首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This work aimed to characterize Al2O3 matrix composites fabricated by the slip casting method using NiAl-Al2O3 composite powder as the initial powder. The composite powder, consisting of NiAl + 30 wt.% Al2O3, was obtained by mechanical alloying of Al2O3, Al, and Ni powders. The composite powder was added to the Al2O3 powder to prepare the final powder for the slip casting method. The stained composite samples presented high density. EDX and XRD analyses showed that the sintering process of the samples in an air atmosphere caused the formation of the NiAl2O4 spinel phase. Finally, the phase composition of the composites changed from the initial phases of Al2O3 and NiAl to Al2O3, Ni, and NiAl2O4. However, in the area of Ni, fine Al2O3 particles remaining from the initial composite powder were visible. It can be concluded that after slip casting, after starting with Al2O3 and the composite powder (NiAl-Al2O3) and upon sintering in air, ceramic matrix composites with Ni and NiAl2O4 phases, complex structures, high-quality sintered samples, and favorable mechanical properties were obtained.  相似文献   

2.
Alumina-zirconia (AZ) composites are attractive structural materials, which combine the high hardness and Young’s modulus of the alumina matrix with additional toughening effects, due to the zirconia dispersion. In this study, AZ composites containing different amounts of zirconia (in the range 5–20 vol %) were prepared by a wet chemical method, consisting on the surface coating of alumina powders by mixing them with zirconium salt aqueous solutions. After spray-drying, powders were calcined at 600 °C for 1 h. Green bodies were then prepared by two methods: uniaxial pressing of spray-dried granules and slip casting of slurries, obtained by re-dispersing the spray dried granulates. After pressureless sintering at 1500 °C for 1 h, the slip cast samples gave rise to fully dense materials, characterized by a quite homogeneous distribution of ZrO2 grains in the alumina matrix. The microstructure, phase composition, tetragonal to monoclinic transformation behavior and mechanical properties were investigated and are here discussed as a function of the ZrO2 content. The material containing 10 vol % ZrO2 presented a relevant hardness and exhibited the maximum value of KI0, mainly imputable to the t → m transformation at the crack tip.  相似文献   

3.
This study’s main goal was to obtain and characterize Al2O3-Cu-Ni composites with different metallic phase content. The study analyzed the three series of samples differing in the metallic phase 5, 10, 15 vol.% volume contents. An identical volume share of the metallic components in the metallic phase was used. Ceramic–metal composites were formed using uniaxial pressing and sintered at a temperature of 1400 °C. The microstructural investigation of the Al2O3-Cu-Ni composite and its properties involved scanning electron microscopes observations and X-ray diffraction. The size of the metallic phase in the ceramic matrix was performed using a stereological analysis. Microhardness analysis with fracture toughness measures was applied to estimate the mechanical properties of the prepared materials. Additionally, magnetic measurements were carried out, and the saturation magnetization was determined on the obtained magnetic hysteresis loops. The prepared samples, regardless of the content of the metallic phase in each series, were characterized by a density exceeding 95% of the theoretical density. The magnetic measurements exhibited that the fabricated composites had ferromagnetic properties due to nickel and nickel-rich phases. The hardness of the samples containing 5, 10, 15 vol.% metallic phases decreased with an increase in the metallic phase content, equal to 17.60 ± 0.96 GPa, 15.40 ± 0.81 GPa, 12.6 ± 0.36 GPa, respectively.  相似文献   

4.
This work focuses on research on obtaining and characterizing Al2O3/ZrO2 materials formed via slip casting method. The main emphasis in the research was placed on environmental aspects and those related to the practical use of ceramic materials. The goal was to analyze the environmental loads associated with the manufacturing of Al2O3/ZrO2 composites, as well as to determine the coefficient of thermal expansion of the obtained materials, classified as technical ceramics. This parameter is crucial in terms of their practical applications in high-temperature working conditions, e.g., as parts of industrial machines. The study reports on the four series of Al2O3/ZrO2 materials differing in the volume content of ZrO2. The sintering process was preceded by thermogravimetric measurements. The fabricated and sintered materials were characterized by dilatometric study, scanning electron microscopy, X-ray diffraction, and stereological analysis. Further, life cycle assessment was supplied. Based on dilatometric tests, it was observed that Al2O3/ZrO2 composites show a higher coefficient of thermal expansion than that resulting from the content of individual phases. The results of the life cycle analysis showed that the environmental loads (carbon footprint) resulting from the acquisition and processing of raw materials necessary for the production of sinters from Al2O3 and ZrO2 are comparable to those associated with the production of plastic products such as polypropylene or polyvinyl chloride.  相似文献   

5.
Method of soft metal (Cu) strengthening of Ti3SiC2 was conducted to increase the hardness and improve the wear resistance of Ti3SiC2. Ti3SiC2/Cu composites containing 15 vol.% Cu were fabricated by Spark Plasma Sintering (SPS) in a vacuum. The effect of the sintering temperature on the phase composition, microstructure and mechanical properties of the composites was investigated in detail. The as-synthesized composites were thoroughly characterized by scanning electron micrography (SEM), optical micrography (OM) and X-ray diffractometry (XRD), respectively. The results indicated that the constituent of the Ti3SiC2/Cu composites sintered at different temperatures included Ti3SiC2, Cu3Si and TiC. The formation of Cu3Si and TiC originated from the reaction between Ti3SiC2 and Cu, which was induced by the presence of Cu and the de-intercalation of Si atoms Ti3SiC2. OM analysis showed that with the increase in the sintering temperature, the reaction between Ti3SiC2 and Cu was severe, leading to the Ti3SiC2 getting smaller and smaller. SEM measurements illustrated that the uniformity of the microstructure distribution of the composites was restricted by the agglomeration of Cu, controlling the mechanical behaviors of the composites. At 1000 °C, the distribution of Cu in the composites was relatively even; thus, the composites exhibited the highest density, relatively high hardness and compressive strength. The relationships of the temperature, the current and the axial dimension with the time during the sintering process were further discussed. Additionally, a schematic illustration was proposed to explain the related sintering characteristic of the composites sintered by SPS. The as-synthesized Ti3SiC2/Cu composites were expected to improve the wear resistance of polycrystalline Ti3SiC2.  相似文献   

6.
In-situ synthesis, microstructure, and mechanical properties of four TiB2-Reinforced Fe-Cr-Mn-Al Steel Matrix Composites have been researched in this work. The microstructure and phases of the prepared specimens have been characterized by using scanning electron microscopy (SEM), X-ray diffraction technique, and transmission electron microscopy (TEM). The sintered specimens consisted of Fe2AlCr, CrFeB-type boride, and TiB2. The mechanical properties, such as hardness and compression strength at room temperature (RT) and at elevated temperatures (600 °C and 800 °C) have been evaluated. The compressive strength and Vickers hardness of the sintered specimens increase with the volume fraction of TiB2 in the matrix, which are all much higher than those of the ex-situ TiB2/Fe-15Cr-20Mn-8Al composites and the reported TiB2/Fe-Cr composites with the same volume fraction of TiB2. The highest Vickers hardness and compressive strength at room temperature are 1213 ± 35 HV and 3500 ± 20 MPa, respectively. As the testing temperature increases to 600 °C, or even 800 °C, these composites still show relatively high compressive strength. Precipitation strengthening of CrFeB and in-situ synthesis of TiB2 as well as nanocrystalline microstructure produced by the combination of mechanical alloying (MA) and spark plasma sintering (SPS) can account for the high Vickers hardness and compressive strength.  相似文献   

7.
The paper describes an investigation of Al2O3 samples and NiAl–Al2O3 composites consolidated by pulse plasma sintering (PPS). In the experiment, several methods were used to determine the properties and microstructure of the raw Al2O3 powder, NiAl–Al2O3 powder after mechanical alloying, and samples obtained via the PPS. The microstructural investigation of the alumina and composite properties involves scanning electron microscopy (SEM) analysis and X-ray diffraction (XRD). The relative densities were investigated with helium pycnometer and Archimedes method measurements. Microhardness analysis with fracture toughness (KIC) measures was applied to estimate the mechanical properties of the investigated materials. Using the PPS technique allows the production of bulk Al2O3 samples and intermetallic ceramic composites from the NiAl–Al2O3 system. To produce by PPS method the NiAl–Al2O3 bulk materials initially, the composite powder NiAl–Al2O3 was obtained by mechanical alloying. As initial powders, Ni, Al, and Al2O3 were used. After the PPS process, the final composite materials consist of two phases: Al2O3 located within the NiAl matrix. The intermetallic ceramic composites have relative densities: for composites with 10 wt.% Al2O3 97.9% and samples containing 20 wt.% Al2O3 close to 100%. The hardness of both composites is equal to 5.8 GPa. Moreover, after PPS consolidation, NiAl–Al2O3 composites were characterized by high plasticity. The presented results are promising for the subsequent study of consolidation composite NiAl–Al2O3 powder with various initial contributions of ceramics (Al2O3) and a mixture of intermetallic–ceramic composite powders with the addition of ceramics to fabricate composites with complex microstructures and properties. In composites with complex microstructures that belong to the new class of composites, in particular, the synergistic effect of various mechanisms of improving the fracture toughness will be operated.  相似文献   

8.
The main aim of the investigation was to determine the impact of the content of nickel and the content of slurry on the nature of the microstructure and physical properties of the final products. In the study, six types of slurries were examined and prepared, differing in both the amounts of content of Ni metallic phase particles (5 vol.%, 10 vol.%, and 20 vol.%) and the amount of content of solid content in the prepared slurries (35 vol.%, and, 50 vol.%). The centrifugal slip casting (CSC) method in a magnetic field was used to fabricate the composites. This technique allowed the production of high-density ZrO2-Ni composites after sintering. Composites containing 50 vol.% of the solid content were characterized by a relative density equal to 99%. Applying the magnetic field allows controlling the distribution of the ferromagnetic phase (Ni) in the ceramic matrix (ZrO2). Based on the results obtained, it was found that the nature of the composites obtained is influenced by the rheological properties of the slurries, depending on their composition. The applicability of the CSC in the magnetic field technique for the production of the composite is characterized by a gradient in the distribution of components on the longitudinal section and has been proved. Based on the obtained results, a model for shaping the microstructure of composites with a longitudinal section was proposed. This work enabled a better understanding of creating microstructures in materials fabricated by centrifugal slip casting in a magnetic field.  相似文献   

9.
The present work deals with the evaluation of the effect of ZrO2 on the structure and selected properties of shapes obtained using the centrifugal slip casting method. The samples were made of alumina and zirconia. The applied technology made it possible to produce tubes with a high density reaching 99–100% after sintering. Very good bonding was obtained at the Al2O3/ZrO2 interphase boundaries with no discernible delamination or cracks, which was confirmed by STEM observations. In the case of Al2O3/ZrO2 composites containing 5 vol.% and 10 vol.% ZrO2, the presence of equiaxial ZrO2 grains with an average size of 0.25 µm was observed, which are distributed along the grain boundaries of Al2O3. At the same time, the composites exhibited a very high hardness of 22–23 GPa. Moreover, the environmental influences accompanying the sintering process were quantified. The impacts were determined using the life cycle analysis method, in the phase related to the extraction and processing of raw materials and the process of producing Al2O3/ZrO2 composites. The results obtained show that the production of 1 kg of sintered composite results in greenhouse gas emissions of 2.24–2.9 kg CO2 eq. which is comparable to the amount of emissions accompanying the production of 1 kg of Polyvinyl Chloride (PVC), Polypropylene (PP), or hot-rolled steel products.  相似文献   

10.
The paper presents the results of a study of the microstructure and selected properties of silver-based composites reinforced with TiO2 nanoparticles, produced by the powder metallurgy method. Pure silver powders were mixed with TiO2 reinforcement (5 and 10 wt%) and 5 mm steel balls (100Cr6) for 270 min in a Turbula T2F mixer to produce a homogeneous mixture. The composites were made in a rigid die with a single-action compaction press under a pressure of 400 MPa and 500 MPa and then sintered under nitrogen atmosphere at 900 °C. Additionally, to improve the density and mechanical properties of the obtained sinters, double pressing and double sintering operations were conducted. As a result, compacts with a density of 90–94% were obtained. The microstructure of the sintered compacts consists of uniform grains, and the TiO2 reinforcement phase particles are located on the grain boundaries. There were no discontinuities at the Ag–TiO2 contact boundary, which was confirmed by SEM and TEM analysis. The use of a higher pressure had a positive effect on the hardness and flexural strength of the tested materials. It was found that the composites with 5 wt% TiO2 pressed under 500 MPa are characterized by the highest level of mechanical properties. The hardness of these composites is 57 HB, while the flexural strength is 163 MPa.  相似文献   

11.
NiAl-Al2O3 composites, fabricated from the prepared composite powders by mechanical alloying and then consolidated by pulse plasma sintering, were presented. The use of nanometric alumina powder for reinforcement of a synthetized intermetallic matrix was the innovative concept of this work. Moreover, this is the first reported attempt to use the Pulse Plasma Sintering (PPS) method to consolidate composite powder with the contribution of nanometric alumina powder. The composite powders consisting of the intermetallic phase NiAl and Al2O3 were prepared by mechanical alloying from powder mixtures containing Ni-50at.%Al with the contribution of 10 wt.% or 20 wt.% nanometric aluminum oxide. A nanocrystalline NiAl matrix was formed, with uniformly distributed Al2O3 inclusions as reinforcement. The PPS method successfully consolidated NiAl-Al2O3 composite powders with limited grain growth in the NiAl matrix. The appropriate sintering temperature for composite powder was selected based on analysis of the grain growth and hardness of Al2O3 subjected to PPS consolidation at various temperatures. As a result of these tests, sintering of the NiAl-Al2O3 powders was carried out at temperatures of 1200 °C, 1300 °C, and 1400 °C. The microstructure and properties of the initial powders, composite powders, and consolidated bulk composite materials were characterized by SEM, EDS, XRD, density, and hardness measurements. The hardness of the ultrafine-grained NiAl-Al2O3 composites obtained via PPS depends on the Al2O3 content in the composite, as well as the sintering temperature applied. The highest values of the hardness of the composites were obtained after sintering at the lowest temperature (1200 °C), reaching 7.2 ± 0.29 GPa and 8.4 ± 0.07 GPa for 10 wt.% Al2O3 and 20 wt.% Al2O3, respectively, and exceeding the hardness values reported in the literature. From a technological point of view, the possibility to use sintering temperatures as low as 1200 °C is crucial for the production of fully dense, ultrafine-grained composites with high hardness.  相似文献   

12.
The B4C/C(graphite) composites were fabricated by employing a pressureless sintering process. The pressureless sintered B4C/C(graphite) composites exhibited extremely low mechanical characteristics. The liquid silicon infiltration technique was employed for enhancing the mechanical property of B4C/C(graphite) composites. Since the porosity of the B4C/C(graphite) composites was about 25–38%, the liquid silicon was able to infiltrate into the interior composites, thereby reacting with B4C and graphite to generate silicon carbide. Thus, boron carbide, silicon carbide, and residual silicon were sintered together forming B4C-SiC-Si composites. The pressureless sintered B4C/C(graphite) composites were transformed into the B4C-SiC-Si composites following the silicon infiltration process. This work comprises an investigation of the microstructure, phase composition, and mechanical characteristics of the pressureless sintered B4C/C(graphite) composites and B4C-SiC-Si composites. The XRD data demonstrated that the pressureless sintered bulks were composed of the B4C phase and graphite phase. The pressureless sintered B4C/C(graphite) composites exhibited a porous microstructure, an extremely low mechanical property, and low wear resistance. The XRD data of the B4C-SiC-Si specimens showed that silicon infiltrated specimens comprised a B4C phase, SiC phase, and residual Si. The B4C-SiC-Si composites manifested a compact and homogenous microstructure. The mechanical property of the B4C-SiC-Si composites was substantially enhanced in comparison to the pressureless sintered B4C/C(graphite) composites. The density, relative density, fracture strength, fracture toughness, elastic modulus, and Vickers hardness of the B4C-SiC-Si composites were notably enhanced as compared to the pressureless sintered B4C/C(graphite) composites. The B4C-SiC-Si composites also manifested outstanding resistance to wear as a consequence of silicon infiltration. The B4C-SiC-Si composites demonstrated excellent wear resistance and superior mechanical characteristics.  相似文献   

13.
The new in situ fabrication process for Mg-Mg2Si composites composed of interpenetrating metal/intermetallic phases via powder metallurgy was characterized. To obtain the designed composite microstructure, variable nanosilicon ((n)Si) (i.e., 2, 4, and 6 vol.% (n)Si) concentrations were mixed with magnesium powders. The mixture was ordered using a sonic method. The powder mixture morphologies were characterized using scanning electron microscopy (SEM), and heating and cooling-induced thermal effects were characterized using differential scanning calorimetry (DSC). Composite sinters were fabricated by hot-pressing the powders under a vacuum of 2.8 Pa. Shifts in the sintering temperature resulted in two observable microstructures: (1) the presence of Mg2Si and MgO intermetallic phases in α-Mg (580 °C); and (2) Mg2Si intermetallic phases in the α-Mg matrix enriched with bands of refined MgO (640 °C). Materials were characterized by light microscopy (LM) with quantitative metallography, X-ray diffraction (XRD), open porosity measurements, hardness testing, microhardness testing, and nanoindentation. The results revealed that (n)Si in applied sintering conditions ensured the formation of globular and very fine Mg2Si particles. The particles bonded with each other to form an intermetallic network. The volume fraction of this network increased with (n)Si concentration but was dependent on sintering temperature. Increasing sintering temperature intensified magnesium vaporization, affecting the composite formation mechanism and increasing the volume fraction of silicide.  相似文献   

14.
This article presents new findings related to the problem of the introduction of MXene phases into the silicon carbide matrix. The addition of MXene phases, as shown by the latest research, can significantly improve the mechanical properties of silicon carbide, including fracture toughness. Low fracture toughness is one of the main disadvantages that significantly limit its use. As a part of the experiment, two series of composites were produced with the addition of 2D-Ti3C2Tx MXene and 2D-Ti3C2Tx surface-modified MXene with the use of the sol-gel method with a mixture of Y2O3/Al2O3 oxides. The composites were obtained with the powder metallurgy technique and sintered with the Spark Plasma Sintering method at 1900 °C. The effect adding MXene phases had on the mechanical properties and microstructure of the produced sinters was investigated. Moreover, the influence of the performed surface modification on changes in the properties of the produced composites was determined. The analysis of the obtained results showed that during sintering, the MXene phases oxidize with the formation of carbon flakes playing the role of reinforcement. The influence of the Y2O3/Al2O3 layer on the structure of carbon flakes and the higher quality of the interface was also demonstrated. This was reflected in the higher mechanical properties of composites with the addition of modified Ti3C2Tx. Composites with 1 wt.% addition of Ti3C2Tx M are characterized with a fracture toughness of 5 MPa × m0.5, which is over 50% higher than in the case of the reference sample and over 15% higher than for the composite with 2.5 wt.% addition of Ti3C2Tx, which showed the highest fracture toughness in this series.  相似文献   

15.
Dense Ti3SiC2/ZnO composites were sintered at different temperatures by spark plasma sintering (SPS). The effects of sintering temperature on composition and mechanical properties of Ti3SiC2/ZnO composites were studied. The tribological behaviors of Ti3SiC2/ZnO composites/Inconel 718 alloy tribo-pairs at elevated temperature from 25 °C to 800 °C were discussed. The experimental results showed that the initial decomposition temperature of the Ti3SiC2/ZnO composite was 1150 °C, and Ti3SiC2 decomposed into TiC. When the decomposition temperature was higher than 1150 °C, the compositions of the Ti3SiC2/ZnO composites were Ti3SiC2, ZnO, and TiC. It was found that Ti3SiC2/ZnO composites had better self-lubricating performance than Ti3SiC2 at elevated temperature from 600 °C to 800 °C, which was owing to material transfers of tribo-pairs and sheared oxides generated by tribo-oxidation reactions.  相似文献   

16.
The paper presents the effect of the holding time, varying between 1 min 15 s and 10 min, on the microstructure evolution and development of selected properties of spark plasma sintered AA7075-based composites reinforced with 3, 5 and 10 wt% sub-micro B4C powder. The sintering temperature and the compaction pressure were 500 °C and 80 MPa, respectively. Composites with a near full density of 96–97% were obtained. Microstructure studies were performed employing the techniques of light microscopy and scanning electron microscopy, along with an analysis of the chemical composition in micro-areas. Additionally, the phase composition was investigated by means of X-ray diffraction. In addition, hardness and flexural strength tests were performed. It was found that the holding time did not significantly influence the microstructures of the examined materials nor the hardness or flexural strength. The sintered composites had a fine-grained microstructure with a strengthening phase located at the grain boundaries. As a result of the spark plasma sintering process, fine precipitates of intermetallic phases were also observed in the aluminum grains, suggesting partial supersaturation, which occurred during fast cooling.  相似文献   

17.
Aluminium steel clad materials have high potential for industrial applications. Their mechanical properties are governed by an intermetallic layer, which forms upon heat treatment at the Al-Fe interface. Transmission electron microscopy was employed to identify the phases present at the interface by selective area electron diffraction and energy dispersive spectroscopy. Three phases were identified: orthorhombic Al5Fe2, monoclinic Al13Fe4 and cubic Al19Fe4MnSi2. An effective interdiffusion coefficient dependent on concentration was determined according to the Boltzmann–Matano method. The highest value of the interdiffusion coefficient was reached at the composition of the intermetallic phases. Afterwards, the process of diffusion considering the evaluated interdiffusion coefficient was simulated using the finite element method. Results of the simulations revealed that growth of the intermetallic phases proceeds preferentially in the direction of aluminium.  相似文献   

18.
This paper focuses on the possibility of adapting the centrifugal slip casting method to obtain zirconia–alumina composite materials in the form of finished tube-shaped products. These types of products, due to their unique properties, can be utilised, for example, in the transport of aggressive substances, even in extreme temperatures or corrosive conditions. The study reports on the two series of zirconia–alumina composites differing in the content of ZrO2—2.5 and 25 vol%. The fabricated and sintered materials were characterised using scanning electron microscopy (SEM), X-ray diffraction (XRD) and stereological analysis. Moreover, a life cycle assessment (LCA) was provided in accordance with the requirements of the ISO 14044 and EN 15805 standards. The obtained data clearly show that the centrifugal slip casting method allows obtaining samples with high density and extremely uniform distribution of the ZrO2 phase in the alumina matrix. The stereological analysis results proved also that the addition of ZrO2 is effective in reducing the growth of Al2O3 grains during the sintering process. The phase analysis carried out by means of XRD showed that during the sintering process, in the case of composites with a lower ZrO2 content (2.5 vol%), the monoclinic to tetragonal transformation of ZrO2 was total, while for samples containing 25 vol% ZrO2, the monoclinic phase remained in a small amount in the final product.  相似文献   

19.
The aim of the study was to investigate effect of Ti/TiB2 composite composition and manufacturing technology parameters on the tribological behaviour of AlCrN coating-composite system. The AlCrN coating was deposited by PVD (Physical Vapour Deposition) method. The composites were manufactured by spark plasma sintering (SPS) from three variants of powders mixtures: Ti with TiB2, Ti6Al4V with TiB2 as well as Ti with B, using (five) different sintering temperatures. For each of the developed coating-composite systems, the wear resistance was evaluated using ball-on-disc SRV tester, at six temperatures (from room temperature up to 900 °C). The results confirmed that high-temperature wear resistance of the coating–substrate combination depends on Ti/TiB2 composite composition and manufacturing technology parameters. In the case of uncoated composite, two processes manage the wear at high temperatures: cracking propagation and surface oxidation. The presence of AlCrN coating on the composite surface protects the surface against deep cracking and surface oxidation. The composites of Group I, sintered at 1250 °C from a mixture of pure Ti and TiB2 (50/50 wt.% ratio) as well as Group III, sintered at 1350 °C from a mixture of pure Ti and B allow the achievement of a satisfactory surface quality, a high adhesion of the PVD coating and moderate wear at high temperatures. However, the composite made of pure Ti and B seems to be a better solution for temperatures exceeding 600 °C.  相似文献   

20.
MAX phases are an advanced class of ceramics based on ternary carbides or nitrides that combine some of the ceramic and metallic properties, which make them potential candidate materials for many engineering applications under severe conditions. The present work reports the successful synthesis of nearly single bulk Ti2AlN MAX phase (>98% purity) through solid-state reaction and from a Ti and AlN powder mixture in a molar ratio of 2:1 as starting materials. The mixture of Ti and AlN powders was subjected to reactive spark plasma sintering (SPS) under 30 MPa at 1200 °C and 1300 °C for 10 min in a vacuum atmosphere. It was found that the massive formation of Al2O3 particles at the grain boundaries during sintering inhibits the development of the Ti2AlN MAX phase in the outer zone of the samples. The effect of sintering temperature on the microstructure and mechanical properties of the Ti2AlN MAX phase was investigated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号