首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon fiber-reinforced polymer (CFRP) has the advantages of a high strength-weight ratio and excellent fatigue resistance and has been widely used in aerospace, automotive, civil infrastructure, and other fields. The properties of CFRP materials under high temperatures are a key design issue. This paper presents the quasi-static tensile mechanical properties of unidirectional CFRP plates at temperatures ranging from 20 to 600 °C experimentally. The laser displacement transducer was adopted to capture the in situ displacement of the tested specimen. The results showed that the tensile strength of the CFRP specimen was affected by the high-temperature effect significantly, which dropped 68% and 16% for the 200 and 600 °C, respectively, compared with that of the room temperature. The degradation measured by the laser transducer system was more intensive compared with previous studies. The elastic modulus decreased to about 29% of the room temperature value at 200 °C. With the evaporation of the resin, the failure modes of the CFRP experienced brittle fracture to pullout of the fiber tow. The study provides accurate tensile performance of the CFRP plate under high-temperature exposure, which is helpful for the engineering application.  相似文献   

2.
This paper presents an investigation of the bond mechanism between carbon fibre reinforced polymer (CFRP) laminates, concrete and steel in the near-surface mounted (NSM) CFRP-strengthened reinforced concrete (RC) beam-bond tests. The experimental program consisting of thirty modified concrete beams flexurally strengthened with NSM CFRP strips was published in. The effects of five parameters and their interactions on the ultimate load carrying capacities and the associated bond mechanisms of the beams are investigated in this paper with consideration of the following investigated parameters: beam span, beam depth, longitudinal tensile steel reinforcement ratio, the bond length of the CFRP strips and compressive concrete strength. The longitudinal steel reinforcement was cut at the beam mid-span in four beams to investigate a better assessment of the influence of the steel reinforcement ratio on the bond behaviour of CFRP to concrete bond behaviour. The numerical analysis implemented in this paper is based on a nonlinear micromechanical finite element model (FEM) that was used for investigation of the flexural behaviour of NSM CFRP-strengthened members. The 3D model based on advanced CFRP to concrete bond responses was introduced to modelling of tested specimens. The FEM procedure presents the orthotropic behaviour of the CFRP strips and the bond response between the CFRP and concrete. Comparison of the experimental and numerical results revealed an excellent agreement that confirms the suitability of the proposed FE model.  相似文献   

3.
The use of waste streams for the production of sustainable cement-based materials cannot be overemphasized. This study investigates the feasibility of reusing waste steel slag (WSS) and waste clay brick (WCB) as a replacement for natural sand (NS) in mortar. Numerous studies have reported mainly the compressive strength of concrete/mortar, while limited research is available that focuses on the tensile and flexural strength of mortar, and especially the performance at elevated temperature. Hence, this study investigates the tensile and flexural strength of mortar with three different replacement percentages (0, 50 and 100% by volume of NS) of NS by WSS and WCB at normal temperature (without thermal treatment) and after exposure to elevated temperatures (250, 400 and 600 °C). At ambient condition, both tensile and flexural strength were enhanced as the WSS content increased (76 and 68%, respectively, at 100% WSS). In comparison, the strength increased at 50% WCB (25 and 37%, accordingly) and decreased at 100% WCB (23 and 20%, respectively) compared to 100% NS. At elevated temperatures, both the tensile and flexural strength of mortar mixes decreased significantly at 600 °C.  相似文献   

4.
The performance of pretensioned, laminated, unidirectional (UD), carbon fiber reinforced polymer (CFRP) straps, that can potentially be used for example as bridge deck suspender cables or prestressed shear reinforcements for reinforced concrete slabs and beams, was investigated at elevated temperatures. This paper aims to elucidate the effects of elevated temperature specifically on the tensile performance of pretensioned, pin-loaded straps. Two types of tests are presented: (1) steady state thermal and (2) transient state thermal. Eight steady-state target temperatures in the range of 24 °C to 600 °C were chosen, based on results from dynamic mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). Transient state thermal tests were performed at three sustained tensile load levels, namely 10, 15, and 20 kN, corresponding to 25%, 37%, and 50% of the ultimate tensile strength of the pin-loaded straps at ambient temperature. In general, the straps were able to retain about 50% of their ambient temperature ultimate tensile strength (UTS) at 365 °C.  相似文献   

5.
A self-developed rotary multi-cutter device cuts stainless steel wire ropes into segments to fabricate twisted wires. Stainless steel porous twisted wire materials (PTWMs) with a spatial composite intertexture structure are produced by the compaction and subsequent vacuum solid-phase sintering of twisted wires. The stainless steel PTWMs show two types of typical uniaxial tensile failure modes, i.e., a 45° angle fracture mode and an auxetic failure mode (the PTWMs expand along the direction perpendicular to the tension). The effects of the sintering parameters, porosities, wire diameters, and sampling direction on the tensile properties of the PTWMs are carefully investigated. By increasing the sintering temperature from 1130 °C to 1330 °C, the tensile strength of the PTWMs with 70% target porosity increased from 7.7 MPa to 28.6 MPa and the total failure goes down to 50%. When increasing the sintering time from 90 min to 150 min, the tensile strength increases from 12.4 MPa to 19.1 MPa and the total failure elongation drops to 78.6%. The tensile strength of the PTWMs increases from 28.9 MPa to 112.7 MPa with decreasing porosity from 69.5% to 46.0%, and the total failure elongation also increases from 14.8% to 40.7%. The tensile strength and the failure strain of the PTWMs with fine wires are higher than those of the PTWMs with coarse wires under the same porosity. Sampling direction has a small influence on the tensile properties of the PTWMs.  相似文献   

6.
Fire is one of the most unfavorable conditions that cement-based composites can face during their service lives. The uniaxial tensile and flexural tensile properties of the steel-polyvinyl alcohol fiber-calcium carbonate whisker (CW) multi-scale fiber reinforced cement matrix composites (MSFRCs) under high temperatures are studied, including strength, deformation capacity, energy dissipation capacity, and its ability to be assessed through the empirical calculation method. The study showed that with the increase of the treatment temperature, the MSFRC residual bending strength, bending toughness, and tensile strength decreased overall, but the decline was slow at 600 °C. The peak flexural deflection and peak tensile strain of MSFRC first reduced and then increased with the increase of the temperature. As the temperature increased, the nominal stiffness of MSFRC bending and straight gradually reduced, and the rate of decline was faster than that of its strength. However, the uniaxial tensile properties were more sensitive to the temperature and degraded more rapidly. A quantitative relationship was established between MSFRC residual bending, tensile strength, and temperature. A comparison with existing research results shows that MSFRC has achieved an ideal effect of high temperature resistance. The multi-scale hybrid fiber system significantly alleviates the deterioration of cement-based composite’s mechanical properties under high temperatures. With the help of an optical microscope and scanning electron microscope (SEM), the high temperature influence mechanism on the uniaxial tensile and flexural properties of MSFRC was revealed.  相似文献   

7.
In this research, the mechanical properties of lightweight mortars containing different percentages of additional powder materials has been investigated using response surface methodology (RSM). Box–Behnken design, one of the RSM techniques, was used to study the effects of silica fume content (5, 10, and 15%), vermiculite/cement (V/C) ratio (4, 6, and 8), and temperature (300, 600, and 900 °C) on the ultrasonic pulse velocity (UPV), bending strength, and compressive strength of lightweight mortars. Design expert statistical software was accustomed to determining and evaluating the mix-design of materials in mortar mixtures and temperature effect on mortars. After preliminary experimental research of the relationships between independent and response variables, regression models were built. During the selection of the model parameters, F value, p-value, and R2 values of the statistical models were taken into account by using the backward elimination technique. The results showed a high correlation between the variables and responses. Multi-objective optimization results showed that the critical temperatures for different levels of silica fume (5–10–15%) were obtained as 371.6 °C, 306.3 °C, and 436 °C, respectively, when the V/C ratio kept constant as 4. According to the results obtained at high desirability levels, it is found that the UPS values varied in the range of 2480–2737 m/s, flexural strength of 3.13–3.81 MPa, and compressive strength of 9.9–11.5 MPa at these critical temperatures. As a result of this research, RSM is highly recommended to evaluate mechanical properties where concrete includes some additional powder materials and was exposed to high temperature.  相似文献   

8.
High performance fiber-reinforced concrete (HPFRC) has been frequently investigated in recent years. Plenty of studies have focused on different materials and types of fibers in combination with the concrete matrix. Experimental tests show that fiber dosage improves the energy absorption capacity of concrete and enhances the robustness of concrete elements. Fiber reinforced concrete has also been illustrated to be a material for developing infrastructure sustainability in RC elements like façade plates, columns, beams, or walls. Due to increasing costs of the produced fiber reinforced concrete and to ensure the serviceability limit state of construction elements, there is a demand to analyze the necessary fiber dosage in the concrete composition. It is expected that the surface and length of used fiber in combination with their dosage influence the structure of fresh and hardened concrete. This work presents an investigation of the mechanical parameters of HPFRC with different polymer fiber dosage. Tests were carried out on a mixture with polypropylene and polyvinyl alcohol fiber with dosages of 15, 25, and 35 kg/m3 as well as with control concrete without fiber. Differences were observed in the compressive strength and in the modulus of elasticity as well as in the flexural and splitting tensile strength. The flexural tensile strength test was conducted on two different element shapes: square panel and beam samples. These mechanical properties could lead to recommendations for designers of façade elements made of HPFRC.  相似文献   

9.
In this paper, the mechanical performance of an ultra-high-performance concrete (UHPC) repaired cementitious composite system, including the old matrix and the new reinforcement (UHPC), under various high temperature levels (20 °C, 100 °C, 300 °C, and 500 °C) was studied. In this system, UHPC reinforced with different contents of steel fibers and polypropylene (PP) fibers was utilized. Moreover, the physical, compressive, bonding, and flexural behaviors of the UHPC repaired system after being exposed to different high temperatures were investigated. Meanwhile, X-ray diffraction (XRD), baseline evaluation test (BET), and scanning electron microscope (SEM) tests were conducted to analyze the effect of high temperature on the microstructural changes in a UHPC repaired cementitious composite system. Results indicate that the appearance of the bonded system changed, and its mass decreased slightly. The average percentage of residual mass of the system was 99.5%, 96%, and 94–95% at 100 °C, 300 °C, and 500 °C, respectively. The residual compressive strength, bonding strength, and flexural performance improved first and then deteriorated with the increase of temperature. When the temperature reached 500 °C, the compressive strength, bonding strength, and flexural strength decreased by about 20%, 30%, and 15% for the UHPC bonded system, respectively. Under high temperature, the original components of UHPC decreased and the pore structure deteriorated. The cumulative pore volume at 500 °C could reach more than three times that at room temperature (about 20 °C). The bonding showed obvious deterioration, and the interfacial structure became looser after exposure to high temperature.  相似文献   

10.
Stelite-6/Inconel 718 functionally gradient materials (FGM) is a heat-resisting functional gradient material with excellent strength performance under ultra-high temperatures (650–1100 °C) and, thus, has potential application in aeronautic and aerospace engineering such as engine turbine blade. To investigate the effect of initial temperature on the microstructure and properties of laser metal deposition (LMD) functional gradient material (FGM), this paper uses the LMD technique to form Stelite-6/Inconel 718 FGM at two different initial temperatures: room temperature and preheating (300 °C). Analysis of the internal residual stress distribution, elemental distribution, microstructure, tensile properties, and microhardness of 100% Stelite-6 to 100% Inconel 718 FGM formed at different initial temperatures in a 10% gradient. The experimental results prove that the high initial temperature effectively improves the uneven distribution of internal residual stresses. Preheating slows down the solidification time of the melt pool and facilitates the escape of gases and the homogeneous diffusion of elements in the melt pool. In addition, preheating reduces the bonding area between the gradient layers, enhancing the metallurgical bonding properties between the layers and improving the tensile properties. Compared with Stellite-6/Inconel 718 FGM formed at room temperature, the mean yield strength, mean tensile strength, and mean elongation of Stellite-6/Inconel 718 FGM formed at 300 °C are increased by 65.1 Mpa, 97 MPa, and 5.2%. However, the high initial temperature will affect the hardness of the material. The average hardness of Stellite-6/Inconel 718 FGM formed at 300 °C is 26.9 HV (Vickers hardness) lower than that of Stellite-6/Inconel 718 FGM formed at 20 °C.  相似文献   

11.
Conventional reinforced concrete (RC) structures are commonly associated with the corrosion of steel reinforcement. The application of carbon fiber reinforced polymer (CFRP) bars as flexural reinforcement has become a new promising option. This paper presents a state-of-the art flexural strength on concrete beams reinforced with CFRP bars. Concrete compressive and CFRP bar tensile strain, reinforcement ratio, types of surface treatment on CFRP bar and concrete compressive strength were identified as aspects of behavior. Significant findings in the literature had manifested all aspects of behavior that were affecting the flexural strength, deflections and crack characteristics of CFRP RC beams. In addition, the experimental result on 98 specimens of CFRP RC beams from the literature show that ACI 440.1R-15 and CSA S806-12 standards underestimate the ultimate flexural moment capacity of CFRP RC beams. On the other hand, Kara and Ashour predictions are more accurate with the experimental values. Moreover, hotspot research topics were also highlighted for further considerations in future studies.  相似文献   

12.
This paper presents selected issues related to the reinforcement of steel element cold-formed with CFRP tapes. The first section of the paper is a review of source literature and a presentation of the basic information on cold-formed thin-walled steel elements and CFRP composite materials, stressing the advantages and disadvantages of using them to reinforce steel structures. Next, the authors present original research on reinforcing bent thin-walled sigma-type steel beams using adhesive CFRP tapes. Reference beams with a cross-section of Σ200 × 70 × 2 and a length of 3 m, reinforced with CFRP tape, were tested in the four-point bending scheme. Then, the paper discusses a developed numerical model that is consistent with the subject matter of the laboratory tests. The developed numerical model was prepared to represent the failure of the connection between the beam and the composite tape. This was followed by a number of numerical analyses in order to determine the optimum adhesive layer that would allow us to achieve the maximum reduction of the displacements and strains in bent thin-walled sigma-type beams. Three thicknesses of the SikaDur adhesive layer were analyzed in the study. Based on the analyzes, it was found that the increase in the thickness of the adhesive layer slightly reduced the strain and displacement in the beams, but caused a significant decrease in the load value, at which damage appeared in the glued joint.  相似文献   

13.
The paper presents a comparison of the effectiveness of strengthening steel thin-walled, cold-formed sigma beams with CFRP tapes and steel tapes. For this purpose, three beams without reinforcement (reference beams) of the “Blachy Pruszyński” type, with a cross-section of ∑200 × 70 × 2 and a span of 280 cm, made of S350GD steel grade, were subjected to laboratory tests in the four-point bending scheme. In the next stage the tests included nine ∑200 × 70 × 2 beams reinforced with Sika CarboDur S512 CFRP tape and six ∑200 × 70 × 2 beams reinforced with steel tape made of S235 steel grade. The length of the reinforcement tapes as well made of steel as well of CFRP was of 175 cm. The location of the tapes within the height of the beams’ cross-section was assumed in three variants, namely placing the tape on the upper or bottom flange and on the web. In the case of beams reinforced with CFRP, three beams were tested for each reinforcement location, and in the case of beams reinforced with steel tapes, two beams were tested for each reinforcement location. SikaDur®-30 glue with a thickness of 1.3 mm was used in order to connect steel or CFRP tapes to the beams. The dimensions of the tapes cross-sections in both cases were similar (CFRP tapes: 50 × 1.2 mm, steel tapes: 50 × 1.3 mm). For all types of beams, numerical models were also developed in the Abaqus software. The main aim of this paper was investigation of the influence of mechanical properties of steel or CFRP tapes on the effectiveness of strengthening ∑ beams. For this purpose a comparison of these two solutions with respect to the limitation of displacements and deformations of the beam was performed. The obtained results were considered in the context of the mechanical properties of the materials composing the reinforcement tapes. The tests showed slight differences in the results of strain and displacements obtained for reinforcement made of two different materials. It was also noted that the decisive element was the failure of the joint at the steel-glue interface. Therefore, future studies will pay particular attention to the adhesive layer.  相似文献   

14.
The 2.25Cr1Mo0.25V steel is a vanadium-modified 2.25Cr1Mo steel and is being widely used in the manufacture of heavy-wall hydrogenation reactors in petrochemical plants. However, the harsh service environment requires a thorough understanding of high-temperature tensile and creep behaviors of 2.25Cr1Mo0.25V steel and its weld for ensuring the safety and reliability of hydrogenation reactors. In this work, the high-temperature tensile and creep behaviors of base metal (BM) and weld metal (WM) in a 2.25Cr1Mo0.25V steel weldment used for a hydrogenation reactor were studied experimentally, paying special attention to its service temperature range of 350–500 °C. The uniaxial tensile tests under different temperatures show that the WM has higher strength and lower ductility than those of BM, due to the finer grain size in the WM. At the same time, the short-term creep tests at 550 °C reveal that the WM has a higher creep resistance than that of BM. Moreover, the creep damage mechanisms were clarified by observing the fracture surface and microstructures of crept specimens with the aid of scanning electron microscopy (SEM). The results showed that the creep damage mechanisms of both BM and WM are the initiation and growth of creep cavities at the second phase particles. Results from this work indicate that the mismatch in the high-temperature tensile strength, ductility, and creep deformation rate in 2.25Cr1Mo0.25V steel weldment needs to be considered for the design and integrity assessment of hydrogenation reactors.  相似文献   

15.
The purpose of this work is to compare the co-bonding vs. cold-bonding route on the adhesive joint performance of a CFRP (Carbon Fiber Reinforced Polymer) laminate–aluminum connection. In particular, the overlap shear, tensile strength and Mode I and Mode II fracture toughness will be evaluated. The adhesives for co-bonding and cold-bonding are, respectively, a thermosetting modified epoxy, unsupported structural film and a two-component epoxy adhesive, chosen as representative of applications in the high-performance/race car field. The emerging trend is that, in tensile e Mode I fracture tests, the failure path is predominantly in the composite. Mode II fracture tests instead resulted in a cohesive fracture, meaning that, under pure shear loading, the weakest link may not be the composite. The lap-shear tests are placed midway (cohesive failure for co-bonding and composite delamination for cold-bonding, respectively), probably due to the different peel stress values related to the different adhesive Young’s modulus. The exploitation of the full capacity of the adhesive joint, hence the possibility of highlighting better, different performances of co-bonding vs. cold-bonding, would require consistent improvement of the out-of-plane strength of the CFRP laminate and/or to someway redistribute the peel stress on the bondline.  相似文献   

16.
This study aims to investigate the effect of calcium sulfate whisker (CSW) on the properties and microstructure of cement-based composites. Further, nanosilica (NS) was used as a comparison. The results show that the compressive strength and fracture toughness of cement-based composites increased by 10.3% and 10.2%, respectively, with 2% CSW. The flexural strength, splitting tensile strength, and fracture energy increased by 79.7, 34.8 and 28.7%, respectively, with 1% CSW. With the addition of CSW, shrinkage deformation was aggravated, and the capillary water absorption coefficients were clearly reduced. Compared with NS, CSW-reinforced cement-based composites show better tensile, flexural, and fracture properties and smaller shrinkage deformations and capillary water absorption coefficients. The residual mechanical properties of all groups improve when the treating temperature is lower than 400 °C and decline rapidly when the temperature goes over 600 °C. When treated at 900 °C, the residual mechanical properties are 40% less than those at ambient temperature, with the NS group showing the best performance, followed by the control group and the CSW group. X-ray diffraction (XRD) and scanning electron microscopy (SEM) tests show that the addition of CSW improves the microstructure of the matrix. CSW can reinforce and toughen composites by generating ettringite and whisker pullout, whisker breakage, crack bridging, and crack deflection at the microstructure level.  相似文献   

17.
The fracture resistance of polymethylmethacrylate (PMMA) as the most popular denture base material is not satisfactory. Different factors can be involved in denture fracture. Among them, flexural fatigue and impact are the most common failure mechanisms of an acrylic denture base. It has been shown that there is a correlation between the static strength and fatigue life of composite resins. Therefore, the transverse strength of the denture base materials can be an important indicator of their service life. In order to improve the fracture resistance of PMMA, extensive studies have been carried out; however, only a few promising results were achieved, which are limited to some mechanical properties of PMMA at the cost of other properties. This study aimed at optimizing the packing and processing condition of heat-cured PMMA as a denture base resin in order to improve its biaxial flexural strength (BFS). The results showed that the plain type of resin with a powder/monomer ratio of 2.5:1 or less, packed conventionally and cured in a water bath for 2 h at 95 °C provides the highest BFS. Also, it was found that the performance of the dry heat processor is inconsistent with the number of flasks being loaded.  相似文献   

18.
The purpose of this study was to predict the adhesive behavior of steel and carbon-fiber-reinforced plastic (CFRP) hybrid parts based on the cohesive zone model (CZM). In this study, the steel sheet and CFRP were joined by epoxy resin in the CFRP prepreg during the curing process, which could generate delamination at their interface because of the springback of steel or the thermal contraction of the CFRP. First, double cantilever beam (DCB) and end-notched flexure (ENF) tests were performed to obtain various adhesion properties such as the critical energy release rate of mode I, mode II (GI, GII), and critical stress (σmax). A finite element (FE) simulation was performed to predict delamination using CZM, which was also used to describe the interfacial behavior between the steel sheet and the CFRP. Finally, a U-shape drawing test was performed for the steel/CFRP hybrid parts, and these results were compared with analytical results.  相似文献   

19.
To explore the influence of annealing temperatures on the interfacial structure and peeling strength of Cu/Al clad sheets with a 304 stainless steel foil interlayer, an intermediate annealing treatment was performed at temperatures of 450 °C, 550 °C, and 600 °C, separately. The experimental results indicate that the interfacial atomic diffusion is significantly enhanced by increasing the intermediate annealing temperature. The average peeling strength of the clad sheets annealed at 550 °C can reach 34.3 N/mm and the crack propagation is along the steel/Cu interface, Cu-Al intermetallic compounds layer, and Al matrix. However, after high-temperature annealing treatment (600 °C), the liquid phase is formed at the bonding interface and the clear Cu/steel/Al interface is replaced by the chaotic composite interfaces. The clad sheet broke completely in the unduly thick intermetallic compounds layer, resulting in a sharp decrease in the interfacial bonding strength.  相似文献   

20.
In order to make full use of magnesium chloride resources, the development and utilisation of magnesium oxychloride cement have become an ecological and economic goal. Thus far, however, investigations into the effects on these cements of high temperatures are lacking. Herein, magnesium oxychloride cement was calcinated at various temperatures and the effects of calcination temperature on microstructure, phase composition, flexural strength, and compressive strength were studied by scanning electron microscopy, X-ray diffraction, and compression testing. The mechanical properties varied strongly with calcination temperature. Before calcination, magnesium oxychloride cement has a needle-like micromorphology and includes Mg(OH)2 gel and a trace amount of gel water as well as 5 Mg(OH)2·MgCl2·8H2O, which together provide its mechanical properties (flexural strength, 18.4 MPa; compressive strength, and 113.3 MPa). After calcination at 100 °C, the gel water is volatilised and the flexural strength is decreased by 57.07% but there is no significant change in the compressive strength. Calcination at 400 °C results in the magnesium oxychloride cement becoming fibrous and mainly consisting of Mg(OH)2 gel, which helps to maintain its high compressive strength (65.7 MPa). When the calcination temperature is 450 °C, the microstructure becomes powdery, the cement is mainly composed of MgO, and the flexural and compressive strengths are completely lost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号