首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The effects of etomoxiryl-CoA on purified carnitine acyltransferases and on carnitine acyl-transferases of rat heart mitochondria and rat liver microsomes were determined. At nanomolar concentrations, the data agreed with that of other investigators who have shown that etomoxiryl-CoA must be binding to a high affinity site with specific inhibition of mitochondrial carnitine palmitoyltransferase (CPTo). Micromolar amounts of etomoxiryl-CoA inhibited both short- and long-chain carnitine acyltransferases. The concentrations of etomoxiryl-CoA required for 50% inhibition of the different carnitine acetyltransferases and microsomal and peroxisomal carnitine octanoyltransferase were in the low micromolar range. Mixed-type and uncompetitive inhibition kinetics were obtained, depending on the source of purified enzyme. When purified rat heart CPT was incubated with etomoxiryl-CoA, it increased the K0.5 and decreased the Hill coefficient for acyl-CoA. Both proteins and phospholipids of mitochondria and microsomes formed covalent adducts of [3H]etomoxir, with the predominant labeling in phospholipids. None of the purified enzymes formed covalent adducts when incubated with [3H]etomoxiryl-CoA, in contrast to intact mitochondria or microsomes. The major 3H-labeled protein for rat heart mitochondria had a molecular weight of 81,000 +/- 4000, and the major proteins from microsomes had a molecular weight of 51,000-57,000. Malonyl-CoA prevented most of the tritum incorporation into the 81,000 Da protein of mitochondria, but it had little effect on incorporation of tritiated etomoxir into the 51,000-57,000 Da proteins of microsomes. When 50 microM etomoxiryl-CoA was added to microsomes and to mitochondria that had been incubated with radioactive etomoxiryl-CoA, much of the radioactive etomoxir disappeared from the major microsomal proteins, but virtually none was displaced from the mitochondrial protein. Thus, at least two different types of covalent etomoxir complexes were formed. This pulse-chase experiment showed that the mitochondrial protein-etomoxir complex was not turned over, consistent with other data showing that etomoxir inhibited carnitine palmitoyltransferase. In contrast, the major protein-etomoxir complex in microsomes was turned over during the pulse-chase experiment.  相似文献   

2.
We investigated the effect of two types of carnitine palmitoyltransferase I inhibitors, ethyl 2-(6-(4-chlorophenoxy)hexyl)oxirane-2-carboxylate (etomoxir) and (R)-3-carboxy-N,N, N-trimethyl-2-?[hydroxy(tetradecyloxy)phosphinyl]oxy?-1-propana minium hydroxide (SDZ CPI 975), on cardiac and hepatic hypertrophy in ddY mice. One-week administration of etomoxir caused cardiac and hepatic hypertrophy, 19% and 22% as a ratio to body weight, respectively. Although 4-week administration of etomoxir caused hepatic hypertrophy, there was no significant change in liver triglyceride content in the first or second week. In cultured HepG(2) cells, etomoxir treatment (1 week) did not cause triglyceride to accumulate. One-week administration of SDZ CPI 975 caused neither cardiac nor hepatic hypertrophy. In vitro, neither drug had selectivity for carnitine palmitoyltransferase I isozymes. These findings suggest that the hepatic hypertrophy following 1- or 2-week treatment with etomoxir is caused by mechanisms different from those responsible for triglyceride accumulation, and that inhibition of carnitine palmitoyltransferase I may not necessarily induce hepatic hypertrophy.  相似文献   

3.
4.
The influence of calcium antagonists on hepatic lipid metabolism was investigated in freshly dispersed rat hepatocytes incubated with [1-14C]oleate and verapamil or 8-N,N-diethylamino-octyl-3,4,5-trimethoxybenzoate (TMB-8). Synthesis of triglyceride was calculated from the specific radioactivity of [1-14C]oleate in extracted total lipid, after separation of each lipid class by thin-layer chromatography. Ketogenesis was measured enzymatically or as the amount of radioactivity incorporated into neutralized acid-soluble extracts. Neither verapamil nor TMB-8 affected triglyceride synthesis. In contrast, TMB-8 and verapamil exerted a concentration-dependent inhibition of ketogenesis, with TMB-8 being more potent than verapamil (inhibition by 50 microM TMB-8 was 73 +/- 9% versus 38 +/- 2% inhibition by 50 microM verapamil). Increasing the concentrations of calcium (0 to 4.2 mM) or oleate (0 to 2.0 mM) increased the rate of ketogenesis but did not alter the antiketogenic potency of TMB-8 or verapamil, indicating that inhibition of ketogenesis by these drugs was not calcium dependent. Since the calcium antagonists did not affect ketogenesis from octanoic acid, and since carnitine stimulated ketogenesis from [1-14C]oleate by 25% and reversed the antiketogenic effects of TMB-8 and verapamil, it appeared that the two calcium antagonists inhibited ketogenesis by interfering with the activity of the outer mitochondrial carnitine palmitoyltransferase. In assays of the outer carnitine palmitoyltransferase in isolated mitochondria, both TMB-8 and verapamil were inhibitory. TMB-8 was the more potent inhibitor of this enzyme, and carnitine was able to overcome inhibition by each of the inhibitors. These results suggest that verapamil and TMB-8 may inhibit ketogenesis by mechanisms independent of their well known effects on cellular calcium concentrations, and that inhibition may be competitive with respect to carnitine concentration. However, direct inhibition of carnitine palmitoyltransferase may not explain completely the inhibition of ketogenesis by these drugs, since concentrations required for enzyme inhibition were greater than those required for inhibition of ketogenesis in isolated hepatocytes.  相似文献   

5.
Inhibitors of carnitine palmitoyl-transferase I (CPT I), the key enzyme for the transport of long-chain acyl-coenzyme A (acyl-CoA) compounds into mitochondria, have been developed as agents for treating diabetes mellitus Type 2. Findings that the CPT I inhibitor, etomoxir, has effects on overloaded heart muscle, which are associated with an improved function, were unexpected and can be attributed to selective changes in the dysregulated gene expression of hypertrophied cardiomyocytes. Also, the first clinical trial with etomoxir in patients with heart failure showed that etomoxir improved the clinical status and several parameters of heart function. In view of the action of etomoxir on gene expression, putative molecular mechanisms involved in an increased expression of SERCA2, the Ca(2+) pump of sarcoplasmic reticulum (SR) and alpha-myosin heavy chain (MHC) of failing overloaded heart muscle are described. The first 225 bp of human, rabbit, rat and mouse SERCA2 promoter sequence have high identity. Various cis-regularory elements are also given for the promoter of the rat cardiac alpha-MHC gene. It is hypothesised that etomoxir increases glucose-phosphate intermediates resulting in activation of signalling pathway(s) mediated by phosphatases. Regarding the possible direct action of etomoxir on peroxisome proliferator activated receptor alpha (PPAR-alpha) activation, it could upregulate the expression of various enzymes that participate in beta-oxidation, thereby modulating some effects of CPT 1 inhibition. Any development of alternative drugs requires a better understanding of the signal pathways involved in the altered gene expression. In particular, signals need to be identified which are altered in overloaded hearts and can selectively be re-activated by etomoxir.  相似文献   

6.
We investigated the interactions of insulin and okadaic acid, an inhibitor of protein phosphatases type-2A and type-1, on glycogen synthesis in rat, guinea pig and rabbit hepatocytes. Insulin stimulated glycogen synthesis in rat and guinea pig but not in rabbit hepatocytes. In rat and guinea pig hepatocytes, the stimulation of glycogen synthesis by insulin was inhibited by low concentrations of okadaic acid (2.5-5 nM), which did not inhibit glycogen synthesis in the absence of insulin. In rabbit hepatocytes, insulin increased the sensitivity of glycogen synthesis to inhibition by low concentrations of okadaic acid even though it did not stimulate glycogen synthesis, and in the presence of insulin and okadaic acid (5 nM) glycogen synthesis was significantly lower than in the presence of okadaic acid alone. An increase in extracellular pH from 7.4 to 7.8 in a bicarbonate-free buffer, decreased the concentration of okadaic acid causing half-maximal inhibition of glycogen synthesis. It is suggested that an increase in cytosolic pH may be one mechanism by which insulin alters the sensitivity of glycogen synthesis to phosphatase inhibition.  相似文献   

7.
The effects of sodium 2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylate (POCA), a potent inhibitor of carnitine palmitoyltransferase I, on fatty acid oxidation were investigated using fibroblasts from control subjects and from patients with peroxisomal disorders. [1-14C]Palmitate oxidation was inhibited by 8% of the control value when 15 microM POCA was added to the medium. The inhibition by POCA was significantly (P less than 0.05) stronger in fibroblasts from patients with Zellweger syndrome or with neonatal adrenoleukodystrophy, in which peroxisomes and peroxisomal beta-oxidation enzymes were absent. However, the inhibition in fibroblasts from patients with X-linked adrenoleukodystrophy, in which a specific defect of peroxisomal lignoceroyl-CoA synthetase was speculated, was similar to that in the controls. [1-14C]Lignocerate oxidation was not influenced by the addition of POCA, in samples from the controls and from the patients. These results indicate that peroxisomes account for a small but demonstrable proportion of palmitate oxidation, and add new evidence to the concept that lignocerate is oxidized exclusively in the peroxisomes. Our findings also support the hypotheses that the activity of palmitoyl-CoA synthetase and the enzymes of beta-oxidation cycle in peroxisomes are normal in patients with X-linked adrenoleukodystrophy and that a specific defect of lignoceroyl-CoA synthetase is responsible for the accumulation of very long chain fatty acids in these patients.  相似文献   

8.
Diazepam metabolism has been investigated in cultured hepatocytes from rat, rabbit, dog, guinea pig, and man. The metabolite profile obtained by HPLC analysis of the culture medium indicated that substantial differences exist corresponding to known species differences in the metabolite profile of diazepam in vivo. These differences were attributed to a combination of the rate at which a metabolite was formed and the rate at which it is removed from the medium by further metabolism. The intrinsic clearance of nordiazepam in hepatocytes from each of the species exhibited the most marked species variation (rat much greater than guinea pig greater than rabbit greater than human greater than dog). Species that exhibited a high intrinsic clearance for nordiazepam were also those species that exhibited significant hydroxylation at the 4'-site of the molecule. The disappearance of diazepam was rapid in rat, dog, and guinea pig hepatocytes, but slow in human hepatocytes. Moreover, rat and human hepatocytes exhibited different saturability of diazepam clearance with respect to diazepam concentration accounting, at least in part, for the different rates of diazepam metabolism in the different species. These results support the value of hepatocytes in drug metabolism studies and especially in studies of species differences in metabolism.  相似文献   

9.
REV 2871 (CHBZ) and its putative metabolite REV 3579-Z (also designated in the literature as RHC 3579-Z) were shown to be potent and orally effective inhibitors of passive cutaneous anaphylaxis (PCA) in the rat (ED50 = 12 mg/kg). The activity profiles of CHBZ, REV 3579-Z and disodium cromoglycate (DSCG) were compared as inhibitors of histamine release (HR) in vitro from rat mast cells, human basophils, and guinea pig lung slices. CHBZ was a potent inhibitor of both immunologic and non-immunologic HR (I50 2-20 microM from rat mast cells). The activity profile of CHBZ as an inhibitor of HR from rat mast cells differed from that of DSCG and REV 3579-Z in the following respects: increasing inhibition of HR with increasing preincubation time; irreversibility of the inhibition; lack of tachyphylaxis and cross-tachyphylaxis to DSCG; potentiation of the inhibition of antigen-induced release of histamine (AIR) by DSCG; and inhibition of HR induced by dextran + phosphatidyl serine, compound 48/80, ionophore A23187 and platelet activating factor (PAF). In the human basophil model, CHBZ was: a potent inhibitor (I50 = 25 microM) of anti-IgE-induced release (AbIR), whereas DSCG and REV 3579-Z had no effect on AbIR; more potent as an inhibitor of AbIR than ionophore-induced release, whereas the reverse was true for proxicromil; an inhibitor of PAF-induced release, whereas proximcromil stimulated it; and potentiative with proxicromil for inhibition of AbIR. In the guinea pig lung slice model, CHBZ inhibited AIR (I50 = 800 microM) whereas DSCG and REV 3579-Z did not (I50 greater than 300 microM). We conclude that CHBZ is an orally effective antiallergic agent whose mechanism of action as an inhibitor of mediator release is different from DSCG and proxicromil.  相似文献   

10.
Identification of the proximate peroxisome proliferator(s) derived from di (2-ethylhexyl) adipate (DEHA) has been achieved using primary hepatocyte cultures derived from different species and cyanide-insensitive fatty acyl CoA oxidase (PCO) as a marker enzyme for peroxisome proliferation. In rat and mouse hepatocytes, the parent compound (DEHA) had no effect on peroxisomal beta-oxidation, but primary metabolites of DEHA, mono (2-ethylhexyl) adipate (MEHA) and 2-ethylhexanol (EH), were approximately equipotent in PCO induction (5-fold at 0.5 mM final concentration). The secondary metabolite of DEHA, 2-ethylhexanoic acid (EHA), was in both species the most potent peroxisome proliferator (25- and 9-fold induction in mice and rats, respectively, at 1 mM final concentration). At 2 mM final concentration a tertiary metabolite of DEHA, 2-ethyl-5-hydroxyhexan-1-oic acid, was less effective in mouse and rat hepatocytes at inducing PCO (15- and 5-fold, respectively). 2-Ethyl-5-oxohexan-1-oic acid and 2-ethylhexan-1,6-dioic acid had little effect (2-3-fold in both rat and mouse hepatocytes). Thus, EHA was identified as the proximate peroxisome proliferator of DEHA and mouse hepatocytes were approximately twice as sensitive as rat hepatocytes to peroxisome proliferation due to MEHA, EH and EHA. We investigated further species differences in response to peroxisome proliferators by using guinea pig and marmoset primary hepatocyte culture. None of the chemicals studied stimulated peroxisomal beta-oxidation in these species up to a final concentration of 2 mM. Higher concentrations lead to cytotoxicity. This lack of sensitivity of guinea pig and marmoset hepatocytes is in agreement with previous studies with di (2-ethylhexyl) phthalate metabolites, suggesting the absence of a threat of hepatocarcinogenic damage to these species and confirming that primary hepatocytes cultures are useful models for investigating the phenomenon of peroxisome proliferation.  相似文献   

11.
N-[(2'-Dimethylamino)ethyl]acridine-4-carboxamide (DACA) is a new anticancer agent currently undergoing clinical trials. The metabolism of DACA to acridone metabolites by aldehyde oxidase (AO) (EC 1.2.3.1) appears to play a major role in its elimination in human patients and rodents. The aim of this study was to compare the ability of human, guinea pig, and rat AO preparations to metabolise DACA, and to determine if either animal model was appropriate for predicting AO-mediated DACA-drug interactions in humans. Both human and rodent liver samples were homogenised in buffer before sequential centrifugation to produce the cytosol fraction. Human supernatant underwent an additional ammonium sulphate precipitation procedure, which produced a 2-fold increase in enzyme activity per milligram of protein. After incubations with DACA (range, 0-200 microM), DACA-9(10H)-acridone formation was determined by HPLC analysis. Michaelis-Menten parameters, Km and Vmax, were determined from the best fit curves by nonlinear regression. Three of the four human liver preparations had similar DACA intrinsic clearance values (Vmax/Km) ranging from 0.27 to 0.35 mL/min/mg protein, whereas both the rat and guinea pig had approximately 7- and 160-fold greater intrinsic clearances, due to lower Km values in rats (4.5 +/- 0.7 microM) and guinea pigs (0.15 +/- 0.1 microM) compared with humans (28.3 +/- 8.3 microM, N = 4). Amsacrine, menadione, and 7-hydroxy-DACA were potent inhibitors of DACA metabolism in all three species, but 10-fold differences in IC50 values were apparent between species. In addition, SKF-525A was a potent inhibitor of the metabolism of DACA in rat cytosol but caused minimal inhibition in the guinea pig or human preparations. These results suggest that neither rat nor guinea pig AO preparations are suitable for predicting AO-mediated DACA-drug interactions in humans.  相似文献   

12.
13.
The benefits of inhibition of fatty acid oxidation (FOX) and stimulation of glucose oxidation (GOX) in ischemia are controversial. The objective of this study was to evaluate the effect of the FOX inhibitor CVT-4325 on the rates of FOX, GOX, myocardial oxygen consumption (MVO2), and cardiac efficiency in the absence and presence of palmitate during demand-induced ischemia of the rodent isolated hearts. Palmitate concentration-dependently increased FOX, decreased GOX, and increased MVO2. CVT-4325 inhibited FOX and increased GOX in the presence (but not the absence) of 1.2 mM palmitate, with EC50 values of 0.9 and 5.8 microM, respectively. The potency for CVT-4325 to inhibit FOX was 10-fold greater (0.9 versus 9.7 microM) in the presence of 1.2 mM compared with 0.4 mM palmitate. The increase in MVO2 caused by 1.2 mM palmitate was significantly reduced by 3 to 10 microM CVT-4325 in guinea pig hearts. In the presence of 1.2 mM palmitate, an increase in pacing rate of the guinea pig heart from 3.5 to 6.5 Hz caused a significant 50% increase in MVO2, a decrease in cardiac efficiency, and an increase in lactate concentration in the cardiac effluent from 0.04 +/- 0.01 to 0.10 +/- 0.02 mM (P < 0.01). CVT-4325 (3 microM) attenuated the increase (P < 0.05) in MVO2 while maintaining cardiac contractility, and decreased the lactate production to 0.05 +/- 0.01 mM (P < 0.01). Thus, the FOX inhibitor CVT-4325 decreased MVO2 and increased myocardial efficiency during demand-(pacing)-induced ischemia in the presence of palmitate in the rodent isolated hearts.  相似文献   

14.
Micromolar concentrations of ATP induced a cAMP-independent glycogenolytic response in rabbit and guinea pig hepatocytes. With ATP alpha[35S] (adenosine 5'-[alpha-[35S]thio]triphosphate) as radioligand, we detected the presence of specific purinoceptors on hepatocytes and liver plasma membranes of both species. We determined a Kd value of 0.28 microM and a Bmax of 4.8 pmol/10(6) cells for rabbit hepatocytes and a Kd of 0.25 microM and a Bmax of 7.0 pmol/10(6) cells for guinea pig hepatocytes. The Kd values with purified plasma membranes from rabbit and guinea pig liver, were respectively 0.2 and 0.1 microM whereas the Bmax values were respectively 71 and 47 pmol/mg of protein. These purinoceptors belong to the P2Y-subclass as is evidenced by the high degree of similarity which exists between the binding affinities of several ATP analogues to either rabbit or guinea pig liver plasma membranes and rat liver plasma membranes, previously shown to possess P2Y-purinoceptors.  相似文献   

15.
The mechanism by which enoximone, a reported phosphodiesterase inhibitor, inhibits the oxidation of long-chain fatty acids was studied in isolated rat heart mitochondria using a series of 14C-labeled substrates. Enoximone decreased palmitate oxidation in a time- and concentration-dependent manner. Fifty percent inhibition of palmitate oxidation was achieved with 250 microM of enoximone. In contrast to its effect on palmitate, enoximone (250 microM) increased octanoate oxidation by 30%, whereas pyruvate oxidation was unaffected by enoximone. At that dose there was no effect on the oxidation of palmitoyl-CoA and palmitoyl carnitine. The degree of palmitate oxidation inhibited by enoximone was parallel to the inhibition of acyl-CoA synthetase in both rat heart mitochondria and microsomes. These results suggest that enoximone is a reversible inhibitor of long-chain fatty acyl-CoA synthetase. Moreover, the reaction, which is catalyzed by this enzyme, is a rate-limiting step in the pathway of fatty acid oxidation in rat heart mitochondria.  相似文献   

16.
The effects of 4-bromocrotonic acid, 2-bromopalmitic acid, 3-mercaptopropionic acid, 4-pentenoic acid, and 2-tetradecylglycidic acid on the oxidations of palmitate, octanoate, and pyruvate in adult rat myocytes were studied. Since all of these compounds inhibit the oxidation of palmitate but not of pyruvate, they are specific inhibitors of fatty acid oxidation. Fifty percent inhibition of palmitate oxidation was obtained when myocytes were preincubated for 10 min with one of the following: 0.1 microM 2-tetradecylglycidic acid, 60 microM 4-bromocrotonic acid, 60 microM 2-bromopalmitic acid, 100 microM 3-mercaptoproprionic acid, or 100 microM 4-pentenoic acid. Removal of the inhibitors from the medium after preincubation relieved the inhibition caused by 3-mercaptopropionic acid but did not reverse the effects of the other inhibitors. This study leads to the conclusion that 2-tetradecylglycidic acid is the compound of choice for inhibiting the mitochondrial uptake of fatty acids and thereby their oxidation, whereas 4-bromocrotonic acid is the best irreversible inhibitor of the mitochondrial beta-oxidation cycle.  相似文献   

17.
The short-term effect of metformin on fatty acid and glucose metabolism was studied in freshly incubated hepatocytes from 24-hr starved rats. Metformin (5 or 50 mM) had no effect on oleate or octanoate oxidation rates (CO(2)+ acid-soluble products), whatever the concentration used. Similarly, metformin had no effect on oleate esterification (triglycerides and phospholipid synthesis) regardless of whether the hepatocytes were isolated from starved (low esterification rates) or fed rats (high esterification rates). In contrast, metformin markedly reduced the rates of glucose production from lactate/pyruvate, alanine, dihydroxyacetone, and galactose. Using crossover plot experiments, it was shown that the main effect of metformin on hepatic gluconeogenesis was located upstream of the formation of dihydroxyacetone phosphate. Increasing the time of exposure to metformin (24 hr instead of 1 hr) led to significant changes in the expression of genes involved in glucose and fatty acid metabolism. Indeed, when hepatocytes were cultured in the presence of 50 to 500 microM metformin, the expression of genes encoding regulatory proteins of fatty acid oxidation (carnitine palmitoyltransferase I), ketogenesis (mitochondrial hydroxymethylgltaryl-CoA synthase), and gluconeogenesis (glucose 6-phosphatase, phosphoenolpyruvate carboxykinase) was decreased by 30 to 60%, whereas expression of genes encoding regulatory proteins involved in glycolysis (glucokinase and liver-type pyruvate kinase) was increased by 250%. In conclusion, this work suggests that metformin could reduce hepatic glucose production through short-term (metabolic) and long-term (genic) effects.  相似文献   

18.
A O Uwaifo 《Toxicology》1984,31(1):33-39
Oxygen uptake in liver slices of rats, rabbits and guinea pigs were determined manometrically in the presence of different concentrations of aflatoxin B1 (AFB1). AFB1 inhibited oxygen uptake at all concentrations of AFB1 tested (3.2 microM, 16.0 microM, 48.1 microM, 64.1 microM, 80.0 microM, 112.2 microM). Inhibition was directly proportional to the concentration of AFB1 inducing the inhibition. The degree of inhibition of oxygen uptake in the 3 mammalian species seems to correlate with their respective susceptibilities to AFB1 toxicity. The highest inhibition was in guinea pig and the least in rat; that in the rabbit was intermediate between rat and guinea pig.  相似文献   

19.
Diverse mechanisms of action have been proposed for 5-iodotubercidin, although it is widely used as an adenosine kinase inhibitor that consequently interferes with the metabolism of adenosine and adenine nucleotides. Incubation of rat hepatocytes with iodotubercidin produced important effects on lipid metabolism. (i) Both acetyl-CoA carboxylase and fatty acid synthesis de novo were inhibited in parallel by iodotubercidin, with no change in the activity of fatty acid synthase. The inhibition of both activities showed a comparable dependence on iodotubercidin concentration and was accompanied by a similar decrease (about 60%) in the intracellular malonyl-CoA concentration. (ii) Iodotubercidin stimulated palmitate oxidation, although octanoate oxidation was unaffected. However, this effect can be attributed to the decrease of malonyl-CoA concentration and the concomitant relief of the inhibition of carnitine palmitoyltransferase I, because the activity of this enzyme was found unaltered when determined in cells permeabilized with digitonin. (iii) Iodotubercidin also inhibited cholesterol synthesis de novo. Results, thus, indicate that iodotubercidin increases fatty acid oxidation activity of the liver at the expense of lipogenesis, and we suggest that these effects on fatty acid metabolism are mediated by the inhibition of acetyl-CoA carboxylase, probably due to a more than twice increase in the AMP/ATP ratio and the concomitant stimulation of the AMP-activated protein kinase.  相似文献   

20.
Inhibition of carnitine palmitoyltransferase I with etomoxir increases sarcoplasmic reticulum Ca(2+)-transport and V(1) isomyosin expression. To test whether etomoxir attenuates contractile dysfunction after myocardial infarction, we compared the contractility of papillary muscles from etomoxir- and placebo-treated rats 6 weeks after infarction. Etomoxir induced cardiac hypertrophy in animals with small infarctions, and enhanced compensatory heart growth at large infarct size. Contractile function of papillary muscles from etomoxir-treated rats was improved particularly in animals with small infarctions. Thus, induction of mild cardiac hypertrophy by etomoxir in rats with small infarctions may be beneficial for myocardial performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号