首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ertapenem, imipenem, meropenem, ceftriaxone, piperacillin, piperacillin-tazobactam, clindamycin, and metronidazole were agar dilution MIC tested against 431 anaerobes. Imipenem, meropenem, and ertapenem were the most active beta-lactams (MICs at which 50% of the strains are inhibited [MIC(50)s], 0.125 to 0.25 microg/ml; MIC(90)s, 1.0 to 2.0 microg/ml). Time-kill studies revealed that ertapenem at two times the MIC was bactericidal for 9 of 10 strains after 48 h. The kinetics for other beta-lactams were similar to those of ertapenem.  相似文献   

2.
The activity of the ketolide ABT-773 against Haemophilus and Moraxella was compared to those of 11 other agents. Against 210 Haemophilus influenzae strains (39.0% beta-lactamase positive), microbroth dilution tests showed that azithromycin and ABT-773 had the lowest MICs (0.5 to 4.0 and 1.0 to 8.0 microg/ml, respectively), followed by clarithromycin and roxithromycin (4.0 to >32.0 microg/ml). Of the beta-lactams, ceftriaxone had the lowest MICs (32.0 microg/ml). Against 50 Moraxella catarrhalis strains, all of the compounds except amoxicillin and cefprozil were active. Time-kill studies against 10 H. influenzae strains showed that ABT-773, at two times the MIC, was bactericidal against 9 of 10 strains, with 99% killing of all strains at the MIC after 24 h; at 12 h, ABT-773 gave 90% killing of all strains at two times the MIC. At 3 and 6 h, killing by ABT-773 was slower, with 99.9% killing of four strains at two times the MIC after 6 h. Similar results were found for azithromycin, with slightly slower killing by erythromycin, clarithromycin, and roxithromycin, especially at earlier times. beta-Lactams were bactericidal against 8 to 10 strains at two times the MIC after 24 h, with slower killing at earlier time periods. Most compounds gave good killing of five M. catarrhalis strains, with beta-lactams killing more rapidly than other drugs. ABT-773 and azithromycin gave the longest postantibiotic effects (PAEs) of the ketolide-macrolide-azalide group tested (4.4 to >8.0 h), followed by clarithromycin, erythromycin, and roxithromycin. beta-Lactam PAEs were similar and shorter than those of the ketolide-macrolide-azalide group for all strains tested.  相似文献   

3.
Ceftobiprole, a broad-spectrum pyrrolidinone-3-ylidenemethyl cephem currently in phase III clinical trials, had MICs between 0.008 microg/ml and 8.0 microg/ml for 321 clinical isolates of Haemophilus influenzae and between < or =0.004 microg/ml and 1.0 microg/ml for 49 clinical isolates of Moraxella catarrhalis. Ceftobiprole MIC(50) and MIC(90) values for H. influenzae were 0.06 microg/ml and 0.25 microg/ml for beta-lactamase-positive strains (n = 262), 0.03 microg/ml and 0.25 microg/ml for beta-lactamase-negative strains (n = 40), and 0.5 microg/ml and 2.0 microg/ml for beta-lactamase-negative ampicillin-resistant strains (n = 19), respectively. Ceftobiprole MIC(50) and MIC(90) values for beta-lactamase-positive M. catarrhalis strains (n = 40) were 0.12 microg/ml and 0.5 microg/ml, respectively, whereas the ceftobiprole MIC range for beta-lactamase-negative M. catarrhalis strains (n = 9) was < or =0.004 to 0.03 microg/ml. Ceftriaxone MICs usually were generally at least twofold lower than those of ceftobiprole, whereas amoxicillin-clavulanate MICs usually were higher than those of ceftobiprole. Azithromycin and telithromycin had unimodal MIC distributions against H. influenzae, with MIC(90) values of azithromycin and telithromycin of 2 microg/ml and 4 microg/ml, respectively. Except for selected quinolone-nonsusceptible H. influenzae strains, moxifloxacin proved highly active, with MIC(90) values of 0.12 microg/ml. Time-kill analyses showed that ceftobiprole, ceftriaxone, cefpodoxime, amoxicillin-clavulanate, azithromycin, telithromycin, and moxifloxacin were bactericidal at 2x MIC by 24 h against all 10 H. influenzae strains surveyed. Only modest increases in MICs were found for H. influenzae or M. catarrhalis clones after 50 serial passages in the presence of subinhibitory concentrations of ceftobiprole, and single-passage selection showed that the selection frequency of H. influenzae or M. catarrhalis clones with elevated ceftobiprole MICs is quite low.  相似文献   

4.
The activities of DU-6859a, ciprofloxacin, levofloxacin, sparfloxacin, piperacillin, piperacillin-tazobactam, imipenem, clindamycin, and metronidazole against 11 anaerobes were tested by the broth microdilution and time-kill methods. DU-6859a was the most active drug tested (broth microdilution MICs, 0.06 to 0.5 microg/ml), followed by imipenem (MICs, 0.002 to 4.0 microg/ml). Broth macrodilution MICs were within 3 (but usually 1) dilutions of the broth microdilution MICs. All compounds were bactericidal at the MIC after 48 h; after 24 h, 90% killing was shown for all strains when the compounds were used at four times the MIC. DU-6859a at < or = 0.5 microg/ml was bactericidal after 48 h.  相似文献   

5.
Against 447 anaerobe strains, the investigational carbapenem doripenem had an MIC 50 of 0.125 microg/ml and an MIC 90 of 1 microg/ml. Results were similar to those for imipenem, meropenem, and ertapenem. Time-kill studies showed that doripenem had very good bactericidal activity compared to other carbapenems, with 99.9% killing of 11 strains at 2x MIC after 48 h.  相似文献   

6.
The MIC at which 50% of strains are inhibited (MIC(50)) and the MIC(90) of GW 773546, a novel macrolide, were 1.0 and 2.0 microg/ml, respectively, for 223 beta-lactamase-positive, beta-lactamase-negative, and beta-lactamase-negative ampicillin-resistant Haemophilus influenzae strains. The MIC(50)s and MIC(90)s of GW 708408, a second novel macrolide, and telithromycin, an established ketolide, were 2.0 and 4.0 microg/ml, respectively, while the MIC(50) and MIC(90) of azithromycin were 1.0 and 2.0 microg/ml, respectively. The MIC(50) and MIC(90) of erythromycin were 4.0 and 8.0 microg/ml, respectively; and those of clarithromycin were 4.0 and 16.0 microg/ml, respectively. All compounds except telithromycin were bactericidal (99.9% killing) against nine strains at two times the MIC after 24 h. Telithromycin was bactericidal against eight of the nine strains. In addition, both novel macrolides and telithromycin at two times the MIC showed 99% killing of all nine strains after 12 h and 90% killing of all strains after 6 h. After 24 h, all drugs were bactericidal against four to seven strains when they were tested at the MIC. Ten of 11 strains tested by multistep selection analysis yielded resistant clones after 14 to 43 passages with erythromycin. Azithromycin gave resistant clones of all strains after 20 to 50 passages, and clarithromycin gave resistant clones of 9 of 11 strains after 14 to 41 passages. By comparison, GW 708408 gave resistant clones of 9 of 11 strains after 14 to 44 passages, and GW 773546 gave resistant clones of 10 of 11 strains after 14 to 45 passages. Telithromycin gave resistant clones of 7 of 11 strains after 18 to 45 passages. Mutations mostly in the L22 and L4 ribosomal proteins and 23S rRNA were detected in resistant strains selected with all compounds, with alterations in the L22 protein predominating. Single-step resistance selection studies at the MIC yielded spontaneous resistant mutants at frequencies of 1.5 x 10(-9) to 2.2 x 10(-6) with GW 773546, 1.5 x 10(-9) to 6.0 x 10(-4) with GW 708408, and 7.1 x 10(-9) to 3.8 x 10(-4) with telithromycin, whereas the frequencies were 1.3 x 10(-9) to 6.0 x 10(-4) with erythromycin and azithromycin and 2.0 x 10(-9) to 2.0 x 10(-3) with clarithromycin. Alterations in the L22 protein (which were predominant) and the L4 protein were present in mutants selected by the single-step selection process. The postantibiotic effects of GW 773546, GW 708408, and telithromycin for seven H. influenzae strains were 6.6 h (range, 5.2 to 8.8 h), 4.7 h (range, 2.6 to 6.9 h), and 6.4 h (range, 3.8 to 9.7 h), respectively. The results of in vitro studies obtained with both novel macrolides were similar to those obtained with telithromycin and better than those obtained with older macrolides.  相似文献   

7.
Susceptibility of 230 penicillin- and erythromycin-susceptible and -resistant pneumococci to HMR 3647 (RU 66647), a new ketolide, was tested by agar dilution, and results were compared with those of erythromycin, azithromycin, clarithromycin, roxithromycin, rokitamycin, clindamycin, pristinamycin, ciprofloxacin, sparfloxacin, trimethoprim-sulfamethoxazole, doxycycline, chloramphenicol, cefuroxime, ceftriaxone, imipenem, and vancomycin. HMR 3647 was very active against all strains tested, with MICs at which 90% of the strains were inhibited (MIC90s) of 0.03 μg/ml for erythromycin-susceptible strains (MICs, ≤0.25 μg/ml) and 0.25 μg/ml for erythromycin-resistant strains (MICs, ≥1.0 μg/ml). All other macrolides yielded MIC90s of 0.03 to 0.25 and >64.0 μg/ml for erythromycin-susceptible and -resistant strains, respectively. The MICs of clindamycin for 51 of 100 (51%) erythromycin-resistant strains were ≤0.125 μg/ml. The MICs of pristinamycin for all strains were ≤1.0 μg/ml. The MIC90s of ciprofloxacin and sparfloxacin were 4.0 and 0.5 μg/ml, respectively, and were unaffected by penicillin or erythromycin susceptibility. Vancomycin and imipenem inhibited all strains at ≤1.0 μg/ml. The MICs of cefuroxime and cefotaxime rose with those of penicillin G. The MICs of trimethoprim-sulfamethoxazole, doxycycline, and chloramphenicol were variable but were generally higher in penicillin- and erythromycin-resistant strains. HMR 3647 had the best kill kinetics of all macrolides tested against 11 erythromycin-susceptible and -resistant strains, with uniform bactericidal activity (99.9% killing) after 24 h at two times the MIC and 99% killing of all strains at two times the MIC after 12 h for all strains. Pristinamycin showed more rapid killing at 2 to 6 h, with 99.9% killing of 10 of 11 strains after 24 h at two times the MIC. Other macrolides showed significant activity, relative to the MIC, against erythromycin-susceptible strains only.  相似文献   

8.
The activities of garenoxacin, ciprofloxacin, levofloxacin, moxifloxacin, trovafloxacin, amoxicillin-clavulanate, piperacillin-tazobactam, imipenem, clindamycin, and metronidazole against 20 anaerobes were tested. At two times the MIC, garenoxacin was bactericidal against 19 of 20 strains after 48 h and against 17 of 20 after 24 h. Other drugs, except clindamycin (which gave lower killing rates), gave killing rates similar to those for garenoxacin.  相似文献   

9.
The in vitro activity of AZD2563, a new oxazolidinone, was compared with that of linezolid, vancomycin, quinupristin/dalfopristin, amoxicillin, levofloxacin, penicillin, erythromycin, azithromycin and clindamycin against a range of pneumococci by microdilution and time-kill studies. Against 300 pneumococci (99 penicillin susceptible, 86 penicillin intermediate, 115 penicillin resistant, 185 erythromycin resistant, 35 quinolone resistant), both oxazolidinones remained active against isolates less susceptible to other agents, with MICs ranging between 0.125 and 2 mg/L; AZD2563 MICs were generally one dilution lower than those of linezolid. Both quinupristin/dalfopristin and vancomycin were active against all groups (MIC ranges 0.125-2 and 0.125-0.25 mg/L, respectively). Apart from 35 isolates with levofloxacin MICs > or= 8 mg/L, levofloxacin MICs were < or =0.25-4 mg/L. MICs of amoxicillin and erythromycin rose with penicillin G MICs; most macrolide-resistant isolates were either penicillin-intermediate or -resistant. Against 16 organisms with differing beta-lactam, macrolide and quinolone MICs, time-kill studies showed that AZD2563 was bactericidal (99.9% killing) at 4 x MIC against nine strains at 24 h, with 90% killing of all 16 strains at 2 x MIC after 12 h. Similar results were obtained with linezolid. Both oxazolidinones were bacteriostatic at the MIC against all 16 strains. Amoxicillin, levofloxacin and vancomycin, at 2 x MIC, were bactericidal against 15 of the 16 strains after 24 h. Quinupristin/dalfopristin yielded the most rapid killing, with bactericidal activity against 13 of 16 strains at the MIC after 3 h and against 15 strains at 2 x MIC after 24 h. Erythromycin was bactericidal against all 10 strains with MICs < or= 8 mg/L at 4 x MIC after 24 h.  相似文献   

10.
Activity of cefditoren against respiratory pathogens   总被引:3,自引:0,他引:3  
The activity of cefditoren and six other cephalosporins was tested against 250 pneumococci, including strains resistant to macrolides and quinolones. Cefditoren gave the lowest MICs, with MIC(50) and MIC(90) values of < or =0.016/0.03, 0.125/0.5 and 0.5/2.0 mg/L for penicillin-susceptible, -intermediate and -resistant pneumococci, respectively. A time-kill study of 12 pneumococcal strains with varying drug susceptibilities showed that cefditoren, at 2 x MIC, gave 99% killing of all strains after 12 h, with 99.9% killing after 24 h. Other cephalosporins gave similar kill kinetics but at higher concentrations. Against 160 Haemophilus influenzae, cefditoren had the lowest MICs (MIC(50) and MIC(90) both < or =0.016 mg/L), irrespective of beta-lactamase production. Time-kill studies of cefditoren compared with five other oral cephalosporins showed that cefditoren, at 8 x MIC, was bactericidal against 8/9 strains and gave 90% killing of all strains at the MIC after 12 h. Activity was bactericidal (99.9% killing) after 24 h with all drugs tested. Multistep studies of four penicillin-susceptible, four penicillin-intermediate and four penicillin-resistant strains showed that cefditoren, co-amoxiclav and cefprozil did not select for resistant mutants after 50 subcultures, compared with cefuroxime and azithromycin, where resistant mutants were selected in two and nine strains, respectively. Single-step mutation studies showed that cefditoren, at the MIC, had the lowest frequency of spontaneous mutants compared with other drugs.  相似文献   

11.
Ceftobiprole (previously known as BAL9141), an anti-methicillin-resistant Staphylococcus aureus cephalosporin, was very highly active against a panel of 299 drug-susceptible and -resistant pneumococci, with MIC(50) and MIC(90) values (microg/ml) of 0.016 and 0.016 (penicillin susceptible), 0.06 and 0.5 (penicillin intermediate), and 0.5 and 1.0 (penicillin resistant). Ceftobiprole, imipenem, and ertapenem had lower MICs against all pneumococcal strains than amoxicillin, cefepime, ceftriaxone, cefotaxime, cefuroxime, or cefdinir. Macrolide and penicillin G MICs generally varied in parallel, whereas fluoroquinolone MICs did not correlate with penicillin or macrolide susceptibility or resistance. All strains were susceptible to linezolid, quinupristin-dalfopristin, daptomycin, vancomycin, and teicoplanin. Time-kill analyses showed that at 1x and 2x the MIC, ceftobiprole was bactericidal against 10/12 and 11/12 strains, respectively. Levofloxacin, moxifloxacin, vancomycin, and teicoplanin were each bactericidal against 10 to 12 strains at 2x the MIC. Azithromycin and clarithromycin were slowly bactericidal, and telithromycin was bactericidal against only 5/12 strains at 2x the MIC. Linezolid was mainly bacteriostatic, whereas quinupristin-dalfopristin and daptomycin showed marked killing at early time periods. Prolonged serial passage in the presence of subinhibitory concentrations of ceftobiprole failed to yield mutants with high MICs towards this cephalosporin, and single-passage selection showed very low frequencies of spontaneous mutants with breakthrough MICs towards ceftobiprole.  相似文献   

12.
The activities of ertapenem (MK-0826) and eight other agents against a range of penicillin-susceptible and -resistant pneumococci were tested by determination of MICs by the microdilution method and by the time-kill methodology. For 125 penicillin-susceptible, 74 penicillin-intermediate, and 86 penicillin-resistant pneumococci, the MICs at which 50% of isolates are inhibited (MIC(50)s) and MIC(90)s, as determined by the microdilution method, were as follows: for ertapenem, 0.016 and 0.03, 0.125 and 0.5, and 0.5 and 1.0 microg/ml for penicillin-susceptible, penicillin-intermediate, and penicillin-resistant pneumococci, respectively; for amoxicillin, < or =0.016 and 0.03, 0.25 and 1.0, and 2.0 and 2.0 microg/ml for penicillin-susceptible, penicillin-intermediate, and penicillin-resistant pneumococci, respectively; for cefprozil, 0.125 and 0.25, 1.0 and 8.0, and 16.0 and 16.0 microg/ml for penicillin-susceptible, penicillin-intermediate, and penicillin-resistant pneumococci, respectively; for cefepime, < or =0.016 and 0.06, 0.5 and 1.0, and 1.0 and 2.0 microg/ml for penicillin-susceptible, penicillin-intermediate, and penicillin-resistant pneumococci, respectively; for ceftriaxone, < or =0.016 and 0.06, 0.25 and 1.0, and 1.0 and 2.0 microg/ml for penicillin-susceptible, penicillin-intermediate, and penicillin-resistant pneumococci, respectively; for imipenem, < or =0.008 and < or =0.008, 0.03 and 0.25, and 0.25 and 0.25 microg/ml for penicillin-susceptible, penicillin-intermediate, and penicillin-resistant pneumococci, respectively; for meropenem, < or =0.008 and 0.016, 0.125 and 0.5, and 0.5 and 1.0 microg/ml for penicillin-susceptible, penicillin-intermediate, and penicillin-resistant pneumococci, respectively; and for clarithromycin, 1.0 and >32.0, 1.0 and >32.0, and >32.0 and >32.0 microg/ml for penicillin-susceptible, penicillin-intermediate, and penicillin-resistant pneumococci, respectively. For 64 strains for which quinolone MICs were increased (ciprofloxacin MICs, > or =4.0 microg/ml), the MIC(90) of ertapenem was 1.0 microg/ml and the MIC(90)s of the other beta-lactams tested and clarithromycin were >32.0 microg/ml. Against four penicillin-susceptible, four penicillin-intermediate, and four penicillin-resistant strains, testing by the time-kill methodology showed that ertapenem at two times the MIC was bacteriostatic (99% killing) after 12 h and bactericidal (99.9% killing) against all strains by 24 h, with 90% killing of all strains at two times the MIC after 6 h. At the MIC, ertapenem was bacteriostatic against all strains tested after 24 h. Although the bactericidal activity of imipenem at the MIC after 24 h was significantly greater than that of ertapenem, the kinetics of the two drugs at two times the MIC were similar after 24 h. The killing kinetics of clarithromycin were slower than those of ertapenem and other agents, with clarithromycin at two times the MIC having bactericidal activity against seven of eight macrolide-susceptible strains after 24 h.  相似文献   

13.
Among 10 hospital- and community-acquired Staphylococcus aureus strains with differing methicillin and vancomycin resistotypes, all strains were susceptible to ceftobiprole at MICs 相似文献   

14.
The activity of gemifloxacin against Haemophilus influenzae and Moraxella catarrhalis was compared to those of 11 other agents. All quinolones were very active (MICs, 相似文献   

15.
The activities of gemifloxacin compared to those of nine other agents was tested against a range of penicillin-susceptible and -resistant pneumococci by agar dilution, microdilution, time-kill, and post-antibiotic effect (PAE) methods. Against 64 penicillin-susceptible, 68 penicillin-intermediate, and 75 penicillin-resistant pneumococci (all quinolone susceptible), agar dilution MIC(50)s (MICs at which 50% of isolates are inhibited)/MIC(90)s (in micrograms per milliliter) were as follows: gemifloxacin, 0.03/0.06; ciprofloxacin, 1.0/4.0; levofloxacin, 1.0/2. 0; sparfloxacin, 0.5/1.0; grepafloxacin, 0.125/0.5; trovafloxacin, 0. 125/0.25; amoxicillin, 0.016/0.06 (penicillin-susceptible isolates), 0.125/1.0 (penicillin-intermediate isolates), and 2.0/4.0 (penicillin-resistant isolates); cefuroxime, 0.03/0.25 (penicillin-susceptible isolates), 0.5/2.0 (penicillin-intermediate isolates), and 8.0/16.0 (penicillin-resistant isolates); azithromycin, 0.125/0.5 (penicillin-susceptible isolates), 0. 125/>128.0 (penicillin-intermediate isolates), and 4.0/>128.0 (penicillin-resistant isolates); and clarithromycin, 0.03/0.06 (penicillin-susceptible isolates), 0.03/32.0 (penicillin-intermediate isolates), and 2.0/>128.0 (penicillin-resistant isolates). Against 28 strains with ciprofloxacin MICs of >/=8 microg/ml, gemifloxacin had the lowest MICs (0.03 to 1.0 microg/ml; MIC(90), 0.5 microg/ml), compared with MICs ranging between 0.25 and >32.0 microg/ml (MIC(90)s of 4.0 to >32.0 microg/ml) for other quinolones. Resistance in these 28 strains was associated with mutations in parC, gyrA, parE, and/or gyrB or efflux, with some strains having multiple resistance mechanisms. For 12 penicillin-susceptible and -resistant pneumococcal strains (2 quinolone resistant), time-kill results showed that levofloxacin at the MIC, gemifloxacin and sparfloxacin at two times the MIC, and ciprofloxacin, grepafloxacin, and trovafloxacin at four times the MIC were bactericidal for all strains after 24 h. Gemifloxacin was uniformly bactericidal after 24 h at 相似文献   

16.
The agar dilution MIC method was used to test the activity of cefminox, a β-lactamase-stable cephamycin, compared with those of cefoxitin, cefotetan, moxalactam, ceftizoxime, cefotiam, cefamandole, cefoperazone, clindamycin, and metronidazole against 357 anaerobes. Overall, cefminox was the most active β-lactam, with an MIC at which 50% of isolates are inhibited (MIC50) of 1.0 μg/ml and an MIC90 of 16.0 μg/ml. Other β-lactams were less active, with respective MIC50s and MIC90s of 2.0 and 64.0 μg/ml for cefoxitin, 2.0 and 128.0 μg/ml for cefotetan, 2.0 and 64.0 μg/ml for moxalactam, 4.0 and >128.0 μg/ml for ceftizoxime, 16.0 and >128.0 μg/ml for cefotiam, 8.0 and >128.0 μg/ml for cefamandole, and 4.0 and 128.0 μg/ml for cefoperazone. The clindamycin MIC50 and MIC90 were 0.5 and 8.0 μg/ml, respectively, and the metronidazole MIC50 and MIC90 were 1.0 and 4.0 μg/ml, respectively. Cefminox was especially active against Bacteroides fragilis (MIC90, 2.0 μg/ml), Bacteroides thetaiotaomicron (MIC90, 4.0 μg/ml), fusobacteria (MIC90, 1.0 μg/ml), peptostreptococci (MIC90, 2.0 μg/ml), and clostridia, including Clostridium difficile (MIC90, 2.0 μg/ml). Time-kill studies performed with six representative anaerobic species revealed that at the MIC all compounds except ceftizoxime were bactericidal (99.9% killing) against all strains after 48 h. At 24 h, only cefminox and cefoxitin at 4× the MIC and cefoperazone at 8× the MIC were bactericidal against all strains. After 12 h, at the MIC all compounds except moxalactam, ceftizoxime, cefotiam, cefamandole, clindamycin, and metronidazole gave 90% killing of all strains. After 3 h, cefminox at 2× the MIC produced the most rapid effect, with 90% killing of all strains.  相似文献   

17.
In vitro activities of erythromycin A, telithromycin, and two investigational ketolides, JNJ-17155437 and JNJ-17155528, were evaluated against clinical bacterial strains, including selected common respiratory tract pathogens. Against 46 macrolide-susceptible and -resistant Streptococcus pneumoniae strains, the MIC(90) (MIC at which 90% of the isolates tested were inhibited) of the investigational ketolides was 0.25 microg/ml, twofold lower than that of telithromycin and at least 64-fold lower than that of erythromycin A. Against erm(B)-containing pneumococci, the MIC(90) of all the ketolides was 0.06 microg/ml. The MIC(90) of the investigational ketolides against mef(A)-containing pneumococci or pneumococci with both mef(A) and erm(B) was 0.25 microg/ml, two-and fourfold lower, respectively, than that of telithromycin. In contrast, the MICs of the investigational ketolides against macrolide-resistant S. pneumoniae strains with ribosomal mutations were similar to or, in some cases, as much as eightfold higher than those of telithromycin. Against Haemophilus influenzae, MICs of all the ketolides were < or =2 microg/ml. Against three Moraxella catarrhalis isolates, the MIC of the ketolides was 0.25 microg/ml. The ketolides inhibited in vitro protein synthesis, with 50% inhibitory concentrations ranging from 0.23 to 0.27 microM. In time-kill studies against macrolide-susceptible and erm- or mef-containing pneumococci, the ketolides were bacteriostatic to slowly bactericidal, with 24-h log(10) decreases ranging from 2.0 to 4.1 CFU. Intervals of postantibiotic effects for the ketolides against macrolide-susceptible and -resistant S. pneumoniae were 3.0 to 8.1 h.  相似文献   

18.
Agar dilution with incubation in air and CO2 was used to determine the MICs of erythromycin, dirithromycin, azithromycin, clarithromycin, roxithromycin, and clindamycin for 79 penicillin-susceptible, 72 penicillin-intermediate, and 74 penicillin-resistant pneumococci (158 erythromycin-susceptible and 67 erythromycin-resistant pneumococci). MICs obtained in air were usually 1 to 3 dilutions lower than those obtained in CO2. In air, the respective MICs at which 50% (MIC50s) and 90% (MIC90s) of penicillin-susceptible, -intermediate, and -resistant strains are inhibited were as follows: erythromycin, 0.016 and 0.5, 0.03 and > 64, and 2 and > 64 microg/ml; dirithromycin, 0.03 and 0.5, 0.06 and > 64, and 8 and > 64 microg/ml; azithromycin, 0.03 and 0.5, 0.06 and > 64, and 2 and > 64 microg/ml; clarithromycin, 0.016 and 0.06, 0.03 and > 64, and 2 and > 64 microg/ml; roxithromycin, 0.06 and 2, 0.06 and > 64, and 2 and > 64 microg/ml; and clindamycin, 0.03 and 0.06, 0.06 and > 64, and 0.06 and > 64 microg/ml. The MICs of erythromycin, azithromycin, and dirithromycin were very similar; however, clarithromycin MICs were generally 1 to 2 dilutions lower and roxithromycin MICs were 1 to 2 dilutions higher than those of the other compounds tested. Strains resistant to one macrolide were resistant to all macrolides; however, not all macrolide-resistant strains were resistant to clindamycin, and 32 macrolide-resistant (MICs, > or = 28 microg/ml), clindamycin-susceptible (MICs, < or = 0.25 microg/ml) strains were encountered. Time-kill testing of six strains showed similar killing kinetics for all compounds, with 99.9% killing of all strains observed with the compounds only at or above the MIC after 24 h.  相似文献   

19.
Agar dilution MIC methodology was used to test the activities of GV 118819X (sanfetrinem), ampicillin, amoxicillin, amoxicillin-clavulanate, cefpodoxime, loracarbef, levofloxacin, clarithromycin, ceftriaxone, imipenem, and vancomycin against 53 penicillin-susceptible, 84 penicillin-intermediate and 74 penicillin-resistant pneumococci isolated in the United States. GV 118819X was the most active oral beta-lactam, with MIC at which 50% of the isolates were inhibited (MIC50)/MIC90 values of 0.008/0.03, 0.06/0.5, and 0.5/1.0 micrograms/ml against penicillin-susceptible, -intermediate, and -resistant stains, respectively. Amoxicillin and amoxicillin in the presence of clavulanate (2:1) were the second most-active oral beta-lactams, followed by ampicillin and cefpodoxime; loracarbef was not active against penicillin-intermediate and -resistant strains. Clarithromycin was most active against penicillin-susceptible strains but was less active against intermediate and resistant stains. All pneumococcal stains were inhibited by ceftriaxone and imipenem at MICs of < or = 4.0 and < or = 1.0 micrograms/ml, respectively. The activities of levofloxacin and vancomycin were unaffected by penicillin susceptibility. Time-kill studies of three penicillin-susceptible, three penicillin-intermediate, and three penicillin-resistant pneumococci showed that all compounds, at the broth microdilution MIC, yielded 99.9% killing of all strains after 24 h. Kinetic patterns of all oral beta-lactams, ceftriaxone, and vancomycin were similar relative to the MIC, with 90% killing of all strains first observed after 12 h. However, killing by amoxicillin-clavulanate, imipenem, and levofloxacin was slightly faster and that by clarithromycin was slower than that by the above-described drugs. At 2 x the MIC, more strains were killed earlier than was the case at the MIC, but the pattern seen at the MIC prevailed. When MICs and kill kinetics were combined, sanfetrinem was the most active oral antipneumococcal agent in this study.  相似文献   

20.
When tested against 254 Haemophilus influenzae strains, LBM415, a peptide deformylase inhibitor, gave MIC50 and MIC90 values of 2.0 microg/ml and 8.0 microg/ml, respectively. The MICs were independent of beta-lactam or quinolone susceptibility and the presence or absence of macrolide efflux or ribosomal protein mutations. The MICs of LBM415 against 23 H. parainfluenzae strains were similar to those against H. influenzae. In contrast, erythromycin, azithromycin, and clarithromycin gave unimodal MIC distributions, and apart from beta-lactamase-negative, ampicillin-resistant strains, all strains were susceptible to the beta-lactams tested. Apart from selected quinolone-resistant strains, all strains were susceptible to ciprofloxacin, levofloxacin, gatifloxacin, moxifloxacin, and gemifloxacin. Resistance to trimethoprim-sulfamethoxazole was common. The potencies of all drugs against 23 H. parainfluenzae strains were similar to those against H. influenzae. Time-kill studies with 10 Haemophilus strains showed LBM415 to be bactericidal at 2 x the MIC against 8 of 10 strains after 24 h. For comparison, the macrolides and beta-lactams were bactericidal against 8 to 10 strains each at 2 x the MIC after 24 h. Quinolones were bactericidal against all 10 strains tested at 2 x the MIC after 24 h. Against six H. influenzae strains, postantibiotic effects for LBM415 lasted between 0.8 and 2.2 h. In multistep resistance selection studies, LBM415 produced resistant clones in 7 of the 10 strains tested, with MICs ranging from 4 to 64 microg/ml. No mutations in deformylase (def) and formyltransferase (fmt) genes were detected in any of the LBM415-resistant mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号