首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titanium alloys, especially β alloys, are favorable as implant materials due to their promising combination of low Young’s modulus, high strength, corrosion resistance, and biocompatibility. In particular, the low Young’s moduli reduce the risk of stress shielding and implant loosening. The processing of Ti-24Nb-4Zr-8Sn through laser powder bed fusion is presented. The specimens were heat-treated, and the microstructure was investigated using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The mechanical properties were determined by hardness and tensile tests. The microstructures reveal a mainly β microstructure with α″ formation for high cooling rates and α precipitates after moderate cooling rates or aging. The as-built and α″ phase containing conditions exhibit a hardness around 225 HV5, yield strengths (YS) from 340 to 490 MPa, ultimate tensile strengths (UTS) around 706 MPa, fracture elongations around 20%, and Young’s moduli about 50 GPa. The α precipitates containing conditions reveal a hardness around 297 HV5, YS around 812 MPa, UTS from 871 to 931 MPa, fracture elongations around 12%, and Young’s moduli about 75 GPa. Ti-24Nb-4Zr-8Sn exhibits, depending on the heat treatment, promising properties regarding the material behavior and the opportunity to tailor the mechanical performance as a low modulus, high strength implant material.  相似文献   

2.
Polymeric nanofibers are of great interest in biomedical applications, such as tissue engineering, drug delivery and wound healing, due to their ability to mimic and restore the function of natural extracellular matrix (ECM) found in tissues. Electrospinning has been heavily used to fabricate nanofibers because of its reliability and effectiveness. In our research, we fabricated poly(ε-caprolactone)-(PCL), magnesium oxide-(MgO) and keratin (K)-based composite nanofibers by electrospinning a blend solution of PCL, MgO and/or K. The electrospun nanofibers were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), mechanical tensile testing and inductively-coupled plasma optical emission spectroscopy (ICP-OES). Nanofibers with diameters in the range of 0.2–2.2 µm were produced by using different ratios of PCL/MgO and PCL-K/MgO. These fibers showed a uniform morphology with suitable mechanical properties; ultimate tensile strength up to 3 MPa and Young’s modulus 10 MPa. The structural integrity of nanofiber mats was retained in aqueous and phosphate buffer saline (PBS) medium. This study provides a new composite material with structural and material properties suitable for potential application in tissue engineering.  相似文献   

3.
Additively manufactured (AM) materials and hot rolled materials are typically orthotropic, and exhibit anisotropic elastic properties. This paper elucidates the anisotropic elastic properties (Young’s modulus, shear modulus, and Poisson’s ratio) of Ti6Al4V alloy in four different conditions: three AM (by selective laser melting, SLM, electron beam melting, EBM, and directed energy deposition, DED, processes) and one wrought alloy (for comparison). A specially designed polygon sample allowed measurement of 12 sound wave velocities (SWVs), employing the dynamic pulse-echo ultrasonic technique. In conjunction with the measured density values, these SWVs enabled deriving of the tensor of elastic constants (Cij) and the three-dimensional (3D) Young’s moduli maps. Electron backscatter diffraction (EBSD) and micro-computed tomography (μCT) were employed to characterize the grain size and orientation as well as porosity and other defects which could explain the difference in the measured elastic constants of the four materials. All three types of AM materials showed only minor anisotropy. The wrought (hot rolled) alloy exhibited the highest density, virtually pore-free μCT images, and the highest ultrasonic anisotropy and polarity behavior. EBSD analysis revealed that a thin β-phase layer that formed along the elongated grain boundaries caused the ultrasonic polarity behavior. The finding that the elastic properties depend on the manufacturing process and on the angle relative to either the rolling direction or the AM build direction should be taken into account in the design of products. The data reported herein is valuable for materials selection and finite element analyses in mechanical design. The pulse-echo measurement procedure employed in this study may be further adapted and used for quality control of AM materials and parts.  相似文献   

4.
Taking into account X-ray diffraction, one of the well-known methods for calculating the stress-strain of crystals is Williamson-Hall (W–H). The W-H method has three models, namely (1) Uniform deformation model (UDM); (2) Uniform stress deformation model (USDM); and (3) Uniform deformation energy density model (UDEDM). The USDM and UDEDM models are directly related to the modulus of elasticity (E). Young’s modulus is a key parameter in engineering design and materials development. Young’s modulus is considered in USDM and UDEDM models, but in all previous studies, researchers used the average values of Young’s modulus or they calculated Young’s modulus only for a sharp peak of an XRD pattern or they extracted Young’s modulus from the literature. Therefore, these values are not representative of all peaks derived from X-ray diffraction; as a result, these values are not estimated with high accuracy. Nevertheless, in the current study, the W-H method is used considering the all diffracted planes of the unit cell and super cells (2 × 2 × 2) of Hydroxyapatite (HA), and a new method with the high accuracy of the W-H method in the USDM model is presented to calculate stress (σ) and strain (ε). The accounting for the planar density of atoms is the novelty of this work. Furthermore, the ultrasonic pulse-echo test is performed for the validation of the novelty assumptions.  相似文献   

5.
In the present work, the mechanical properties of the DLD-processed Ti-6Al-4V alloy were obtained by tensile tests performed at different temperatures, ranging from 20 °C to 800 °C. Thereby, the process conditions were close to the conditions used to produce large-sized structures using the DLD method, resulting in specimens having the same initial martensitic microstructure. According to the obtained stress curves, the yield strength decreases gradually by 40% when the temperature is increased to 500 °C. Similar behavior is observed for the tensile strength. However, further heating above 500 °C leads to a significant increase in the softening rate. It was found that the DLD-processed Ti-6Al-4V alloy had a Young’s modulus with higher thermal stability than conventionally processed alloys. At 500 °C, the Young’s modulus of the DLD alloy was 46% higher than that of the wrought alloy. The influence of the thermal history on the stress relaxation for the cases where 500 °C and 700 °C were the maximum temperatures was studied. It was revealed that stress relaxation processes are decisive for the formation of residual stresses at temperatures above 700 °C, which is especially important for small-sized parts produced by the DLD method. The coefficient of thermal expansion was investigated up to 1050 °C.  相似文献   

6.
In the present work, an oxygen hardening of near-β phase Ti–13Nb–13Zr alloy in plasma glow discharge at 700–1000 °C was studied. The influence of the surface treatment on the alloy microstructure, tribological and micromechanical properties, and corrosion resistance is presented. A strong influence of the treatment on the hardened zone thickness, refinement of the α’ laths and grain size of the bulk alloy were found. The outer hardened zone contained mainly an oxygen-rich Ti α’ (O) solid solution. The microhardness and elastic modulus of the hardened zone decreased with increasing hardening temperature. The hardened zone thickness, size of the α’ laths, and grain size of the bulk alloy increased with increasing treatment temperature. The wear resistance of the alloy oxygen-hardened at 1000 °C was about two hundred times, and at 700 °C, even five hundred times greater than that of the base alloy. Oxygen hardening also slightly improved the corrosion resistance. Tribocorrosion tests revealed that the alloy hardened at 700 °C was wear-resistant in a corrosive environment, and when the friction process was completed, the passive film was quickly restored. The results show that glow discharge plasma oxidation is a simple and effective method to enhance the micromechanical and tribological performance of the Ti–13Nb–13Zr alloy.  相似文献   

7.
The microstructure, mechanical properties, magnetic susceptibility, electrochemical corrosion performance, in vitro cell compatibility and blood consistency of Zr-16Nb-xTi (x = 0, 4, 8, 12 and 16 wt.%) materials were investigated as potential materials for biomedical implants. X-ray diffraction (XRD) and Transmission electron microscopy (TEM) analyses revealed the secondary phase martensite α’ formed during the quenching process. The phase composition contained metastable β and martensite α’, resulting from Ti addition. These phase constitutions were the main causes of a low Young’s modulus and magnetic susceptibility. The in vitro cytocompatibility analysis illustrated that the MG63 cells maintained high activity (from 91% to 97%) after culturing in Zr-16Nb-xTi extraction media for 12 days due to the high internal biocompatibility of Zr, Nb and Ti elements, as well as the optimal corrosion resistance of Zr-16Nb-xTi. On the basis of Inductively coupled plasma optical emission spectrometry (ICP-OES) ion release studies, the concentration of Zr, Nb and Ti was noted to reach the equipment detective limit of 0.001 mg/L, which was much lower than pure Ti. With respect to the corrosion behavior in Hank’s solution, Zr-16Nb-16Ti displayed superior properties, possessing the lowest corrosion current density and widest passivation region, attributed to the addition of Ti. The blood compatibility test illustrated that the Zr-16Nb-xTi materials were nonhemolytic, and the platelets maintained a spherical shape, with no aggregation or activation on Zr-16Nb-xTi. Overall, Ti addition has obvious effects on the developed Zr-16Nb-xTi alloys, and Zr-16Nb-4Ti exhibited low magnetic susceptibility, low modulus, good biocompatibility and proper corrosion properties, demonstrating the potential of use as implant biomaterials.  相似文献   

8.
The feasibility and efficacy of improving the mechanical response of Al–Mg–Si 6082 structural alloys during high temperature exposure through the incorporation of a high number of α-dispersoids in the aluminum matrix were investigated. The mechanical response of the alloys was characterized based on the instantaneous high-temperature and residual room-temperature strengths during and after isothermal exposure at various temperatures and durations. When exposed to 200 °C, the yield strength (YS) of the alloys was largely governed by β” precipitates. At 300 °C, β” transformed into coarse β’, thereby leading to the degradation of the instantaneous and residual YSs of the alloys. The strength improvement by the fine and dense dispersoids became evident owing to their complementary strengthening effect. At higher exposure temperatures (350–450 °C), the further improvement of the mechanical response became much more pronounced for the alloy containing fine and dense dispersoids. Its instantaneous YS was improved by 150–180% relative to the base alloy free of dispersoids, and the residual YS was raised by 140% after being exposed to 400–450 °C for 2 h. The results demonstrate that introducing thermally stable dispersoids is a cost-effective and promising approach for improving the mechanical response of aluminum structures during high temperature exposure.  相似文献   

9.
We used selective laser melting (SLM) and hot pressing of mechanically-alloyed β-type Ti–40Nb powder to fabricate macroporous bulk specimens (solid cylinders). The total porosity, compressive strength, and compressive elastic modulus of the SLM-fabricated material were determined as 17% ± 1%, 968 ± 8 MPa, and 33 ± 2 GPa, respectively. The alloy’s elastic modulus is comparable to that of healthy cancellous bone. The comparable results for the hot-pressed material were 3% ± 2%, 1400 ± 19 MPa, and 77 ± 3 GPa. This difference in mechanical properties results from different porosity and phase composition of the two alloys. Both SLM-fabricated and hot-pressed cylinders demonstrated good in vitro biocompatibility. The presented results suggest that the SLM-fabricated alloy may be preferable to the hot-pressed alloy for biomedical applications, such as the manufacture of load-bearing metallic components for total joint replacements.  相似文献   

10.
In this study, the structural and nanomechanical properties of Cu2O thin films are investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and nanoindentation techniques. The Cu2O thin films are deposited on the glass substrates with the various growth temperatures of 150, 250 and 350 °C by using radio frequency magnetron sputtering. The XRD results show that Cu2O thin films are predominant (111)-oriented, indicating a well ordered microstructure. In addition, the hardness and Young’s modulus of Cu2O thin films are measured by using a Berkovich nanoindenter operated with the continuous contact stiffness measurements (CSM) option. Results indicated that the hardness and Young’s modulus of Cu2O thin films decreased as the growth temperature increased from 150 to 350 °C. Furthermore, the relationship between the hardness and films grain size appears to closely follow the Hall-Petch equation.  相似文献   

11.
For the first time, uniaxial megaplastic compression was successfully applied to a polycrystalline shape-memory Cu-Al-Ni-based alloy. The samples before and after uniaxial megaplastic compression were examined by methods of X-ray diffraction, optical, electron transmission, and scanning microscopy. The temperature dependences of electrical resistance and the mechanical properties of the alloys under uniaxial tension were also measured. The mechanical behavior under uniaxial megaplastic compression in isothermal conditions in the range of 300–1073 K was studied using the Instron 8862 electric testing machine. The microstructure, phase composition, and martensitic transformations in the eutectoid alloy (Cu-14wt.%Al–4 wt.%Ni) were studied. The radical refinement of the grain structure of the initial hardened D03 austenite was found under controlled isothermal compression, due to dynamic recrystallization in the temperature range 673–1073 K and velocities of 0.5–5 mm/min. Compression at 873–1073 K was accompanied by simultaneous partial pro-eutectoid decomposition with the precipitation of the γ2 phase. Compression at temperatures of 673 and 773 K—that is, below the eutectoid decomposition temperature (840 K)—was accompanied by the precipitation of disperse γ2 and α phases, and ultradisperse B2’ particles. Cooling of the deformed alloy to room temperature after performing each regime of compression led to thermoelastic martensitic transformation, together with the precipitation of the β′ and γ′ phases. The formation of a fine-grained structure produced an unusual combination of strength and plasticity of the initially brittle alloy both under controlled uniaxial compression, and during subsequent tensile tests at room temperature.  相似文献   

12.
Among laser additive manufacturing, selective laser melting (SLM) is one of the most popular methods to produce 3D printing products. The SLM process creates a product by selectively dissolving a layer of powder. However, due to the layerwise printing of metal powders, the initial microstructure is fully acicular α′-martensitic, and mechanical properties of the resultant product are often compromised. In this study, Ti-6Al-4V alloy was prepared using SLM method. The effect of heat treatment was carried out on as-built SLM Ti-6Al-4V alloy from 650–1000 °C to study respective changes in the morphology of α/α′-martensite and mechanical properties. The phase transition temperature was also analyzed through differential thermal analysis (DTA), and the microstructural studies were undertaken by optical microscopy (OM) and scanning electron microscopy (SEM). The mechanical properties were assessed by microhardness and compressive tests before and after heat treatment. The results showed that heat treated samples resulted in a reduction in interior defects and pores and turned the morphology of the α′-martensite into a lamellar (α + β) structure. The strength was significantly reduced after heat treatment, but the elongation was improved due to the reduction in columnar α′-martensite phase. An optimum set of strength and elongation was found at 900 °C.  相似文献   

13.
The purpose of this study was to measure the strength of various bamboo fibres and their epoxy composites based on the bamboo ages and harvesting seasons. Three representative samples of 1–3-year-old bamboo plants were collected in November and February. Bamboo fibres and their epoxy composites had the highest tensile strength and Young’s modulus at 2 years old and in November. The back-calculated tensile strengths using the “rule of mixture” of Injibara, Kombolcha, and Mekaneselam bamboo-fibre-reinforced epoxy composites were 548 ± 40–422 ± 33 MPa, 496 ± 16–339 ± 30 MPa, and 541 ± 21–399 ± 55 MPa, whereas the back-calculated Young’s moduli using the “rule of mixture” were 48 ± 5–37 ± 3 GPa, 36 ± 4–25 ± 3 GPa, and 44 ± 2–40 ± 2 GPa, respectively. The tensile strengths of the Injibara, Kombolcha, and Mekaneselam bamboo-fibre-reinforced epoxy composites were 227 ± 14–171 ± 22 MPa, 255 ± 18–129 ± 15 MPa, and 206 ± 19–151 ± 11 MPa, whereas Young’s moduli were 21 ± 2.9–16 ± 4.24 GPa, 18 ± 0.8–11 ± 0.51 GPa, and 18 ± 0.85–16 ± 0.82 GPa respectively. The highest to the lowest tensile strengths and Young’s moduli of bamboo fibres and their epoxy composites were Injibara, Mekaneselam, and Kombolcha, which were the local regional area names from these fibres were extracted. The intended functional application of the current research study is the automobile industries of headliners, which substitute the conventional materials of glass fibres.  相似文献   

14.
In order to investigate the relationship between phase/microstructure and various properties of Ti–xAg alloys, a series of Ti–xAg alloys with Ag contents ranging from 5 to 20 wt% were prepared. The microstructures were characterized using X-ray diffractometry (XRD), optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). All of the Ti–xAg alloys showed a massive transformation from the β-Ti to αm phase, which has a different crystal structure from that of the matrix phase, but it has the same composition as the matrix α-Ti phase. As a result of solid-solution strengthening of α-Ti and massive transformation phase, the Ti–xAg showed better mechanical properties than the commercially pure titanium (cp-Ti). Electrochemical results showed that the Ti–xAg alloys exhibited improved corrosion resistance and oxidation resistance than cp-Ti.  相似文献   

15.
The aim of the present work is to investigate the synthesis of Ti–Nb alloy films obtained by the physical vapor deposition (PVD) magnetron sputtering of Nb films on Ti substrates, followed by low-energy high-current electron beam (LEHCEB) alloying treatment. Ti–Nb alloys were synthetized under two different regimes, one by varying the deposited amount of Nb (from 25 to 150 nm) and treating samples with low applied voltages and a number of pulses (three pulses at either 20 or 25 kV), the second by setting the amount of Nb (100 nm) and alloying it at a higher applied voltage with a different number of pulses (from 10 to 50 at 25 and 30 kV). The synthetized Ti–Nb alloys were characterized by XRD and GDOES for phase identification and chemical composition; SEM and optical microscopy were employed for morphology evaluation; compositional investigation was done by EDS analysis and mechanical properties were evaluated by microindentation tests. LEHCEB treatment led to the formation of metastable phases (α′, α″ and β) which, together with the grain refinement effect, was responsible for improved mechanical properties.  相似文献   

16.
The Fe-Mn-Si shape memory alloys are considered promising materials for the biodegradable bone implant application since their functional properties can be optimized to combine bioresorbability with biomechanical and biochemical compatibility with bone tissue. The present study focuses on the fatigue and corrosion fatigue behavior of the thermomechanically treated Fe-30Mn-5Si (wt %) alloy compared to the conventionally quenched alloy because this important functionality aspect has not been previously studied. Hot-rolled and water-cooled, cold-rolled and annealed, and conventionally quenched alloy samples were characterized by X-ray diffraction, transmission electron microscopy, tensile fatigue testing in air atmosphere, and bending corrosion fatigue testing in Hanks’ solution. It is shown that hot rolling at 800 °C results in the longest fatigue life of the alloy both in air and in Hanks’ solution. This advantage results from the formation of a dynamically recrystallized γ-phase grain structure with a well-developed dislocation substructure. Another important finding is the experimental verification of Young’s modulus anomalous temperature dependence for the studied alloy system, its minimum at a human body temperature, and corresponding improvement of the biomechanical compatibility. The idea was realized by lowering Ms temperature down to the body temperature after hot rolling at 800 °C.  相似文献   

17.
This work aims to investigate the process of obtaining highly filled glass and carbon fiber composites. Composites were manufactured using previously obtained cellulose derived polyol, polymeric methylene diphenyl diisocyanate (pMDI). As a catalyst, dibutyltin dilaurate 95% and Dabco® 33-LV were used. It was found that the addition of carbon and glass fibers into the polymer matrix causes an increase in the mechanical properties such as impact and flexural strength, Young’s modulus, and hardness of the material. Moreover, the dynamic mechanical analysis (DMA) showed a significant increase in the material’s storage modulus and rigidity in a wide range of temperatures. The increase in glass transition of soft segments can be noticed due to the limitation of macromolecules mobility in the material. The thermogravimetric analysis showed a four step decomposition, with maximal degradation rate at TmaxII = 320–330 °C and TmaxIII = 395–405 °C, as well as a significant improvement of thermal stability. Analysis of the material structure using a scanning electron microscope showed the presence of material defects such as voids, fiber pull-outs, and agglomerates of both fibers.  相似文献   

18.
Titanium implants are commonly used because of several advantages, but their surface modification is necessary to enhance bioactivity. Recently, their surface coatings were developed to induce local antibacterial properties. The aim of this research was to investigate and compare mechanical properties of three coatings: multi-wall carbon nanotubes (MWCNTs), bi-layer composed of an inner MWCNTs layer and an outer TiO2 layer, and dispersion coatings comprised of simultaneously deposited MWCNTs and nanoCu, each electrophoretically deposited on the Ti13Nb13Zr alloy. Optical microscopy, scanning electron microscopy, X-ray electron diffraction spectroscopy, and nanoindentation technique were applied to study topography, chemical composition, hardness, plastic and elastic properties. The results demonstrate that the addition of nanocopper or titanium dioxide to MWCNTs coating increases hardness, lowers Young’s modulus, improves plastic and elastic properties, wear resistance under deflection, and plastic deformation resistance. The results can be attributed to different properties, structure and geometry of applied particles, various deposition techniques, and the possible appearance of porous structures. These innovative coatings of simultaneously high strength and elasticity are promising to apply for deposition on long-term titanium implants.  相似文献   

19.
Intermetallic compounds (IMCs) are inevitable byproducts during the soldering of electronics. Cu6Sn5 is one of the main components of IMCs, and its mechanical properties considerably influence the reliability of solder joints. In this study, the effects of grain size (8–20 nm) on the mechanical properties (Young’s modulus, yield stress, ultimate tensile strength (UTS), and strain rate sensitivity) of polycrystalline Cu6Sn5 were investigated using molecular dynamics simulations at 300 K and at a strain rate of 0.0001–10 ps−1. The results showed that at high strain rates, grain size only slightly influenced the mechanical properties. However, at low strain rates, Young’s modulus, yield stress, and UTS all increased with increasing grain size, which is the trend of an inverse Hall–Petch curve. This is largely attributed to the sliding and rotation of grain boundaries during the nanoscale stretching process, which weakens the interaction between grains. Strain rate sensitivity increased with a decrease in grain size.  相似文献   

20.
AA2050-T84 alloy is widely used in primary structures of modern transport aircraft. AA2050-T84 is established as a low-density aluminum alloy with improved Young’s modulus, less anisotropy, and temperature-dependent mechanical properties. During flights, loading rate and temperature variation in aircraft engine subsequent parts are commonly observed. The present work focuses on the effect of loading rate and temperature on tensile and fracture properties of the 50 mm thick (2-inch) AA2050-T84 alloy plate. Quasi-static strain rates of 0.01, 0.1, and 1 s−1 at −20 °C, 24 °C and 200 °C are considered. Tensile test results revealed the sensitivity of mechanical properties towards strain rate variations for considered temperatures. The key tensile properties, yield, and ultimate tensile stresses were positive strain rate dependent. However, Young’s modulus and elongation showed negative strain rate dependency. Experimental fracture toughness tests exhibited the lower Plane Strain Fracture Toughness (KIC) at −20 °C compared to 24 °C. Elastic numerical fracture analysis revealed that the crack driving and constraint parameters are positive strain rate dependent and maximum at −20 °C, if plotted and analyzed over the stress ratio. The current results concerning strain rates and temperatures will help in understanding the performance-related issues of AA2050-T84 alloy reported in aircraft applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号