首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary: Thymic derived naturally occurring CD25+CD4+ T regulatory cells (Tregs) suppress immune responses, including transplantation. Here we discuss the capacity of dendritic cells (DCs) to expand antigen‐specific Tregs, particularly polyclonal Tregs directed to alloantigens. Initial studies have shown that mature DCs are specialized antigen‐presenting cells (APCs) for expanding antigen‐specific CD25+ CD4+ Tregs from TCR transgenic mice. When triggered by specific antigen, these Tregs act back on immature DCs to block the upregulation of CD80 and CD86 costimulatory molecules. More recently, DCs have been used to expand alloantigen‐specific CD25+CD4+ Tregs from the polyclonal repertoire in the presence of interleukin‐2 (IL‐2). Allogeneic DCs are much more effective than allogeneic spleen cells for expanding CD25+CD4+ Tregs. The DC‐expanded Tregs continue to express high levels of Foxp3, even without supplemental IL‐2, whereas spleen cells poorly sustain Foxp3 expression. When suppressive activity is tested, relatively small numbers of DC‐expanded CD25+CD4+ Tregs exert antigen‐specific suppression in the mixed leukocyte reaction (MLR), blocking immune responses to the original stimulating strain 10 times more effectively than to third party stimulating cells. DC‐expanded Tregs also retard graft versus host disease (GVHD) across full major histocompatibility complex (MHC) barriers. In vitro and in vivo, the alloantigen‐specific CD25+CD4+ Tregs are much more effective suppressors of transplantation reactions than polyclonal populations. We suggest that the expansion of Tregs from a polyclonal repertoire via antigen‐presenting DCs will provide a means for antigen‐specific control of unwanted immune reactions.  相似文献   

2.
Dendritic cells (DCs) are the key APCs not only for the priming of naïve T cells, but also for the induction and maintenance of peripheral T‐cell tolerance. We have recently shown that cognate interactions between Foxp3+ Tregs and steady‐state DCs are crucial to maintain the tolerogenic potential of DCs. Using DIETER mice, which allow the induction of antigen presentation selectively on DCs without altering their maturation status, we show here that breakdown of CD8+ T‐cell tolerance, which ensues after depletion of suppressive CD4+ T cells, is driven by a positive feedback loop in which autoreactive CD8+ T cells activate DCs via CD40. These data identify ligation of CD40 on DCs as a stimulus that promotes autoreactive T‐cell priming when regulatory T‐cell suppression fails and suggest that feedback from autoreactive T cells to DCs may contribute to the well‐documented involvement of CD40 in many autoimmune diseases.  相似文献   

3.
《Human immunology》2020,81(10-11):634-643
The interaction of tolerogenic CD103+ dendritic cells (DCs) with regulatory T (Tregs) cells modulates immune responses by inducing immune tolerance. Hence, we determined the proportion of these cells in the peripheral blood mononuclear cells (PBMC) of asthmatic patients. We observed lower trends of CD11b-CD103+ DCs and CD86 within CD11b-CD103+ DCs, while increased levels of Foxp3 expressing CD25+/-TNFR2+ cells in asthmatics. There was a positive correlation in the expression of Foxp3 within CD3+CD4+CD25+TNFR2+ Tregs and CD11b-CD103+ as well as the expression of CD86 within HLA-DR+CD11c+CD11b-CD103+ DCs. In conclusion, we suggest that the increased levels of Tregs in blood could continuously suppress the T helper 2 (Th2) cells activation in the circulation which is also supported by the increase of anti-inflammatory cytokines IL-10 and TNF. Overall, functional immunoregulation of the regulatory cells, particularly Tregs, exhibit immune suppression and induce immune tolerance linked with the immune activation by the antigen presenting cells (APC).  相似文献   

4.
Wang J‐P, Zhang Y, Wei X, Li J, Nan X‐P, Yu H‐T, Li Y, Wang P‐Z, Bai X‐F. Circulating Toll‐like receptor (TLR) 2, TLR4, and regulatory T cells in patients with chronic hepatitis C. APMIS 2010; 118: 261–70. The mechanism of hepatitis C virus (HCV) involvement in innate immune responses and immune modulation has not been well characterized. In the present work, we studied Toll‐like receptor (TLR) 2 and TLR4, which were recently recognized as the important components of innate immunity, as well as CD4+ CD25+ CD127low/? regulatory T cells (Tregs), which actively suppress pathological and physiological immune response during HCV infection. The study involved 31 chronic hepatitis C patients and 20 healthy controls. TLR2 and TLR4 expression in peripheral blood monocytes and the number of Tregs were examined by flow cytometric analysis. Overexpression of TLR2 and TLR4 was found in chronic hepatitis C patients as compared with controls. Furthermore, increased cytokine production, including that of β‐interferon, tumor necrosis factor‐α, interleukin (IL)‐6, and IL‐8, was observed in peripheral blood mononuclear cells from chronic hepatitis C patients after challenge with TLR2 and TLR4 agonists. The number of Tregs was significantly higher in chronic hepatitis C patients and the increased Tregs were associated with HCV genotype 1b. In vitro studies demonstrated that circulating Tregs suppress T‐cell responses in chronic hepatitis C patients. Significant correlations were found between the viral load and Treg number and between TLR2 and TLR4 level in chronic hepatitis C patients. Taken together with other published data, these results suggest that TLR2, TLR4, and Tregs correlate closely with chronic HCV infection.  相似文献   

5.
Immune disorders are linked to the development of type 2 diabetes (T2D) and its complications. The relationship of CD4+CD25hi T regulatory cells (Treg) and pro-inflammatory Th17 and Th1 subsets in T2D patients with metabolic disorders and complications need to be determined. The ratios of CD4+CD25hi Treg/Th17 cells and CD4+CD25hi Treg/Th1 cells, but not Th17/Th1 cells, were significantly decreased in T2D patients. The thymic output CD4+Foxp3+Helios+ Tregs were normal but peripheral induced CD4+Foxp3+Helios Tregs were decreased in T2D patients. The Bcl-2/Bax ratio decreased in CD4+CD25hi Tregs in T2D patients, supporting the increased sensitivity to cell death of these cells in T2D. CD4+CD25hiCD127 Tregs in T2D patients with microvascular complications were significantly less than T2D patients with macrovascular complications. Importantly, CD4+CD25hiCD127 Tregs were positively correlated with plasma IL-6, whereas IL-17+CD4+cells were negatively related to high-density lipoprotein (HDL). Our data offered evidence for the skewed balance of anti- and pro-inflammatory T cell subsets in T2D patients and identified that HDL closely modulate T cell polarization. These results opened an alternative explanation for the substantial activation of immune cells as well as the development of T2D and complications, which may have significant impacts on the prevention and treatment of T2D patients.  相似文献   

6.
The significance of TLR expression and Tregs in HBV infection has not been clearly described. In this report, flow cytometry was performed to assess TLR2/4 expression on monocytes and circulating CD4+CD25+CD127low/− Tregs frequency of 16 acute hepatitis B (AHB), 42 chronic hepatitis B (CHB), 22 asymptomatic HBV carriers (AsC), and 20 normal controls (NC). We found that TLR2 and TLR4 were overexpressed on CD14+ monocytes in HBV-infected patients as compared with NCs. Upregulation of TLR2 in NCs and TLR4 in CHBs was observed following HBeAg incubation. However, TLR2 and TLR4 expression decreased after HBcAg stimulation. The difference in the proportion of Tregs between NCs and CHBs was significant. Both Pam3Csk4 (TLR2 agonist)- and lipopolysaccharide (TLR4 agonist)-activated CD4+CD25+ Tregs showed enhanced suppression function in CHBs. These results suggest that overexpression of TLR2 and TLR4 may modulate the suppressive function of Tregs, which contribute to the immunotolerance of chronic HBV infection.  相似文献   

7.
Persistent viruses evade immune detection by interfering with virus‐specific innate and adaptive antiviral immune responses. Fibrinogen‐like protein‐2 (FGL2) is a potent effector molecule of CD4+ CD25+ FoxP3+ regulatory T cells and exerts its immunosuppressive activity following ligation to its cognate receptor, FcγRIIB/RIII. The role of FGL2 in the pathogenesis of chronic viral infection caused by lymphocytic choriomeningitis virus clone‐13 (LCMV cl‐13) was assessed in this study. Chronically infected fgl2+/+ mice had increased plasma levels of FGL2, with reduced expression of the maturation markers, CD80, CD86 and MHC‐II on macrophages and dendritic cells and impaired production of neutralizing antibody. In contrast, fgl2?/? mice or fgl2+/+ mice that had been pre‐treated with antibodies to FGL2 and FcγRIIB/RIII and then infected with LCMV cl‐13 developed a robust CD4+ and CD8+ antiviral T‐cell response, produced high titred neutralizing antibody to LCMV and cleared LCMV. Treatment of mice with established chronic infection with antibodies to FGL2 and FcγRIIB/RIII was shown to rescue the number and functionality of virus‐specific CD4+ and CD8+ T cells with reduced total and virus‐specific T‐cell expression of programmed cell death protein 1 leading to viral clearance. These results demonstrate an important role for FGL2 in viral immune evasion and provide a rationale to target FGL2 to treat patients with chronic viral infection.  相似文献   

8.
Type 1 diabetes (T1D) results from the autoimmune destruction of pancreatic beta cells and is partly caused by deficiencies in the Foxp3+ regulatory T‐cell (Treg) compartment. Conversely, therapies that increase Treg function can prevent autoimmune diabetes in animal models. The majority of Tregs develop in the thymus (tTregs), but a proportion of Foxp3+ Tregs is generated in the periphery (pTregs) from Foxp3?CD4+ T‐cell precursors. Whether pTregs play a distinct role in T1D has not yet been explored. We report here that pTregs are a key modifier of disease in the nonobese diabetic (NOD) mouse model for T1D. We generated NOD mice deficient for the Foxp3 enhancer CNS1 involved in pTreg induction. We show that CNS1 knockout decreased the frequency of pTregs and increased the risk of diabetes. Our results show that pTregs fulfill an important non‐redundant function in the prevention of beta cell autoimmunity that causes T1D.  相似文献   

9.
CD70‐mediated stimulation of CD27 is an important cofactor of CD4+ T‐cell licensed dendritic cells (DCs). However, it is unclear how CD70‐mediated stimulation of T cells is integrated with signals that emanate from signal 3 pathways, such as type‐1 interferon (IFN‐1) and IL‐12. We find that while stimulation of CD27 in isolation drives weak EomesoderminhiT‐betlo CD8+ T‐cell responses to OVA immunization, profound synergistic expansion is achieved by cotargeting TLR. This cooperativity can substantially boost antiviral CD8+ T‐cell responses during acute infection. Concomitant stimulation of TLR significantly increases per cell IFN‐γ production and the proportion of the population with characteristics of short‐lived effector cells, yet also promotes the ability to form long‐lived memory. Notably, while IFN‐1 contributes to the expression of CD70 on DCs, the synergy between CD27 and TLR stimulation is dependent upon IFN‐1's effect directly on CD8+ T cells, and is associated with the increased expression of T‐bet in T cells. Surprisingly, we find that IL‐12 fails to synergize with CD27 stimulation to promote CD8+ T‐cell expansion, despite its capacity to drive effector CD8+ T‐cell differentiation. Together, these data identify complex interactions between signal 3 and costimulatory pathways, and identify opportunities to influence the differentiation of CD8+ T‐cell responses.  相似文献   

10.
We have previously demonstrated that mycobacterial lipoproteins engage TLR2 on human CD4+ T cells and upregulate TCR‐triggered IFN‐γ secretion and cell proliferation in vitro. Here we examined the role of CD4+ T‐cell‐expressed TLR2 in Mycobacterium tuberculosis (MTB) Ag‐specific T‐cell priming and in protection against MTB infection in vivo. Like their human counterparts, mouse CD4+ T cells express TLR2 and respond to TLR2 costimulation in vitro. This Th1‐like response was observed in the context of both polyclonal and Ag‐specific TCR stimulation. To evaluate the role of T‐cell TLR2 in priming of CD4+ T cells in vivo, naive MTB Ag85B‐specific TCR transgenic CD4+ T cells (P25 TCR‐Tg) were adoptively transferred into Tlr2?/? recipient C57BL/6 mice that were then immunized with Ag85B and with or without TLR2 ligand Pam3Cys‐SKKKK. TLR2 engagement during priming resulted in increased numbers of IFN‐γ‐secreting P25 TCR‐Tg T cells 1 week after immunization. P25 TCR‐Tg T cells stimulated in vitro via TCR and TLR2 conferred more protection than T cells stimulated via TCR alone when adoptively transferred before MTB infection. Our findings indicate that TLR2 engagement on CD4+ T cells increases MTB Ag‐specific responses and may contribute to protection against MTB infection.  相似文献   

11.
《Immunology》2017,152(3):414-424
Dendritic cells (DCs), a bridge for innate and adaptive immune responses, play a key role in the development of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Administration of tolerogenic DCs has been used as an immunotherapy in autoimmune diseases. Deficiency of vitamin D is an environmental risk factor of MS. In this study, we induced tolerogenic DCs by 1,25‐dihydroxyvitamin D3 and transferred the tolerogenic DCs (VD3‐DCs) into EAE mice by adoptive transfer. We found that VD3‐DCs inhibited the infiltrations of T helper type 1 (Th1) and Th17 cells into spinal cord and increased the proportions of regulatory T cells (CD4+ CD25+ Foxp3+), CD4+ IL‐10+ T cells and regulatory B cells (CD19+ CD5+ CD1d+) in peripheral immune organs, which resulted in attenuated EAE. However, the proportions of T helper type 1 (Th1) and Th17 cells in spleen and lymph nodes and the levels of pro‐inflammatory cytokines and IgG in serum also increased after transfer of VD3‐DCs. We conclude that transfer of VD3‐DCs suppressed EAE by increasing proportions of regulatory T cells, CD4+ IL‐10+ T cells and regulatory B cells in spleen and reducing infiltration of Th1 and Th17 cells into spinal cord, which suggests a possible immunotherapy method using VD3‐DCs in MS.  相似文献   

12.
Carbon monoxide (CO) treatment improves pathogenic outcome of autoimmune diseases by promoting tolerance. However, the mechanism behind this protective tolerance is not yet defined. Here, we show in a transgenic mouse model for autoimmune diabetes that ex vivo gaseous CO (gCO)‐treated DCs loaded with pancreatic β‐cell peptides protect mice from disease. This protection is peptide‐restricted, independent of IL‐10 secretion by DCs and of CD4+ T cells. Although no differences were observed in autoreactive CD8+ T‐cell function from gCO‐treated versus untreated DC‐immunized groups, gCO‐treated DCs strongly inhibited accumulation of autoreactive CD8+ T cells in the pancreas. Interestingly, induction of β1‐integrin was curtailed when CD8+ T cells were primed with gCO‐treated DCs, and the capacity of these CD8+ T cells to lyse isolated islet was dramatically impaired. Thus, immunotherapy using CO‐treated DCs appears to be an original strategy to control autoimmune disease.  相似文献   

13.
The chemokine receptor CCR9 and its only known ligand CCL25 play an important role in gut inflammation and autoimmune colitis. The function of CCR9-CCL25 in the migration of immune cells is well characterized. However, its role in the immune cell differentiation is mostly not known. Using dextran sodium sulfate (DSS)-induced gut inflammation model, we showed that CCR9+ dendritic cells (DCs) specifically CD11bCD103+ DCs were significantly increased in the gut-associated lymphoid tissues (GALT) compared to control mice. These CCR9+ DCs express lower MHC II and CD86 molecules and had regulatory surface markers (FasL and latency-associated peptide, LAP) in the GALT. In the presence of CCL25, CCR9+ DCs promoted in vitro differentiation of Foxp3+ regulatory CD4+ T cells (Tregs). CCL25-induced differentiation of Tregs was due to intrinsic signaling in the DCs but not through CD4+ T cells, which was driven by the production of thymic stromal lymphopoietin (TSLP) and not IL-10. Furthermore, adoptive transfer of CCR9+ DCs in C57BL/6 mice promoted Tregs but reduced the Th17 cells in the GALT, and also suppressed the OVA-specific gut-allergic response. Our results suggest CCR9+ DCs have a regulatory function and may provide a new cellular therapeutic strategy to control gut inflammation and allergic immune reaction.  相似文献   

14.
The aim of this study was to examine regulatory T cells (Tregs) in peripheral blood and liver tissue in patients with chronic hepatitis C virus (HCV) mono‐infection and in patients with HIV/HCV co‐infection. In a cross‐sectional study were included 51 patients with chronic HCV infection, 24 patients with HIV/HCV co‐infection and 24 healthy individuals. CD4+ and CD8+ Tregs were determined using flow cytometry. Fibrosis was examined by transient elastography. Inflammation, fibrosis and Tregs were determined in liver biopsies from 12 patients. Increased frequency of CD4+ and CD8+ Tregs was found in HIV/HCV co‐infected patients [median: 6.4% (IQR: 5.7–6.9) and 1.0% (0.7–1.2), respectively] compared to HCV mono‐infected patients [5.6% (4.2–6.3), P = 0.01 and 0.5% (0.3–0.7), P < 0.001, respectively]. Furthermore, HCV mono‐infected patients had increased frequencies of Tregs compared with healthy controls (P < 0.05). However, no associations between the frequency of Tregs and fibrosis were found. Furthermore, characterization of CD4+ Tregs using CD45RA demonstrated a higher frequency of activated Tregs in both HCV mono‐infected and HIV/HCV co‐infected patients compared with healthy controls. Finally, number of intrahepatic Tregs was associated with both peripheral CD8+ Tregs and intrahepatic inflammation. In conclusion, HCV mono‐infected patients and particularly HIV/HCV co‐infected patients have increased the frequency of CD4+ and CD8+ Tregs compared with healthy controls. Furthermore, CD4+ Tregs in infected patients displayed an active phenotype. Tregs were not associated with fibrosis, but a positive correlation between intrahepatic Tregs and inflammation was found. Taken together, these results suggest a role for Tregs in the pathogenesis of chronic HCV infection.  相似文献   

15.
Type 1 diabetes is a T‐cell‐mediated autoimmune disease in which autoreactive CD8+ T cells destroy the insulin‐producing pancreatic beta cells. Vitamin D3 and dexamethasone‐modulated dendritic cells (Combi‐DCs) loaded with islet antigens inducing islet‐specific regulatory CD4+ T cells may offer a tissue‐specific intervention therapy. The effect of Combi‐DCs on CD8+ T cells, however, remains unknown. To investigate the interaction of CD8+ T cells with Combi‐DCs presenting epitopes on HLA class I, naive, and memory CD8+ T cells were co‐cultured with DCs and proliferation and function of peptide‐specific T cells were analyzed. Antigen‐loaded Combi‐DCs were unable to prime naïve CD8+ T cells to proliferate, although a proportion of T cells converted to a memory phenotype. Moreover, expansion of CD8+ T cells that had been primed by mature monocyte‐derived DCs (moDCs) was curtailed by Combi‐DCs in co‐cultures. Combi‐DCs expanded memory T cells once, but CD8+ T‐cell numbers collapsed by subsequent re‐stimulation with Combi‐DCs. Our data point that (re)activation of CD8+ T cells by antigen‐pulsed Combi‐DCs does not promote, but rather deteriorates, CD8+ T‐cell immunity. Yet, Combi‐DCs pulsed with CD8+ T‐cell epitopes also act as targets of cytotoxicity, which is undesirable for survival of Combi‐DCs infused into patients in therapeutic immune intervention strategies.  相似文献   

16.
Background Human thymic stromal lymphopoietin (TSLP) is expressed in the human asthmatic lung and activates dendritic cells (DCs) to strongly induce proallergic T‐helper type 2 (Th2) cell responses, suggesting that TSLP plays a critical role in the pathophysiology of human asthma. Th2 cells are predominantly involved in mild asthma, whereas a mixture of Th1 and Th2 cells with neutrophilic inflammation, probably induced by Th17, affects more severe asthmatic disease. Exacerbation of asthmatic inflammation is often triggered by airway‐targeting RNA viral infection; virus‐derived double‐stranded RNA, Toll‐like receptor (TLR)3 ligand, activates bronchial epithelial cells to produce pro‐inflammatory mediators, including TSLP. Objective Because TSLPR‐expressing DCs express TLR3, we examined how the relationship between TSLP and TLR3 ligand stimulation influences DC activation. Methods CD11c+DCs purified from adult peripheral blood were cultured in TLR ligands containing media with or without TSLP and then co‐cultured with allogeneic naïve CD4+T cells. Results CD11c+ DCs responded to a combination of TSLP and TLR3 ligand, poly(I : C), to up‐regulate expression of the functional TSLP receptor and TLR3. Although TSLP alone did not induce IL‐23 production by DCs, poly(I : C) alone primed DCs for the production of IL‐23, and a combination of TSLP and poly(I : C) primed DCs for further production of IL‐23. The addition of poly(I : C) did not inhibit TSLP‐activated DCs to prime naïve CD4+ T cells to differentiate into inflammatory Th2 cells. Furthermore, DCs activated by a combination of TSLP and poly(I : C) primed more naïve CD4+ T cells to differentiate into Th17‐cytokine–producing cells with a central memory T cell phenotype compared with DCs activated by poly(I : C) alone. Conclusions These results suggest that through DC activation, human TSLP and TLR3 ligands promote differentiation of Th17 cells with the central memory T cell phenotype under Th2‐polarizing conditions.  相似文献   

17.
18.
Toll‐like receptors (TLRs) initiate inflammatory responses that may play a role in disease progression in patients infected with hepatitis C virus (HCV). TLR2 and TLR4 surface expression were assessed on CD14+ monocytes, CD4+ and CD8+ T cells in treatment naïve patients with chronic HCV infection with fibrosis, without fibrosis, co‐infected with human immunodeficiency virus (HIV), and in healthy controls. Increased expression of TLR2 was found on monocytes in HCV‐infected patients with fibrosis (p < 0.01), co‐infected with HIV (p = 0.03), and possibly in patients without fibrosis (p = 0.07) when compared to controls. TLR2 positive CD4+ and CD8+ T cells were upregulated in patients with fibrosis only (p < 0.01). However, expression of TLR2 was not associated with T cell activation. TLR4 expression was similar in patients and healthy controls. In conclusion, TLR2 expression on monocytes and the frequency of T cells expressing TLR2 may contribute to disease progression in chronic HCV infection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号