (21·3, 29·8) for ages 18–49, 65·5 (54·0, 76·9) for ages 50–64, 125 (105, 147) for ages 65–74, and 288 (244, 331) for ages ≥75. Additionally, influenza had a significant contribution to hospitalization rates with a principal diagnosis of septicemia for ages 5–17 [0·76 (0·1, 1·4)], 18–49 [1·02 (0·3, 1·7)], 50–64 [4·0 (1·7, 6·3)], 65–74 [8·8 (2·2, 15·6)], and ≥75 [38·7 (25·7, 52·9)]. RSV had a significant contribution to the rates of respiratory hospitalizations for age <1 [1900 (1740, 2060)], ages 1–4 [117 (70, 167)], and ≥75 [175 (44, 312)] [including chronic lower respiratory disease, 90 (43, 140)] as well as pneumonia & influenza hospitalizations for ages 18–49 [6·2 (1·1, 11·3)] and circulatory hospitalizations for ages ≥75 [199 (13, 375)].

Conclusions

The high burden of RSV hospitalizations among young children and seniors age ≥75 suggests the need for additional control measures such as vaccination to mitigate the impact of annual RSV epidemics. Our estimates for influenza-associated hospitalizations provide further evidence of the burden of morbidity associated with influenza, supporting current guidelines regarding influenza vaccination and antiviral treatment.  相似文献   

17.
A more thorough understanding of regional to hemispheric hydroclimate variability and associated climate patterns is needed in order to validate climate models and project future conditions. In this study, two annually laminated (varved) sediment records spanning the last millennium were analyzed from Rhode Island and New York. Lamination thickness time series from the two locations are significantly correlated to hydroclimate indicators over the period of instrument overlap, demonstrating their usefulness in reconstructing past conditions. Both records are correlated to climate teleconnection indices, most strongly the Pacific/North American (PNA) pattern, suggesting regional to hemispheric influences on hydroclimate. Such a linkage is interpreted to be due to tropospheric circulation patterns in which positive PNA periods are associated with meridional circulation, leading to the dominance of southern moist air masses in the Northeast United States. Alternatively, the zonal flow over North America associated with negative PNA periods produces dominant dry continental air masses over the region. A composite record from the two locations reveals variability of hydroclimate and atmospheric circulation over the late Holocene and shows similarities to previously published reconstructions of the circumpolar vortex and of the Aleutian Low-pressure system, supporting the hypothesized PNA linkage. The record is correlated to continental-scale droughts, many of which have been reconstructed in the American Southwest. These results demonstrate the PNA's influence on hydroclimate over North America, and suggest that this teleconnected pattern may have a significant role in continental drought dynamics.  相似文献   

18.
We present ab initio calculations of the phase diagram of liquid CO2 and its melting curve over a wide range of pressure and temperature conditions, including those relevant to the Earth. Several distinct liquid phases are predicted up to 200 GPa and 10,000 K based on their structural and electronic characteristics. We provide evidence for a first-order liquid–liquid phase transition with a critical point near 48 GPa and 3,200 K that intersects the mantle geotherm; a liquid–liquid–solid triple point is predicted near 45 GPa and 1,850 K. Unlike known first-order transitions between thermodynamically stable liquids, the coexistence of molecular and polymeric CO2 phases predicted here is not accompanied by metallization. The absence of an electrical anomaly would be unique among known liquid–liquid transitions. Furthermore, the previously suggested phase separation of CO2 into its constituent elements at lower mantle conditions is examined by evaluating their Gibbs free energies. We find that liquid CO2 does not decompose into carbon and oxygen up to at least 200 GPa and 10,000 K.  相似文献   

19.
Carbon dioxide (CO2) is the most important anthropogenic greenhouse gas in the present-day climate. Most of the community focuses on its long-term (decadal to centennial) behaviors that are relevant to climate change, but there are relatively few discussions of its higher-frequency forms of variability, and none regarding its subseasonal distribution. In this work, we report a large-scale intraseasonal variation in the Atmospheric Infrared Sounder CO2 data in the global tropical region associated with the Madden–Julian oscillation (MJO). The peak-to-peak amplitude of the composite MJO modulation is ∼1 ppmv, with a standard error of the composite mean < 0.1 ppmv. The correlation structure between CO2 and rainfall and vertical velocity indicate positive (negative) anomalies in CO2 arise due to upward (downward) large-scale vertical motions in the lower troposphere associated with the MJO. These findings can help elucidate how faster processes can organize, transport, and mix CO2 and provide a robustness test for coupled carbon–climate models.  相似文献   

20.

Aims/Introduction

We investigated the relationship between the frequency of self-monitoring of blood glucose (SMBG) and glycemic control in type 1 diabetes mellitus patients on continuous subcutaneous insulin infusion (CSII) or on multiple daily injections (MDI) using data management software.

Materials and Methods

We recruited 148 adult type 1 diabetes mellitus patients (CSII n = 42, MDI n = 106) and downloaded their SMBG records to the MEQNET™ SMBG Viewer software (Arkray Inc., Kyoto, Japan). The association between the SMBG frequency and the patients'' hemoglobin A1c (HbA1c) levels was analyzed using the χ2-test and linear regression analysis was carried out to clarify their relationship.

Results

The odds ratio of achieving a target HbA1c level of <8% (63.9 mmol/mol) was significantly higher in subjects with SMBG frequencies of ≥3.5 times/day compared with those with SMBG frequencies of <3.5 times/day in the CSII group (odds ratio 7.00, 95% confidence interval 1.72–28.54), but not in the MDI group (odds ratio 1.35, 95% CI 0.62–2.93). A significant correlation between SMBG frequency and the HbA1c level was detected in the CSII group (HbA1c [%] = –0.24 × SMBG frequency [times/day] + 8.60 [HbA1c {mmol/L} = –2.61 × SMBG frequency {times/day} + 70.5], [r = –0.384, = 0.012]), but not in the MDI group.

Conclusions

A SMBG frequency of <3.5 times per day appeared to be a risk factor for poor glycemic control (HbA1c ≥8%) in type 1 diabetes mellitus patients on CSII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号