首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper-based composites strengthened with fullerene soot nanoparticles of 20–30 nm size in concentration up to 23 vol.% were prepared via two methods: mechanical mixing and molecular level mixing. The dependence of thermal conductivity on the carbon concentration was studied. Maxwell’s model describes well the change in the thermal conductivity of the composite obtained by molecular level mixing. However, thermal conductivity of the composite produced by mechanical mixing is significantly lower than the calculated values, due to structural inhomogeneity and residual stresses. Comparison of the thermal conductivity of Cu-fullerene soot composites with that of Cu-based composites described in the literature showed that the prepared materials are not inferior in thermal conductivity to composites containing carbon nanotubes, despite the fact that fullerene soot has a much lower thermal conductivity.  相似文献   

2.
A fabrication technology of closed-cell copper foams (CCCFs) based on powder metallurgy is proposed, by using the expanded polystyrene foams (EPS) spheres with the prescribed diameter as the space holder before sintering. The material characterization and the quasi-static compressive behaviors of both uniform and graded CCCFs at different temperatures were experimentally studied. A high temperature weakens the initial compressive modulus, plateau stress, and effective energy absorption for both uniform and graded CCCFs; meanwhile, the onset strain of densification and the maximum energy absorption efficiency are less sensitive to temperature, especially for the graded CCCFs. Compared with the uniform CCCF, the graded CCCF with even a small relative density exhibits superiority in terms of the effective energy absorption and the maximum energy absorption efficiency, attributed to the much larger onset strain of densification for the gradient pore arrangement. Finite element simulations based on the ideal sphere foam model can basically mimic the compressive performance of the CCCF samples. It is also found that both the decrease of pore diameter and the increase of cell wall thickness could improve the compressive performance of the CCCFs.  相似文献   

3.
This paper proposes a new approach to relate the effective thermal conductivity of open-cell solid foams to their porosity. It is based on a recently published approach for estimating the dielectric permittivity of isotropic porous media. A comprehensive assessment was performed comparing the proposed mixing relation with published experimental data for thermal conductivity and with numerical data from state-of-the-art relations. The mixing relation for the estimation of thermal conductivities based on dodecahedrons as building blocks shows good agreement with experimental data over a wide range of porosity.  相似文献   

4.
The manufacturing of aluminium foams with a total porosity of 87% using the sponge replication method and a combination of the sponge replication and freezing technique is presented. Foams with different cell counts were prepared from polyurethane (PU) templates with a pore count per inch (ppi) of 10, 20 and 30; consolidation of the foams was performed in an argon atmosphere at 650 °C. The additional freezing steps resulted in lamellar pores in the foam struts. The formation of lamellar pores increased the specific surface area by a factor of 1.9 compared to foams prepared by the sponge replication method without freezing steps. The formation of additional lamellar pores improved the mechanical properties but reduced the thermal conductivity of the foams. Varying the pore cell sizes of the PU template showed that—compared to foams with dense struts—the highest increase (~7 times) in the specific surface area was observed in foams made from 10 ppi PU templates. The effect of the cell size on the mechanical and thermal properties of aluminium foams was also investigated.  相似文献   

5.
An investigation into the addition of different weight percentages of Fe3O4 nanoparticles to find the optimum wt.% and its effect on the microstructure, thermal, magnetic, and electrical properties of aluminum matrix composite was conducted using the powder metallurgy method. The purpose of this research was to develop magnetic properties in aluminum. Based on the obtained results, the value of density, hardness, and saturation magnetization (Ms) from 2.33 g/cm3, 43 HV and 2.49 emu/g for Al-10 Fe3O4 reached a maximum value of 3.29 g/cm3, 47 HV and 13.06 emu/g for the Al-35 Fe3O4 which showed an improvement of 41.2%, 9.3%, and 424.5%, respectively. The maximum and minimum coercivity (Hc) was 231.87 G for Al-10 Fe3O4 and 142.34 G for Al-35 Fe3O4. Moreover, the thermal conductivity and electrical resistivity at a high weight percentage (35wt.%) were 159 w/mK, 9.9 × 10−4 Ω·m, and the highest compressive strength was 133 Mpa.  相似文献   

6.
Waste glass constitutes a significant part of general waste worldwide. Unfortunately, only a small percentage is recycled. It is, therefore, quite important that it can be applied in the production of construction materials. The main aim of this article is to determine the thermal conductivity of the products modified with granulated foam glass (GFG) (recycled product) of the 0.25–0.5 mm fraction, as well as to indicate dependence of the change in volume density of samples caused by the use of GFG and the change of the thermal conductivity coefficient compared to reference samples. For the purpose of this research, various parameters were examined i.a. volume density, water absorption, determination of the pore size distribution by mercury porosimetry and determination of the heat conduction coefficient with the use of a plate apparatus. The test results were developed on the basis of a mathematical model that determined the influence of the filler on the functional properties of the product. The research has shown that the use of GFG in the sand-lime products will contribute to lowering their thermal conductivity by more than 50% compared to traditional products.  相似文献   

7.
Polyurethane foam (PUF) has generally been used in liquefied natural gas (LNG) carrier cargo containment systems (CCSs) owing to its excellent mechanical and thermal properties over a wide range of temperatures. An LNG CCS must be designed to withstand extreme environmental conditions. However, as the insulation material for LNGC CCSs, PUF has two major limitations: its strength and thermal conductivity. In the present study, PUFs were synthesized with various weight percentages of porous silica aerogel to reinforce the characteristics of PUF used in LNG carrier insulation systems. To evaluate the mechanical strength of the PUF-silica aerogel composites considering LNG loading/unloading environmental conditions, compressive tests were conducted at room temperature (20 °C) and a cryogenic temperature (−163 °C). In addition, the thermal insulation performance and cellular structure were identified to analyze the effects of silica aerogels on cell morphology. The cell morphology of PUF-silica aerogel composites was relatively homogeneous, and the cell shape remained closed at 1 wt.% in comparison to the other concentrations. As a result, the mechanical and thermal properties were significantly improved by the addition of 1 wt.% silica aerogel to the PUF. The mechanical properties were reduced by increasing the silica aerogel content to 3 wt.% and 5 wt.%, mainly because of the pores generated on the surface of the composites.  相似文献   

8.
The article presents the results of detailed studies of the thermal conductivity of the water slurry of microencapsulated PCM (mPCM) and slurry based on water–propylene glycol solutions. The starting product, MICRONAL® 5428 X, which contains about 43% microencapsulated paraffin with a transformation temperature of 28 °C, was mixed with the base liquid to obtain slurries with mass fractions of mPCM of 4.3, 8.6, 12.9, 17.2, 21.5, 25.8, 30.1, 34.4, 38.7, and 43.0%. Detailed measurements were carried out in the temperature range of 10–40 °C. It was found that: (a) an increase in the temperature of the slurry caused an increase in its thermal conductivity, both when PCM was in the form of a solid and a liquid; (b) the thermal conductivity of the mPCM slurry when the PCM was in liquid form was greater than the thermal conductivity of the slurry when the PCM was liquid; (c) during the phase transformation, a significant increase in the thermal conductivity of the slurry was observed, and its peak occurred when the temperature of the slurry reached the temperature declared by the manufacturer at which the phase-transition peak occurs.  相似文献   

9.
Thermal barrier coatings (TBCs) are essential for increasing the inlet temperature of gas turbines to improve their thermal efficiency. Continuous exposure to flames is known to affect the thermal properties of TBCs, degrading the performance of gas turbines as a consequence. In this study, we quantified the changes in the thermal conductivity of yttria-stabilized zirconia coatings with respect to various heat treatment temperatures and times. The coating exhibited an increase in thermal conductivity after heat treatment, with higher heat treatment temperatures resulting in greater thermal conductivity. The coatings were analyzed by X-ray diffraction and scanning electron microscopy before and after heat treatment. Results showed that there was little change in thermal conductivity due to phase changes and grain size. We conclude that pore structures, i.e., circular and lamellar pores, affected the change in thermal conductivity. Specifically, we confirmed that the change in thermal conductivity depends on the size of the lamellar pores.  相似文献   

10.
Synthetic diamond particle-reinforced copper-iron composites (SD/Cu-Fe) were produced by the powder metallurgical method for stone cutting applications, and the microstructure, density, compactness, hardness, flexure strength, and wear resistance of the composites were characterized in this work. The results showed that the diamond particles were relatively uniformly distributed in most areas of the copper matrix and the crystal shape of diamond particles were relatively intact in the sintering temperature range from 740 °C to 780 °C. The interfaces between the diamond particles and copper matrix, as well as the interfaces between the copper matrix and iron layer, were well bonded without significant gaps. The physical properties of composites increased first and then decreased with the sintering temperature. When the sintering temperature was 770 °C, the related properties reached the best. Diamond played a key role in improving the properties of the SD/Cu-Fe sandwich composite. This work provides a basis for the research and development of high-performance diamond-reinforced copper-based iron sandwich composites.  相似文献   

11.
Reliable predictions from numerical simulations in fire safety applications require knowledge of the combustible materials’ properties in their initial and thermally degraded states. The thermal conductivity of the sheath material of electrical cables, present in massive amounts in industrial plants, is addressed here. An evolutive conceptual model is proposed for the morphology of this intumescent polymer composite during its thermal degradation. It accounts for the multiscale structure and anisotropy observed during a thorough characterization based on tomographic images of samples at representative stages of the degradation. The evolution of the geometrical characteristics during the process is linked to chemical advancement parameters according to a reasoned scenario based on physical arguments and balance considerations. The anisotropic thermal conductivity tensor can be deduced from the geometry by a nested application of classical models. Ultimately, the conductivity is obtained as an analytic function of the chemical advancement and temperature. The model predictions were validated by comparisons with direct numerical solutions of thermal problems in the fully described geometry provided by the tomographies, and with measurements from the literature. The methodology and conceptual tools can be of interest for the treatment of other materials and in other contexts of application.  相似文献   

12.
The paper presents results of preparation and modification of Ti20Nb5Zr foams by a thermal dealloying method followed by electrochemical modification. The first step of this study was the preparation of Ti20Nb5Zr30Mg nanopowder using mechanical alloying (MA). The second was forming green compacts by cold pressing and then sintering with magnesium dealloyed from the structure, which resulted in pores formation. The next step was surface modification by electrochemical etching and silver nanoparticle deposition. Porosity, morphology, mechanical properties as well as biocompatibility and antibacterial behavior were investigated. Titanium foam porosity up to approximately 60% and wide pore size distribution were successfully prepared. The new materials have shown positive behavior in the MTT assay as well as antibacterial properties. These results confirmed great potential for thermal dealloying in preparation of porous structures.  相似文献   

13.
An effective model to calculate thermal conductivity of polymer composites using core-shell fillers is presented, wherein a core material of filler grains is covered by a layer of a high-thermal-conductivity (HTC) material. Such fillers can provide a significant increase of the composite thermal conductivity by an addition of a small amount of the HTC material. The model employs the Lewis-Nielsen formula describing filled systems. The effective thermal conductivity of the core-shell filler grains is calculated using the Russel model for porous materials. Modelling results are compared with recent measurements made on composites filled with cellulose microbeads coated with hexagonal boron nitride (h-BN) platelets and good agreement is demonstrated. Comparison with measurements made on epoxy composites, using silver-coated glass spheres as a filler, is also provided. It is demonstrated how the modelling procedure can improve understanding of properties of materials and structures used and mechanisms of thermal conduction within the composite.  相似文献   

14.
Ex vivo animal tissues (e.g., bovine liver) as well as water-agar gel are commonly used to simulate both experimentally and numerically the response of human tissues to cryoablation treatments. Data on the low temperature thermal properties of bovine liver are difficult to find in the literature and very often are not provided for the whole temperature range of interest. This article presents the thermal conductivity and thermal diffusivity measurements performed on ex-vivo bovine liver samples using the transient plane source method. Regression coefficients are provided to determine these properties in different temperature ranges except for the phase transition during which no results were obtained, which suggests an ad hoc calorimetric analysis. A quick procedure is also suggested to determine the water mass fraction in the tissue. Moreover, an attempt to estimate the liver density in the frozen state using measurements performed solely at room temperature is also presented. The measured thermal conductivity and thermal diffusivity values are compared with data reported in literature highlighting a spread up to 40%. Moreover, it emerges that water-agar gel usually made with 2% by weight of agar does not show the same thermal properties as the bovine liver.  相似文献   

15.
Ti-24Nb-4Zr-8Sn (Ti2448) is a metastable β-type titanium alloy developed for biomedical applications. In this work, cylindrical samples of Ti2448 alloy have been successfully manufactured by using the electron beam powder bed fusion (PBF-EB) technique. The thermal history and microstructure of manufactured samples are characterised using computational and experimental methods. To analyse the influence of thermal history on the microstructure of materials, the thermal process of PBF-EB has been computationally predicted using the layer-by-layer modelling method. The microstructure of the Ti2448 alloy mainly includes β phase and a small amount of α″ phase. By comparing the experimental results of material microstructure with the computational modelling results of material thermal history, it can be seen that aging time and aging temperature lead to the variation of α″ phase content in manufactured samples. The computational modelling proves to be an effective tool that can help experimentalists to understand the influence of macroscopic processes on material microstructural evolution and hence potentially optimise the process parameters of PBF-EB to eliminate or otherwise modify such microstructural gradients.  相似文献   

16.
Geopolymer foams with different pore structures can be used in construction, water treatment, and heavy metal adsorption. The preparation of high porosity geopolymer foams using vegetable oil as a foam stabilizer is a feasible and cost-effective route. In this study, metakaolin-based geopolymer foams with hierarchical pore structures were fabricated by adding H2O2 as the foaming agent with palm olein as the foam stabilizer. The effects of H2O2 and palm olein content on the chemical features and pore structure of geopolymer foams were evaluated. Water absorption, thermal conductivity, and mechanical behaviors of geopolymer foams were also investigated. The results indicate that fatty acid salt surfactants were generated in situ in the geopolymer matrix due to the addition of palm olein. Geopolymer foams with H2O2 and palm olein addition possess a homogeneously concentrated macropore distribution. Palm olein exhibits a refining effect on intrinsic pores formed by geopolymerization. In addition, using appropriate amounts of palm olein and H2O2, geopolymer foams can achieve higher open porosity and better pore connectivity, resulting in the improvement of water absorption and thermal insulation capacity.  相似文献   

17.
Porous materials possess light weight and excellent thermal insulation performance. For disordered porous structures, the number of seed points is an important design parameter which is closely related to the morphology and mean pore size of the structure. Based on the arrangement of points in three-dimensional space, seven kinds of structures were designed by spatial Voronoi tessellation in this paper. The effect of the number of seed points on effective thermal conductivity for Voronoi was studied. Numerical simulation was conducted to research the effects of structural porosity, filling material and structural orientation on the effective thermal conductivity and heat transfer characteristics. The results showed that the effective thermal conductivity is closely related to the porosity and the matrix material. Different number and arrangement of seed points make the structure have different anisotropic performance due to different thermal paths. In addition, required the least number of seed points was obtained for the designation of isotropic random Voronoi.  相似文献   

18.
Additive manufacturing (AM) is dynamically developing and finding applications in different industries. The quality of input material is a part of the process and of the final product quality. That is why understanding the influence of powder reuse on the properties of bulk specimens is crucial for ensuring the repeatable AM process chain. The presented study investigated the possibility of continuous reuse of AlSi7Mg0.6 powder in the laser powder bed fusion process (LPBF). To date, there is no study of AlSi7Mg0.6 powder reuse in the LPBF process to be found in the literature. This study aims to respond to this gap. The five batches of AlSi7Mg0.6 powder and five bulk LPBF samples series were characterised using different techniques. The following characteristics of powders were analysed: the powder size distribution (PSD), the morphology (scanning electron microscopy—SEM), the flowability (rotating drum analysis), and laser light absorption (spectrophotometry). Bulk samples were characterised for microstructure (SEM), chemical composition (X-ray fluorescence spectrometry—XRF), porosity (computed tomography—CT) and mechanical properties (tensile, hardness). The powder was reused in subsequent processes without adding (recycling/rejuvenation) virgin powder (collective ageing powder reuse strategy). All tested powders (powders P0–P4) and bulk samples (series S0–S3) show repeatable properties, with changes observed within error limits. Samples manufactured within the fifth reuse cycle (series S4) showed some mean value changes of measured characteristics indicating initial degradation. However, these changes also mostly fit within error limits. Therefore, the collective ageing powder reuse strategy is considered to give repeatable LPBF process results and is recommended for the AlSi7Mg0.6 alloy within at least five consecutive LPBF processes.  相似文献   

19.
Thermal conductivity plays a significant role in controlling thermal cracking of cement-based materials. In this study, the thermal conductivity of cement paste at an early age was measured by the hot plate method. The test results showed that the thermal conductivity of cement paste decreased with the increase of water/cement ratio and curing age. Meanwhile, a multiphase model for the thermal conductivity of cement paste was proposed and used to study the influence of saturation and curing temperature on the thermal conductivity of cement paste. To determine the parameters involved in this model, the thermal conductivity of each phase in cement paste was calculated by the molecular dynamic simulation method, and the hydration of cement was simulated by the Virtual Cement and Concrete Testing Laboratory. The inversion results showed that the relative error between experimental and simulation results lay between 1.1% and 6.5%. The thermal conductivity of paste in the saturated condition was 14.9–32.3% higher than that in the dry state. With the curing temperature increasing from 10 °C to 60 °C, the thermal conductivity of cement paste decreased by 3.9–4.9% depending on the water/cement ratio.  相似文献   

20.
This paper investigated the influence of recycled ceramics and grazed hollow beads on the mechanical, thermal conductivity and material properties of concrete. The results showed that the concentration of recycled ceramics and grazed hollow beads has significant optimization on the workability and thermal properties of the concrete. However, the superabundant concentration can reduce the hydration degree of the concrete, which results in the suppressed production of C-S-H gel and the increase of material defects. In summary, considering the coordinated development of key factors such as thermal insulation properties, mechanical properties and microstructure, 10% RCE and 60% GHB are the optimal material system design methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号