首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An RF excitation scheme is presented for anatomical imaging of occipital brain areas at 3T using the 3D modified driven equilibrium Fourier transform (MDEFT) sequence and a transmit-receive surface coil. Surface coils operated in the transmit mode usually display a high B(1) inhomogeneity. This causes variations of the flip angle and impairs fat saturation, resulting in blurring, signal losses, and artifacts due to high scalp intensities. A composite binomial pulse with one spectral component for water selective excitation and one spatial component for B(1) inhomogeneity compensation is presented. It is shown experimentally that the pulse prevents image blurring and reduces the scalp signal considerably. The total pulse duration of only 2.4 ms is compatible with the relatively short repetition times (TRs) required for MDEFT imaging. The method is particularly useful for certain applications in neuroimaging that require technical equipment that is too large for standard coils or should not be exposed to RF fields.  相似文献   

2.
At 3 T, the effective wavelength of the RF field is comparable to the dimension of the human body, resulting in B1 standing wave effects and extra variations in phase. This effect is accompanied by an increase in B0 field inhomogeneity compared to 1.5 T. This combination results in nonuniform magnetization preparation by the composite MLEV weighted T2 preparation (T2 Prep) sequence used for coronary magnetic resonance angiography (MRA). A new adiabatic refocusing T2 Prep sequence is presented in which the magnetization is tipped into the transverse plane with a hard RF pulse and refocused using a pair of adiabatic fast-passage RF pulses. The isochromats are subsequently returned to the longitudinal axis using a hard RF pulse. Numerical simulations predict an excellent suppression of artifacts originating from B1 inhomogeneity while achieving good contrast enhancement between coronary arteries and surrounding tissue. This was confirmed by an in vivo study, in which coronary MR angiograms were obtained without a T2 Prep, with an MLEV weighted T2 Prep and the proposed adiabatic T2 Prep. Improved quantitative and qualitative coronary MRA image measurement was achieved using the adiabatic T2 Prep at 3 T.  相似文献   

3.
A scheme for the generation of three-dimensional, triple-quantum-filtered (TQ) sodium images from normal human brain is presented. In this approach, a three-pulse, six-step, coherence transfer filter was used in conjunction with a fast twisted projection imaging sequence to generate spatial maps of the TQ signal across the entire brain. It is demonstrated, theoretically as well as experimentally, that the use of the three-pulse coherence filter leads to TQ sodium images in which the dependence of the image intensity on the spatial variation of the flip angle is less pronounced than it is in the "standard," four-pulse, TQ filter. Correction for the variation of the TQ signal intensity across the field of view because of radio-frequency (RF) inhomogeneity is straightforward with this approach. This imaging scheme allows the generation of RF inhomogeneity-corrected, TQ, sodium images from human brain at moderate field strength (3.0 T) in times acceptable for routine clinical examinations (20 minutes). Magn Reson Med 42:1146-1154, 1999.  相似文献   

4.
In this work, a number of important issues associated with fast spin echo (FSE) imaging of the human brain at 4.7 T are addressed. It is shown that FSE enables the acquisition of images with high resolution and good tissue contrast throughout the brain at high field strength. By employing an echo spacing (ES) of 22 ms, one can use large flip angle refocusing pulses (162 degrees ) and a low acquisition bandwidth (50 kHz) to maximize the signal-to-noise ratio (SNR). A new method of phase encode (PE) ordering (called "feathering") designed to reduce image artifacts is described, and the contributions of RF (B(1)) inhomogeneity, different echo coherence pathways, and magnetization transfer (MT) to FSE signal intensity and contrast are investigated. B(1) inhomogeneity is measured and its effect is shown to be relatively minor for high-field FSE, due to the self-compensating characteristics of the sequence. Thirty-four slice data sets (slice thickness = 2 mm; in-plane resolution = 0.469 mm; acquisition time = 11 min 20 s) from normal volunteers are presented, which allow visualization of brain anatomy in fine detail. This study demonstrates that high-field FSE produces images of the human brain with high spatial resolution, SNR, and tissue contrast, within currently prescribed power deposition guidelines.  相似文献   

5.
In high-field MRI, RF flip angle inhomogeneity due to wavelength effects can lead to spatial variations in contrast and sensitivity. Improved flip angle homogeneity can be achieved through multidimensional excitation, but long RF pulse durations limit practical application. A recent approach to reduce RF pulse duration is based on parallel excitation through multiple RF channels. Here, an alternative approach to shorten multidimensional excitation is proposed that makes use of nonlinear spatial variations in the stationary (B(0)) magnetic field during a B(0)-sensitive excitation pulse. As initial demonstration, the method was applied to 2D gradient echo (GE) MRI of human brain at 7 T. Using B(0) shims with up to second-order spatial dependence, it is demonstrated that root-mean-squared flip angle variation can be reduced from 20 to 11% with RF pulse lengths that are practical for general GE imaging applications without requiring parallel excitation. The method is expected to improve contrast and sensitivity in GE MRI of human brain at high field.  相似文献   

6.
PURPOSE: To investigate the effects of high dielectric material padding on RF field distribution in the human head at 7.0 T, and demonstrate the feasibility and effectiveness of RF passive shimming and focusing with such an approach. MATERIALS AND METHODS: The intensity distribution changes of gradient-recalled-echo (GRE) and spin-echo (SE) images of a human head acquired with water pads (dielectric constant = 78) placed in specified configurations around the head at 7.0 T were evaluated and compared with computer simulation results using the finite difference time domain (FDTD) method. The contributions to the B(1) field distribution change from the displacement current and conductive current of a given configuration of dielectric padding were determined with computer simulations. RESULTS: MR image intensity distribution in the human head with an RF coil at 7.0 T can be changed drastically by placing water pads around the head. Computer simulations reveal that the high permittivity of water pads results in a strong displacement current that enhances image intensity in the nearby region and alters the intensity distribution of the entire brain. CONCLUSION: The image intensity distribution in the human head at ultra-high field strengths can be effectively manipulated with high permittivity padding. Utilizing this effect, the B(1) field inside the human head of a given RF coil can be adjusted to reduce the B(1) field inhomogeneity artifact associated with the wave behavior (RF passive shimming) or to locally enhance the signal-to-noise ratio (SNR) in targeted regions of interest (ROIs; RF field focusing).  相似文献   

7.
This work presents a small tip-angle 3D tailored RF slab-select pulse for reducing the B1 field inhomogeneity at 3T. The compensated slice profile was determined from a B1 inhomogeneity map. SNR improvement and degree of artifact reduction were evaluated in a NiCl2 doped phantom and human brains. The technique was found to reduce inhomogeneities as large as 30% of the peak image magnitude in all three spatial directions in the brain using a standard head coil.  相似文献   

8.
Parallel transmitter techniques are a promising approach for reducing transmitter B1 inhomogeneity due to the potential for adjusting the spatial excitation profile with independent RF pulses. These techniques may be further improved with transmit sensitivity encoding (SENSE) methods because the sensitivity information in pulse design provides an excitation that is inherently compensated for transmitter B1 inhomogeneity. This paper presents a proof of this concept using transmit SENSE 3D tailored RF pulses designed for small flip angles. An eight‐channel receiver coil was used to mimic parallel transmission for brain imaging at 3T. The transmit SENSE pulses were based on the fast‐kz design and produced 5‐mm‐thick slices at a flip angle of 30° with only a 4.3‐ms pulse length. It was found that the transmit SENSE pulses produced more homogeneous images than those obtained from the complex sum of images from all receivers excited with a standard RF pulse. Magn Reson Med 57:842–847, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

9.
A novel radio-frequency (RF) pulse design algorithm is presented that generates fast slice-selective excitation pulses that mitigate B+1 inhomogeneity present in the human brain at high field. The method is provided an estimate of the B+1 field in an axial slice of the brain and then optimizes the placement of sinc-like "spokes" in kz via an L1-norm penalty on candidate (kx, ky) locations; an RF pulse and gradients are then designed based on these weighted points. Mitigation pulses are designed and demonstrated at 7T in a head-shaped water phantom and the brain; in each case, the pulses mitigate a significantly nonuniform transmit profile and produce nearly uniform flip angles across the field of excitation (FOX). The main contribution of this work, the sparsity-enforced spoke placement and pulse design algorithm, is derived for conventional single-channel excitation systems and applied in the brain at 7T, but readily extends to lower field systems, nonbrain applications, and multichannel parallel excitation arrays.  相似文献   

10.
11.
Various pulse sequences for fast proton spectroscopic imaging (SI) using the steady-state free precession (SSFP) condition are proposed. The sequences use either only the FID-like signal S(1), only the echo-like signal S(2), or both signals in separate but adjacent acquisition windows. As in SSFP imaging, S(1) and S(2) are separated by spoiler gradients. RF excitation is performed by slice-selective or chemical shift-selective pulses. The signals are detected in absence of a B(0) gradient. Spatial localization is achieved by phase-encoding gradients which are applied prior to and rewound after each signal acquisition. Measurements with 2D or 3D spatial resolution were performed at 4.7 T on phantoms and healthy rat brain in vivo allowing the detection of uncoupled and J-coupled spins. The main advantages of SSFP based SI are the short minimum total measurement time (T(min)) and the high signal-to-noise ratio per unit measurement time (SNR(t)). The methods are of particular interest at higher magnetic field strength B(0), as TR can be reduced with increasing B(0) leading to a reduced T(min) and an increased SNR(t). Drawbacks consist of the limited spectral resolution, particularly at lower B(0), and the dependence of the signal intensities on T(1) and T(2). Further improvements are discussed including optimized data processing and signal detection under oscillating B(0) gradients leading to a further reduction in T(min).  相似文献   

12.
Proton MR spectroscopic imaging of the human brain at ultra-high field (≥7 T) is challenging due to increased radio frequency power deposition, increased magnetic field B(0) inhomogeneity, and increased radio frequency magnetic field inhomogeneity. In addition, especially for multislice sequences, these effects directly inhibit the potential gains of higher magnetic field and can even cause a reduction in data quality. However, recent developments in dynamic B(0) magnetic field shimming and dynamic multitransmit radio frequency control allow for new acquisition strategies. Therefore, in this work, slice-by-slice B(0) and B(1) shimming was developed to optimize both B(0) magnetic field homogeneity and nutation angle over a large portion of the brain. Together with a low-power water and lipid suppression sequence and pulse-acquire spectroscopic imaging, a multislice MR spectroscopic imaging sequence is shown to be feasible at 7 T. This now allows for multislice metabolic imaging of the human brain with high sensitivity and high chemical shift resolution at ultra-high field.  相似文献   

13.
MRI scans are inefficient when the size of the anatomy under investigation is small relative to the subject's full extent. The field of view must be expanded, and acquisition times accordingly prolonged. Shorter scans are feasible with reduced field of view imaging (rFOV) using outer volume suppression (OVS), a magnetization preparation sequence that attenuates signal outside a region of interest (ROI). This work presents a new OVS sequence with a cylindrical ROI, short duration, and improved tolerance for B(1)+ inhomogeneity. The sequence consists of a nonselective adiabatic tipdown pulse, which provides B(1)+-robust signal suppression, and a fast 2D spiral cylindrical tipback pulse. Analysis of the Bloch equations with transverse initial magnetization reveals a conjugate symmetric constraint for tipback pulses with small flip angles. This property is exploited to achieve two-shot performance from the single-shot tipback pulse. The OVS sequence is validated in phantoms and in vivo with multislice spiral imaging at 3 T. The relative signal-to-noise ratio efficiency of the proposed sequence was 98% in a phantom and 75-90% in vivo. The effectiveness is demonstrated with cardiovascular rFOV imaging, which exhibits improved resolution and reduced artifacts compared to conventional, full field of view imaging.  相似文献   

14.
Sodium imaging optimization under specific absorption rate constraint.   总被引:1,自引:0,他引:1  
The concept of sodium imaging RF pulse parameter optimization for signal-to-noise ratio (SNR) under specific absorption rate (SAR) constraints is introduced. This optimization concept is unique to sodium imaging, as sodium exhibits ultrarapid T(2) relaxation in vivo, and involves minimizing echo time (TE). For 3D radial k-space acquisition, minimizing TE (and T(2) loss) requires minimizing the RF pulse length. SNR optimization also involves exploiting rapid T(1) relaxation with shortened repetition time (TR) values. However, especially at higher fields, both RF pulse length and TR are constrained by SAR, which is also dependent on the flip angle. Quantum mechanical simulations were performed for SAR equivalent sets of RF pulse length, TR, and flip angle. It was determined that an SNR advantage is associated with a spoiled steady-state approach to sodium imaging with radial acquisition even though significantly longer RF pulses (and TE) are required to implement this approach under the SAR constraint at 4.7T. This advantage, compared to RF pulse sequences implementing ultrashort echo times, 90 degrees flip angles, and longer repetition times, was confirmed in healthy volunteers (measured SNR increase of approximately 38%) and used to produce excellent quality sodium images of the human brain.  相似文献   

15.
PURPOSE: To minimize artifacts in echo-planar imaging (EPI) of human brain function introduced by simultaneous transcranial magnetic stimulation (TMS). MATERIALS AND METHODS: Distortions due to TMS pulses (0.25 msec, 2.0 T) were studied at 2.0 T before and during EPI. RESULTS: Best results were obtained if both the EPI section orientation and the frequency-encoding gradient were parallel to the plane of the TMS coil. Under these conditions, a TMS pulse caused image distortions when preceding the EPI sequence by less than 100 msec. Recordings with a magnetic field gradient pick-up coil revealed transient magnetic fields after TMS, which are generated by eddy currents in the TMS coil. TMS during image acquisition completely spoiled all transverse magnetizations and induced disturbances ranging from image corruption to mild image blurring, depending on the affected low and high spatial frequencies. Simultaneous TMS and radio-frequency (RF) excitation gave rise to T1-dependent signal changes that lasted for several seconds and yielded pronounced false-positive activations during functional brain mapping. CONCLUSION: To ensure reliable and robust combinations, TMS should be applied at least 100 msec before EPI while completely avoiding any pulses during imaging.  相似文献   

16.
Three-dimensional T(1)-weighted magnetization-prepared rapid gradient-echo (MP-RAGE) sequences with centric phase encoding (PE) in the inner loop provide structural brain images with a high spatial resolution and high tissue contrast. A disadvantage of this sequence type is the susceptibility to inhomogeneities of the radiofrequency (RF) coil, which may result in poor image contrast in some peripheral regions. A special excitation pulse is presented which compensates for these effects in both the head/foot and anterior/posterior directions. This pulse has a duration of only 1.3 ms and is thus compatible with the short repetition times (TRs) required for MP-RAGE imaging. It is shown experimentally that images acquired with the compensation pulse may be segmented without using intensity correction algorithms during data postprocessing.  相似文献   

17.
Radiofrequency (RF) field inhomogeneity is an unavoidable problem in MRI, and it becomes severe at high magnetic fields due to the dependence of B1 on the sample. It leads to nonuniformities in image intensity and contrast, causing difficulties in quantitative interpretation and image segmentation. In this work, it is observed that with the fast low-angle shot (FLASH) sequence, which is often used for anatomic imaging and morphometric studies, sensitivity to RF inhomogeneity can be substantially reduced when the same coil is used for both transmission and reception, and an appropriate nominal flip angle is employed. This observation can help us understand the signal behavior of FLASH in the presence of RF inhomogeneity, and provide a guide for selecting parameters in FLASH imaging.  相似文献   

18.
The advantage of the higher signal-to-noise ratio (SNR) of 3-Tesla magnetic resonance imaging (3TMRI) contributes to the improvement of spatial and temporal resolution. However, T1-weighted images of the brain obtained by the spin-echo (SE) method at 3T MR are not satisfactory for clinical use because of radiofrequency (RF) field inhomogeneity and prolongation of the longitudinal relaxation time (T1) of most tissues. We evaluated optimal pulse sequences to obtain adequate T1 contrast, high gray matter/white matter contrast, and suitable postcontrast T1-weighted images using the three-dimentional (3D) fast spoiled gradient recalled acquisition in the steady state (FSPGR) method instead of the SE method. For the optimization of T1 contrast, the Ernst angle of the optimal flip angle (FA) was obtained from the T1 value of cerebral white matter with the shortest TR and TE. Then the most appropriate FA, showing the maximum contrast-to-noise ratio (CNR) and SNR, was obtained by changing the FA every 5 degrees at about the level of the Ernst angle. Image uniformity was evaluated by a phantom showing similar T1 and T2 values of cerebral white matter. In order to evaluate the effect of the contrast enhancement, signal intensity was compared by the same method using a phantom filled with various dilutions of contrast media. Moreover, clinical studies using full (0.1 mmol/kg) and half (0.05 mmol/kg) doses of Gd-DTPA were carried out with the most appropriate parameters of the 3D-FSPGR method. These studies indicated that the optimal pulse sequences for obtaining an adequate T1-weighted image of the brain using 3D-FSPGR are 9/2 msec (TR/TE) and 13 degrees (FA).  相似文献   

19.
PURPOSE: The purpose of this work was to acquire high quality multislice MR images from the human brain at 8 Tesla (T). METHOD: Initial images were acquired with an 8 T/80 cm magnet designed and manufactured by Magnex Scientific (Abingdon, England). Images were acquired using volume RF coils operating at 340 MHz. A torque-free head gradient insert was utilized to spatially encode the spins. Images were acquired from the human head using gradient-recalled echo pulse sequences. RESULTS: Ultra high frequency (UHF) MR images have been obtained from the human head that display both excellent signal/noise ratio and image quality. The power required to obtain the 8 T images was much less than expected based on the trend obtained at lower fields. CONCLUSION: In this work, we have demonstrated that it is possible to obtain high quality multislice images from the human brain at 8 T. These images display the phenomenal potential for imaging at UHF and reveal that none of the stumbling blocks advanced by the MR community for an 8 T project (RF penetration, dielectric effects, specific absorption rate problems, RF power requirements) proved to be a limitation.  相似文献   

20.
Purpose: A promise of ultra high field MRI is to produce images of the human brain with higher spatial resolution due to an increased signal to noise ratio. Yet, the shorter radiofrequency wavelength induces an inhomogeneous distribution of the transmit magnetic field and thus challenges the applicability of MRI sequences which rely on the spin excitation homogeneity. In this work, the ability of parallel‐transmission to obtain high‐quality T2‐weighted images of the human brain at 7 Tesla, using an original pulse design method is evaluated. Methods: Excitation and refocusing square pulses of a SPACE sequence were replaced with short nonselective transmit‐SENSE pulses individually tailored with the gradient ascent pulse engineering algorithm, adopting a kT‐point trajectory to simultaneously mitigate B1+ and ΔB0 nonuniformities. Results: In vivo experiments showed that exploiting parallel‐transmission at 7T with the proposed methodology produces high quality T2‐weighted whole brain images with uniform signal and contrast. Subsequent white and gray matter segmentation confirmed the expected improvements in image quality. Conclusion: This work demonstrates that the adopted formalism based on optimal control, combined with the kT‐point method, successfully enables three‐dimensional T2‐weighted brain imaging at 7T devoid of artifacts resulting from B1+ inhomogeneity. Magn Reson Med 73:2195–2203, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号