首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The denitrification process was completed in coal-fired power plants, resulting in the fly ash containing NH4HSO4. When this kind of fly ash with ammonia was applied to cement and concrete, there could be phenomena such as a retarded setting time, decreased compressive strength, and volume expansion. This paper mainly investigated the influence of fly ash containing NH4HSO4 on the properties of fly ash cement paste, and pastes with NaHSO4 were set as the control samples. The research on Na+ in cement hydration was studied. The influence of NH4HSO4 content in fly ash on the properties of fly ash cement paste was also investigated. It was found that NH4+ could greatly affect the properties of fly ash cement paste, such as significantly reducing the fluidity, prolonging the setting time, decreasing the compressive strength, increasing the drying shrinkage, decreasing the total heat released during the hydration, and affecting the content of calcium hydroxide hydrate. Increasing the ammonia content of the denitrified fly ash would reduce fluidity, retard its setting time, increase the porosity of the cement stone, and increase the number of pores with large sizes in the fly ash cement paste. The increase of porosity and pores with large sizes in cement decreases the compressive strength and increases the drying shrinkage of the fly ash cement paste.  相似文献   

2.
The grinding process has become widely used to improve the fineness and performance of fly ash. However, most studies focus on the particle size distribution of ground fly ash, while the particle morphology is also an important factor to affect the performance of cement paste. This article aims at three different kinds of ground fly ash from the ball mill and vertical mill, and the particle morphology is observed by scanning electron microscopy (SEM) to calculate the spherical destruction (the ratio of spherical particles broken into irregular particles in the grinding process of fly ash), which provides a quantification of the morphology change in the grinding process. The fluidity of cement paste and the strength of cement mortar are tested to study the relation of spherical destruction and fluidity and strength. The results show that the spherical destruction of ground fly ash in a ball mill is more than 80% and that in a vertical mill with a separation system is only 11.9%. Spherical destruction shows a significant relation with the fluidity. To different addition of ground fly ash, the fluidity of cement paste decreases with the increase of spherical destruction. To the strength of cement paste, particle size distribution and spherical destruction are both the key factors. Therefore, spherical destruction is an important measurement index to evaluate the grinding effect of the fly ash mill.  相似文献   

3.
Coal gasification coarse slag (CGCS) is a by-product of coal gasification. Despite its abundance, CGCS is mostly used in boiler blending, stacking, and landfill. Large-scale industrial applications of CGCS can be environment-friendly and cost saving. In this study, the application of CGCS as a substitute for river sand (RS) with different replacement ratios in ultra-high performance concrete (UHPC) was investigated. The effects of CGCS replacement ratios on the fluidity and mechanical properties of specimens were examined, and the effect mechanisms were explored on the basis of hydration products and the multi-scale (millimetre-scale and micrometre-scale) microstructure analysis obtained through X-ray diffraction (XRD), scanning electron microscopy, and X-ray energy-dispersive spectroscopy. With an increase in the CGCS replacement ratio, the water–binder ratio (w/b), flexural strength, and compressive strength decreased. Specimens containing CGCS of ≤25% can satisfy the strength requirement of non-structural UHPC, with flexure strength of 29 MPa and compressive strength of 111 MPa at day 28. According to the XRD results and multi-scale microstructure analysis, amorphous glass beads in CGCS positively influenced ettringite generation due to the pozzolanic activity. Porous carbon particles in CGCS showed strong interfacial bonding with cement slurry due to internal hydration; this bonding was conducive to improving the mechanical strength. However, CGCS hindered hydration in the later curing stage, leading to an increase in the unreacted cement and agglomeration of fly ash; in addition, at a CGCS replacement ratio of up to 50%, an apparent interfacial transition zone structure was observed, which was the main contributor to mechanical strength deterioration.  相似文献   

4.
Alkaline electrolyzed water, a kind of clean green water with excellent characteristics such as high activity, strong alkalinity, high ion penetrating ability, electrical charge, and good molecule adsorption, was significant to the resource utilization of industrial fly ash waste. This paper studies highly active potassium-based alkaline electrolyzed water’s impact, compared with ordinary water, on the cement hydration process using microstructural methods such as a hydration heat test, differential thermal analysis, X-ray diffraction (XRD) pattern, and Scanning electron microscope (SEM) image analysis. Fly ash cement-based materials were first prepared with alkaline electrolyzed water as the mixing water. The alkaline electrolyzed water’s influence on fly ash paste workability and the mechanical properties of fly ash mortar for varying fly ash proportions were ratified. Then alkaline electrolyzed water with the best pH value was selected to prepare fly ash concrete, and its durability was studied. The test results showed that it is feasible to increase the utilization rate of fly ash by using alkaline electrolyzed water. Furthermore, it promoted the process of cement hydration, increased the rate of the hydration reaction, and the promotion effect increased with the increase in pH value of the alkaline electrolyzed water, and also promoted the effective decomposition of the vitreous shell of fly ash to stimulate its early activity. Concurrent tests with ordinary water paste showed that the water requirement for normal consistency and setting time with alkaline electrolyzed water paste were significantly less. Alkaline electrolyzed water also solved the problem related to the low early strength of fly ash mortar. Furthermore, using alkaline electrolyzed water with an optimum pH value of 11.5 to prepare fly ash concrete effectively reduced concrete’s carbonation depth and carbonation rate and lessened the chloride ion migration coefficient.  相似文献   

5.
Modifying the admixture of alkali-activated cementitious materials using components such as fly ash and fine sand may reduce CO2 emissions and conserve natural resources and energy. This study adopted strength testing, scanning electron microscopy, and mercury intrusion porosimetry to investigate the influence of different admixtures on the compressive strength and flexural strength of alkali slag cementing materials and the microstructure characteristics of hardened slurry under the action of load. The flexural strength of alkali slag cement slurry and mortar was reduced by replacing slag powder with fly ash. Content of fine sand less than 20% had little effect on the strength of alkali slag cement mortar; however, when the content of fine sand exceeded 30%, the strength decreased significantly. The hydration degree at 3 d was large, and the density of slurry increased with the extension of age. Increased fly ash or fine sand content decreased the density of the slurry, and increased fly ash resulted in a large number of unhydrated fly ash particles in the cementitious materials. Addition of fine sand resulted in a large number of microcracks in the slurry, which gradually decreased with the extension of hydration age.  相似文献   

6.
At present, reducing carbon emissions is an urgent problem that needs to be solved in the cement industry. This study used three mineral admixtures materials: limestone powder (0–10%), metakaolin (0–15%), and fly ash (0–30%). Binary, ternary, and quaternary pastes were prepared, and the specimens’ workability, compressive strength, ultrasonic pulse speed, surface resistivity, and the heat of hydration were studied; X-ray diffraction and attenuated total reflection Fourier transform infrared tests were conducted. In addition, the influence of supplementary cementitious materials on the compressive strength and durability of the blended paste and the sustainable development of the quaternary-blended paste was analyzed. The experimental results are summarized as follows: (1) metakaolin can reduce the workability of cement paste; (2) the addition of alternative materials can promote cement hydration and help improve long-term compressive strength; (3) surface resistivity tests show that adding alternative materials can increase the value of surface resistivity; (4) the quaternary-blended paste can greatly reduce the accumulated heat of hydration; (5) increasing the amount of supplementary cementitious materials can effectively reduce carbon emissions compared with pure cement paste. In summary, the quaternary-blended paste has great advantages in terms of durability and sustainability and has good development prospects.  相似文献   

7.
Liquid accelerating agents have the advantages of simple operation and fast construction, and have become indispensable admixtures in shotcrete. However, most liquid accelerating agents in the market at present contain alkali or fluorine, which adversely affect concrete and seriously threaten the physical and mental health of workers. Therefore, in view of the above deficiencies, it is necessary to develop a new type of alkali-free fluorine-free liquid accelerating agent. In this paper, the polyaluminum sulfate early strength alkali-free liquid accelerator is prepared using polymeric aluminum sulfate, diethanolamine, magnesium sulfate heptahydrate and nano-silica. The influence of this agent on the setting time of fresh cement paste and compressive strength of the corresponding cement mortar is determined. Thermogravimetric analysis curves, X-ray diffraction and scanning electron microscopy images are obtained to investigate the mechanism. Findings show that the initial setting time and the final setting time of cement paste are 2 min 30 s and 7 min 25 s. The compressive strengths of cement mortar cured for 1 d, 28 d and 90 d are 2.4 MPa, 52.2 MPa and 54.3 MPa respectively. Additionally, the corresponding flexural strengths are 3.4 MPa, 9.8 MPa, 11.8 MPa. When the mass rate of accelerator is 7%, the mechanical strengths of cement mortar are the highest. The additions of fly ash and blast furnace slag can affect the mechanical of cement mortar mixed with accelerator. When the mass ratio of the fly ash and blast furnace slag is 15%, the mechanical strengths of cement mortar reach the highest. Moreover, the hydration heat release rate of cement is increased by the accelerator and the corresponding time of hydration heat peak is decreased by the accelerator. The accelerator can decrease the amount of needle-like hydration products and improve the compactness. The mechanical strengths are improved by consuming a large amount of Ca(OH)2 and forming more compact hydration products. It is recommended that the optimum dosage range of the polyaluminum sulfate early strength alkali-free liquid accelerator is 7%.  相似文献   

8.
As a common building insulation material, foamed concrete has been widely used in engineering practice. However, the contradiction between compressive strength and thermal conductivity has become the main problem limiting the development and application of foamed concrete. Therefore, high-performance foam concrete (HPFC) with high compressive strength and low thermal conductivity was prepared by using graphene oxide (GO), fly ash, and polypropylene (PP) fiber as the main admixtures, and taking compressive strength, thermal conductivity, and microstructure as the main indices. Scanning electron microscopy, X-ray diffraction (XRD), and thermogravimetry–differential scanning calorimetry (TG-DSC) were employed to examine the mechanisms of HPFC. The results showed that when the content of fly ash was 25–35 wt%, PP fiber was 0.2–0.4 wt%, and GO was 0.02–0.03 wt%, the FC’s compressive strength increased by up to 38%, and its thermal conductivity reduced by up to 3.4%. Fly ash improved the FC’s performance mainly through filling, pozzolanic activity, and slurry fluidity. PP fiber enhanced the performance of FC mainly through bridging cracks and skeletal effects. The addition of GO had no significant impact on the type, quantity, or hydration reaction rate of the hydration products in these cement-based materials, and mainly improved the FC’s microstructural compactness through template action and crack resistance, thereby improving its performance.  相似文献   

9.
Environmental considerations and technical benefits have directed research towards reducing cement clinker content in concrete, and one of the best ways to do this is to replace cement with supplementary cementitious materials. High calcium fly ash, ladle furnace slag, and limestone filler were investigated as supplementary cementitious materials in cement pastes, and binary mixtures were produced at 10%, 20%, and 30% cement replacement rates for each material. The water requirement for maximum packing and for normal consistency were obtained for each paste, and strength development was determined at 3, 7, 28, and 90 days for the 20% replacement rate. Furthermore, two ternary mixtures at 30% cement replacement were also prepared for maximum packing density and tested for compressive strength development. The results showed that high calcium fly ash decreased cement paste packing and increased water demand but contributed to strength development through reactivity. Ladle furnace slag and limestone filler, on the other hand, were less reactive and seemed to contribute to strength development through the filler effect. The ternary paste with 70% cement, 20% high calcium fly ash, and 10% limestone filler showed equivalent strength development to that of the reference cement paste.  相似文献   

10.
SAC (sulfoaluminate cement) has become a research hotspot as a low-carbon ecological cement. In addition, multi-walled carbon nanotubes have good thermal, mechanical, and electrical properties and can serve as excellent nano-reinforced cement-based fillers. This study explored the dispersion of carbon nanotubes (CNTs) and researched the effect of CNTs on the mechanical properties, hydration process, hydration products, and microstructure of SAC paste, and the mechanism of CNT-enhanced SAC paste was revealed. The results showed that the mechanical properties of SAC paste were significantly improved after the addition of CNTs. When the CNT content was 0.05%, 0.1%, and 0.15%, the compressive strength after 28 d was increased by 13.2%, 18.3%, and 22.5%, respectively; compared with the C0 group (without CNTs), the flexural strength increased by 8.2%, 11.3%, and 14.4%, respectively. The addition of CNTs accelerated the hydration process of SAC paste. Due to the adsorption effect and nucleation effect of CNTs, more hydration products were generated, filling the matrix’s pores and improving its compactness. The mechanism of CNTs enhanced SAC paste was revealed. CNTs and hydration products co-filled the pores, including AFt (ettringite) and AH3 (gibbsite). CNTs improve the mechanical properties of SAC paste through filling, bridging, crack bending, deflection, pulling out, and pulling off.  相似文献   

11.
This study aims to evaluate the effect of curing and drying conditions on the strength properties of concrete containing coal bottom ash (CBA) and fly ash as substitutes for fine aggregates and cement, respectively. The strength properties of the concrete including CBA and fly ash were evaluated under two different curing and drying conditions: saturated surface-dry (SSD) conditions and oven-dried conditions at curing ages of 28 and 91 days. The natural fine aggregates of the mixtures were replaced by CBA fine aggregates at 25%, 50%, 75%, and 100% by volume. In addition, the cement in the mixtures was partly replaced with fly ash at 20% and 40%. The experimental program included the measurement of the unit weight, compressive strength, splitting tensile strength, flexural strength, and ultrasonic pulse velocity of the concrete. The test results showed that the compressive strength, splitting tensile strength, and flexural strength decreased as the CBA content increased under both SSD and oven-dried conditions. The curing and drying conditions of the concrete with CBA and fly ash considerably influenced the reduction in the compressive, splitting, and flexural tensile strengths of the concrete. Additionally, the experimental results showed that fly ash insignificantly contributed to the reduction in the strength properties under both SSD and oven-dried conditions. Finally, the relationships between ultrasonic pulse velocity and the splitting tensile strength, flexural tensile strength, and compressive strength were investigated.  相似文献   

12.
The sustainability of the construction sector demands the reduction of CO2 emissions. The optimization of the amount of cement in concrete can be achieved either by partially replacing it by additions or by reducing the binder content. The present work aims at optimizing the properties of concrete used in the production of reinforced concrete poles for electrical distribution lines, combining the maximization of compactness with the partial replacement of cement by fly ash, natural pozzolans, and electric furnace slags. Natural aggregates were also partially replaced by recycled ones in mixtures with fly ash. Two types of concrete were studied: a fresh molded one with a dry consistency and a formwork molded one with a plastic consistency. The following properties were characterized: mechanical properties (flexural, tensile splitting, and compressive strengths, as well as Young’s modulus) and durability properties (capillary water absorption, water penetration depth under pressure, resistance to carbonation, chloride migration, and concrete surface resistivity). The service life of structures was estimated, taking the deterioration of reinforcement induced by concrete carbonation or chloride attack into account. Results revealed that mixtures with fly ash exhibit higher mechanical performance and mixtures with fly ash or pozzolans reveal much higher durability results than the full Portland cement-based mixtures.  相似文献   

13.
The purpose of this work was to study the possibility of neutralizing high-calcium fly ash expansion during hydration. The object of the study was the fly ash of Berezovskaya GRES, which is capable of independent setting and hardening. The test in the Le Chatelier molds showed that the divergence of indicator arms was 90–100 mm 1 day after mixing with water. The expansion and cracking of the fly ash could be completely prevented by silica fume addition in an amount of 42.9% by weight of the fly ash. At the same time, the compressive strength of specimens from the fly ash–sand paste in a ratio of 1:5 at the age of 28 days was 1.47 MPa. The isothermal heat release at a temperature of 20 °C for 10 days reached 500 kJ/kg. XRF and DTA results showed that free lime in the fly ash was completely hydrated in 11 days and gave the greatest expansion in the absence of silica fume. The presence of silica fume made the lime hydration incomplete and decreased the expansion. Unslaked free lime remained in the system. Exothermic data showed that silica fume inhibited CaO hydration from the reaction start.  相似文献   

14.
In this study, the silica fume replacement rate, fly ash replacement rate, and curing temperature were regarded as the independent variables, and the compressive and flexural strengths were regarded as the response values. The response surface method was used to construct the response surface polynomial regression model and obtain the optimal preparation parameters of a steel slag cement-based gel slurry (SCGS). The univariate and multivariate effects on the SCGS’s strength were investigated via analysis of variance and a three-dimensional surface model, and the hydration products and strength development law were characterized via scanning electron microscopy and X-ray diffraction. The actual compressive strengths at 3 and 28 d of age were 31.78 and 53.94 MPa, respectively, which were close to the predicted values (32.59 and 55.81 MPa, respectively), demonstrating that the optimized strengths were accurate and reliable. Further, the hydration reaction rate of SiO2 in the silica fume and the physical filling effect of the inert components of fly ash and steel slag under the optimal parameters were the key factors for the early strength of the material. Moreover, continuous C3S hydration in steel slag and the continuous excitation of the volcanic ash properties of fly ash were important factors for the later strength.  相似文献   

15.
Circulating fluidized bed (CFB) fly ash is a by-product from CFB power generation, which is hard to utilize in cement because it contains f-CaO and SO3. This work aims to explore the mechanism of the shrinkage compensation of free-CaO (f-CaO) and the autoclaved hydration characteristics and environmental performance of CFB fly ash mixed cementitious materials (CMM). In this work, long-term volume stability of CMM is improved with the addition of CFBFA. These findings suggest that the compressive strength of sample CMM0.5 is the highest under both standard condition (67.21 MPa) and autoclaved condition (89.56 MPa). Meanwhile, the expansion rate (0.0207%) of sample CMM0.5 is the lowest, which proves the shrinkage compensation effect of f-CaO in CFBFA. The main hydration products of CMM0.5 are Ca2SiO4•H2O (C-S-H) gel, CaAl2Si2O7(OH)2•H2O (C-A-S-H) gel and Ca(OH)2. In addition, the high polymerization degree of [Si(Al)O4] and the densified microstructure are presented at the sample CMM0.5. The leaching results indicates that the heavy metals in CMM0.5 satisfies the WHO standards for drinking water due to physical encapsulation and charge balance. Therefore, this investigation provides a novel method of using CFB fly ash in cement.  相似文献   

16.
This paper investigates the effect of curing regimes (standard and steam curing) on the mechanical strength, hydration, and microstructure of ecological ultrahigh-performance concrete (EUHPC). The flowability, compressive strength, flexural strength, hydration, porosity, pore size distribution, and microstructure of UHPC with different contents of supplementary materials (silica fume, fly ash, and ground granulated blast furnace slag) were assessed. The test results showed that the compressive strength of EUHPC under steam curing was increased considerably compared to that under standard curing, while the flexural strength was mildly decreased. The steam curing could decrease the porosity of EUHPC, which ranged between 7% and 9% for standard curing, and between 3.5% and 5% for steam curing. The aperture of EUHPC was below 20 nm, mainly located in the range of 10 nm to 20 nm under standard curing, while it was less than 10 nm for steam curing. C–S–H gel was produced under steam curing, while unhydrated fly ash, mineral powder, and Ca(OH)2 crystal were observed in the amorphous C–S–H gel. The microstructure of EUHPC under steam curing was denser than that under standard curing, and the interfacial transition zones under both curing regimes were compact.  相似文献   

17.
In this paper, cement based on fused silica powder @ polyurethane urea (FSP@PUU) with a micro constrained damping structure was studied. Firstly, FSP@PUU core-shell particles were prepared by heterogeneous stepwise addition polymerization method and added into cement paste as damping filler to form a micro-constrained damping structure inside cement paste. The mechanical property and damping performance of cement-based composites were characterized by compressive strength, dynamic mechanical analysis (DMA) test and modal vibration test. The results showed that the damping performance of FSP @ PUU cement-based composites was affected by temperature, and the loss tangent of cement with 6wt% FSP@PUU increased to about 0.057 at −35 °C to 35 °C, which was 1.5 times cement paste within the glass transition temperature. With 6 wt% FSP@PUU, the damping ratio of cement-based composites increased by 58% compared with cement paste in the frequency range of 175–300 Hz, while the compressive strength decreased by only 5%. The cement with suitable FSP@PUU possesses excellent damping performance.  相似文献   

18.
Waste sediment generated during tunnel construction is applied to prepare synchronous grouting material, where the influences of fly ash, slag powder, and bentonite on the rheological properties (such as consistency, fluidity, setting time, drainage rate, and stone rate) are studied. The results show that adding fly ash content increases the initial consistency, setting time, and fluidity of grouting material, but also increases its drainage rate and decreases its stone rate. The addition of slag powder results in a slight increase in the setting time and fluidity of the grouting material, yet a decrease in the initial consistency value. In contrast, with the addition of bentonite, both the initial consistency and fluidity of the grouting material decrease. Finally, the optimal mix ratio of high-performance and low-cost grouting materials is fixed to be 30% fly ash, 50% slag powder, and 10% bentonite. Therefore, the fluidity of grouting material can be 170 mm, with an initial consistency of 122 mm, setting time of 1050 min, stone rate of 96.2%, drainage rate of 1.5%, and 28-day compressive strength of 8.3 MPa.  相似文献   

19.
The use of fly ash in cement composites adversely affects its mechanical properties during the first days of mixture curing. Modern technology, in the form of an admixture containing the hydrated calcium silicates, allows to accelerate the hardening and binding process of concrete. In this paper, studies on the influence of the admixture on properties of concretes with the ordinary Portland cements (OPC) containing the addition of siliceous fly ash (FA) have been carried out. As part of the experimental research, the authors conducted a series of studies for cement pastes modified with the addition of FA and the CSH nano-admixture (NA). In order to compare the mixtures, the following tests of cement pastes were carried out: the compressive and flexural strength, heat of hydration, SEM and rheological shrinkage. The mechanical parameters were tested after 4, 8, 12 and 24 h. The hydration heat test and microstructure analysis were carried out during the first 24 h of the concrete curing. All tests were carried out on the standard samples. On the basis of the heat of hydration test, much higher hydration heat was found in mixtures modified with the NA. During the shrinkage test, a positive effect of the NA was observed—the shrinkage during the first 28 days of mixture curing was lower than in the reference samples. The application of the CSH nano-admixture to cement pastes with the addition of FA has brought positive effects. Apart from a significant increase in strength in the first 24 h of mixture curing, a reduction in the rheological shrinkage was observed. The admixture can be successfully used in the ash concretes, in which a higher early strength is required.  相似文献   

20.
Urban construction has produced a large amount of construction waste which has caused huge environmental problems. The sponge city is the development direction of urban construction, and permeable pavement concrete is an important material for sponge city construction. To see the law influencing different factors on the performance of recycled aggregate permeable pavement concrete, different water binder ratios, recycled aggregate particle gradations, ordinary aggregate substitution rates, and fly ash and admixture contents are designed to prepare permeable concrete. The compressive strength, permeability coefficient, frost resistance, and pore structure of permeable concrete are tested. The results show that when the replacement rate of recycled aggregate is 50%, the 28-d strength of concrete with a 0.25 water binder ratio can reach 28.9 MPa, and the permeability coefficient is 13.26 mm/s. The addition of fly ash will reduce the compressive strength, and the permeability coefficient increases first and then decreases with the increase of the fly ash content. When the mass fraction of fly ash instead of cement is 12%, the 28-d strength is 94.8% of that of the cement group, and the permeability coefficient can reach 14.03 mm/s. A water-reducing agent can obviously improve the workability of permeable concrete; the best content of the water-reducing agent is 0.2% of the cement mass. A reasonable amount of fly ash and water-reducing agent can optimize the number of harmless holes and less harmful holes in the concrete to improve the frost resistance and strength after the freeze–thaw, and the frost resistance is F150. This study provides a theoretical basis and technical guarantee for the resource utilization of recycled aggregate in permeable pavement concrete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号