首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
Activation induced cell death (AICD) via Fas/FasL is the primary homeostatic molecular mechanism employed by the immune system to control activated T-cell responses and promote tolerance to self-antigens. We herein investigated the ability of a novel multimeric form of FasL chimeric with streptavidin (SA-FasL) having potent apoptotic activity to induce apoptosis in diabetogenic T cells and modulate insulin-dependent type 1 diabetes (IDDM) in an adoptive transfer model. Diabetogenic splenocytes from NOD/Lt females were co-cultured in vitro with SA-FasL, SA control protein, or alone without protein, and adoptively transferred into NOD/Lt-Rag1(null) recipients for diabetes development. All animals receiving control (Alone: n=16 or SA: n=17) cells developed diabetes on average by 6 weeks, whereas animals receiving SA-FasL-treated (n=25) cells exhibited significantly delayed progression (p<.001) and decreased incidence (70%). This effect was associated with an increase in CD4(+)CD25(+) T cells and correlated with FoxP3 expression in pancreatic lymph nodes. Extracorporeal treatment of peripheral blood lymphocytes using SA-FasL during disease onset represents a novel approach that may alter the ability of pathogenic T cells to mediate diabetes and have therapeutic utility in clinical management of IDDM.  相似文献   

2.
To improve the feasibility of in vivo monitoring of autoreactive T cells in the diabetogenic process, we generated T1 and T2 doubly transgenic non-obese diabetic (NOD) mice in which transgenic human CD90 (hCD90) is simultaneously expressed on IFN-gamma-producing cells or murine CD90.1 (mCD90.1) is expressed on IL-4-producing cells. These transgenic NOD mice develop diabetes with the same kinetics and incidence as wild type NOD mice, permitting the physiological characterization of CD4(+)hCD90(+) cells, which represent T(H)1 cells in lymphoid organs and at the site of insulitis. CD4(+)hCD90(+) cells had a higher capacity to secret IFN-gamma than CD4(+)hCD90(-) cells in an autoantigen-specific manner. Transgenic mice treated with GAD65 plasmid were protected from autoimmune diabetes, and had a lower number of CD4(+)hCD90(+) cells, confirming the pathogenic role of CD4(+)hCD90(+) cells in autoimmune diabetes. To further investigate the effect of IL-12 on the development of T(H)1 cells in autoimmune diabetes, we crossed these doubly transgenic mice to IL-12p35-deficient NOD mice. Despite severe disturbance of diabetes in p35(-/-) mice, the frequency of T(H)1 cells in these mice was slightly lower than in wild type mice. These data support the pathological role of IL-12 in autoimmune diabetes and suggest the existence an IL-12-independent pathway of T(H)1 development.  相似文献   

3.
Immunization with mycobacterial preparation such as Bacille Calmette-Guerin (BCG) or complete Freund's adjuvant (CFA) prevents the onset and recurrence of type 1 diabetes in non-obese diabetic (NOD) mice. In this study, we explored the mechanism underlying the down-regulation of diabetogenic T cells by BCG treatment. We found that the potential of splenocytes from BCG-immunized diabetic NOD mice to adoptively transfer diabetes was significantly impaired. BCG immunization sequentially induced the production of TNF-alpha, IFN-gamma and IL-4 by splenocytes, increased the expression of Fas(high) (Apo-1/CD95), Fas ligand (FasL, CD95L) and TNF receptor (TNFR) on T cells leading to T cell apoptosis. The primary role of IFN-gamma and TNF-alpha in BCG-immunotherapy was demonstrated by (i) reversing the immune regulatory effect of BCG by in vivo treatment with neutralizing anti-cytokine antibodies, (ii) inducing effect similar to BCG by treatment with these cytokines. We show that Fas and TNF are two pathways in BCG-induced apoptosis of diabetogenic T cells, since in vitro blocking FasL or TNFR1 with antibody reduced T cell apoptosis and increased T cell proliferative response. In addition, TNF-alpha and agonistic anti-Fas antibody had a synergistic effect on the in vitro apoptosis of diabetogenic T cells. Our results suggest that BCG down-regulates destructive autoimmunity by TNF-alpha/IFN-gamma-induced apoptosis of diabetogenic T cells through both Fas and TNF pathways. These studies provide a novel mechanism for blocking disease recurrence and immune modulating effect of BCG immunization in type 1 diabetes.  相似文献   

4.
Wang R  Han G  Wang J  Song L  Chen G  Xu R  Wang L  Li X  Shen B  Li Y 《Molecular immunology》2008,45(14):3814-3817
Our previous studies have shown that Foxp3 under the control of IFN-gamma promoter (IgammaP-Foxp3) converts pathogenic CD4(+)Th1 cells into regulatory T cells (Tregs), which control diabetes in non-obese diabetic (NOD) mice. Here, we tested the other hypothesis that transient expression of Foxp3 as controlled by the transient expression of IL-12Rbeta2 during Th1 cell derivation is sufficient to convert cells to Tregs. Foxp3, under the control of IL-12Rbeta2 promoter (Ibeta2P), was lentivirally transduced into na?ve CD4(+)T cells from NOD mice. Ibeta2P-Foxp3-transduced CD4(+)T cells could not effectively suppress the incidence of diabetes when transferred into NOD mice. Furthermore, we found that Ibeta2P-Foxp3-transduced CD4(+)T cells, stimulated by a high dose of autoantigen, did not suppress CD4(+)T cell activation, produce CD4(+)Foxp3(+)Tregs, and up-regulate CTLA4 expression. These results suggest that Ibeta2P cannot mediate Foxp3 to convert pathogenic CD4(+)Th1 cells into Tregs which control diabetes in NOD mice.  相似文献   

5.
Immunomodulatory dendritic cells (DCs) that induce antigen-specific T-cell tolerance upon in vivo adoptive transfer are promising candidates for immunotherapy of autoimmune diseases. The feasibility of such a strategy has recently proved its efficacy in animal models of allotransplantation and experimental allergic encephalitis, but the effect in inflammatory bowel disease has not yet been demonstrated. In severe combined immunodeficient (SCID) mice, adoptively transferred CD4(+) CD25(-) T cells repopulate the lymphoid tissues and lead to development of chronic colitis characterized by CD4(+) T-cell proliferation against enterobacterial extract in vitro. In this model, we adoptively transferred in-vitro-generated bone-marrow-derived DCs exposed to interleukin-10 (IL-10) and an enterobacterial extract. We show that these cells are CD11c positive with intermediate expression of CD40, CD80 and CD86 and have a diminished secretion of IL-6, IL-12 p40/70, tumour necrosis factor-alpha and keratinocyte-derived chemokine (KC) compared to DCs treated with enterobacterial extract alone. In vivo, these cells prevented weight loss in SCID mice adoptively transferred with CD4(+) CD25(-) T cells, resulted in a lower histopathology colitis score and tended to result in higher serum levels of IL-1alpha, IL-10, IL-12, IL-13, IL-17, KC and monokine induced by interferon-gamma (MIG). These data underscore the potential of using immunomodulatory DCs to control inflammatory bowel disease and demonstrate its potential use in future human therapeutic settings.  相似文献   

6.
Administration of autoantigen can be of value for prevention of autoimmune diabetes and it has been speculated that the control point of dendritic cells (DC) for the induction of peripheral tolerance may be highly relevant. We examined the properties of DC associated with immune suppression in NOD mice by insulin injection subcutaneously and the ability of which to suppress diabetes transfer by diabetogenic effector cells in secondary NOD-SCID recipients. Our data showed that the surface expressions of MHC II and CD86 on NOD-derived DC were increased after insulin treatment compared with those on PBS controlled mice. The dendritic cells with a mature phenotype and increased MLR stimulation adoptively transferred immune tolerogenic effects in secondary NOD-SCID mice, which were associated with significant greater IL-10, TGF-beta production and CD4(+)CD25(+)T differentiation from splenocytes compared with NOD-SCID control recipients. Moreover, treatment with DC remarkably decreased the incidence of diabetes in secondary recipients. These results suggest that a subtype of DC generated by insulin subcutaneous treated NOD mice confers potential protection from diabetes through polarizing the immune response towards a Th2 regulatory pathway.  相似文献   

7.
During the past decade, glutamic acid decarboxylase (GAD) has been considered a crucial beta-cell autoantigen involved in type 1 diabetes in the NOD mouse and human. Recently, the etiological role of GAD has remained controversy. In the NOD mouse, some previous studies argued in favor of a regulatory role for GAD-specific CD4+ T cells, and no diabetogenic CD8+ T cells specific for GAD have been identified so far, discrediting the importance of GAD in beta-cell injury. Here, we identified, in the NOD model, a relevant GAD CD8+ T cell epitope (GAD(90-98)) using immunization with a plasmid encoding GAD, a protocol relying on in vivo processing of peptides from the autoantigenic protein. In pancreatic lymph nodes of na?ve female NOD mice, CD8+ T lymphocytes recognizing GAD(90-98) peptide were detected during the initial phase of invasive insulitis (between 4 and 8 weeks of age), suggesting an important role for these cells in the first stage of the disease. GAD(90-98) specific CD8+ lymphocytes lysed efficiently islet cells in vitro and transferred diabetes into NOD(SCID) mice (100%). Finally, diabetes was accelerated greatly in 3-week-old female NOD mice injected i.p. with GAD(90-98), strengthening the role of GAD-specific CTLs in diabetes pathogenesis.  相似文献   

8.
The non-obese diabetic (NOD) mouse is a prevalent disease model of type 1 diabetes. Immune aberrations that cause and propagate autoimmune insulitis in these mice are being continually debated, with evidence supporting both dominance of effector cells and insufficiency of suppressor mechanisms. In this study we assessed the behaviour of NOD lymphocytes under extreme expansion conditions using adoptive transfer into immunocompromised NOD.SCID (severe combined immunodeficiency) mice. CD4+ CD25+ T cells do not cause islet inflammation, whereas splenocytes and CD4+ CD25 T cells induce pancreatic inflammation and hyperglycaemia in 80–100% of the NOD.SCID recipients. Adoptively transferred effector T cells migrate to the lymphoid organs and pancreas, proliferate, are activated in the target organ in situ and initiate inflammatory insulitis. Reconstitution of all components of the CD4+ subset emphasizes the plastic capacity of different cell types to adopt effector and suppressor phenotypes. Furthermore, similar immune profiles of diabetic and euglycaemic NOD.SCID recipients demonstrate dissociation between fractional expression of CD25 and FoxP3 and the severity of insulitis. There were no evident and consistent differences in diabetogenic activity and immune reconstituting activity of T cells from pre-diabetic (11 weeks) and new onset diabetic NOD females. Similarities in immune phenotypes and variable distribution of effector and suppressor subsets in various stages of inflammation commend caution in interpretation of quantitative and qualitative aberrations as markers of disease severity in adoptive transfer experiments.  相似文献   

9.
There is increasing evidence that human hematopoietic stem cells can develop into lymphocytes expressing T cell surface markers in the organ culture of murine embryonic thymic lobes. If human T cells with functional maturity are inducible from human stem cells in the mouse, it may be a useful model to investigate human T cell development and the human immune response in vivo. To approach this, we produced a hybrid cluster of murine fetal thymic epithelial cells and human cord blood-derived CD34(+) cells (hu/m cluster) using reaggregate thymic organ culture, and subsequently implanted it under the kidney capsule of NOD/SCID mice. The implanted hu/m cluster grew in volume under the kidney capsule and contained increased numbers of CD4(+)CD8(+)cells as well as CD4 or CD8 single-positive cells with low CD1a expression. These lymphocytes were also shown to possess activity for producing IL-2 and IL-4. Characteristics similar to human T cells also developed in the thymus of newly established mice lacking NK activity from NOD/SCID mice. These results indicate that functionally mature T cells can develop in vivo from human hematopoietic progenitors in the murine environment composed of thymic epithelial cells.  相似文献   

10.
Histological techniques were used to identify antigen-presenting cells (APC) in adoptively transferred diabetes in NOD mice and Ins-HA transgenic mice, and in spontaneously diabetic NOD mice. In adoptively transferred disease, CD4+ Tcells and F4/80+ macrophages dominated early infiltrates. By contrast, in spontaneously developing diabetes in NOD mice, lymphocytic infiltrates appeared to be well organized around a network of VCAM-1+ NLDC-145+ ICAM-1+ dendritic cells. Thus, the primary APC spontaneous autoimmune disease appears to be the strongly stimulatory dendritic cell rather than the normally resident macrophage. Next, we used chimeric animals to demonstrate that insulitis and diabetes could occur even when responding T cells were unable to recognize islet-specific antigen directly on β cells. Altogether, the results demonstrate that immune-mediated damage does not require direct contact between CD4+ T cells and β cells. Moreover, despite the induction of ICAM-1, VCAM-1, and class II on vascular endothelium near islet infiltrates, these experiments show that recruitment of lymphocytes occurs even when antigen presentation is not possible on vascular endothelium.  相似文献   

11.
The method described herein provides a novel strategy for the rapid identification of CD8(+) T cell epitopes relevant to type 1 diabetes in the context of the nonobese diabetic (NOD) mouse model of disease. Obtaining the large number of antigen-sensitive monospecific T cells required for conventional antigen discovery methods has historically been problematic due to (1) difficulties in culturing autoreactive CD8(+) T cells from NOD mice and (2) the large time and resource investments required for the generation of transgenic NOD mice. We circumvented these problems by exploiting the rapid generation time of retrogenic (Rg) mice, relative to transgenic mice, as a novel source of sensitive monospecific CD8(+) T cells, using the diabetogenic AI4 T cell receptor on NOD.SCID and NOD.Rag1(-/-) backgrounds as a model. Rg AI4 T cells are diabetogenic in vivo, demonstrating for the first time that Rg mice are a means for assessing the pathogenic potential of CD8(+) T cell receptor specificities. In order to obtain a sufficient number of Rg CD8(+) T cells for antigen screens, we optimized a method for their in vitro culture that resulted in a approximately 500 fold expansion. We demonstrate the high sensitivity and specificity of expanded Rg AI4 T cells in the contexts of (1) specific peptide challenge, (2) islet cytotoxicity, and (3) their ability to resolve previously defined mimotope candidates from a positional scanning peptide library. Our method is the first to combine the speed of Rg technology with an optimized in vitro Rg T cell expansion protocol to enable the rapid discovery of T cell antigens.  相似文献   

12.
It is well established that viral, parasitic or bacterial infections can prevent type 1 diabetes (T1D) occurrence in non-obese diabetic (NOD) mice. On the other hand, defects in CD4(+) Regulatory T cell (Treg) numbers and/or function contribute to T1D aetiology in NOD mice and in humans. In this work, we formally tested whether the protective role of the bacterial product lipopolysaccharide (LPS) on diabetes incidence results from enhanced Treg activity. We first report that weekly administration of LPS to young prediabetic NOD mice, presenting or not insulitis at the time of treatment, afforded full protection from diabetes. Taking advantage from the high but incomplete penetrance of diabetes in NOD mice raised in specific pathogen free (SPF) conditions we compared untreated disease-free old animals with gender- and age-matched LPS-treated mice. Histological and flow cytometry analysis indicated that LPS treatment did not prevent islet infiltration or priming of diabetogenic T cells but increased Foxp3(+) and CD103(+) Treg frequency and numbers. By performing adoptive transfer experiments into alymphoid NOD/SCID recipients, we further demonstrated that CD25(+) cells from LPS-treated NOD mice, but not from naturally protected animals, maintained diabetogenic cells at check. Our study suggests that T cell regulation represents a cellular mechanism to explain the 'hygiene hypothesis' and reinforces the notion that immune activity consolidates dominant tolerance.  相似文献   

13.
IFN-γ is generally believed to be important in the autoimmune pathogenesis of type 1 diabetes (T1D). However, the development of spontaneous β-cell autoimmunity is unaffected in NOD mice lacking expression of IFN-γ or the IFN-γ receptor (IFNγR), bringing into question the role IFN-γ has in T1D. In the current study, an adoptive transfer model was employed to define the contribution of IFN-γ in CD4(+) versus CD8(+) T cell-mediated β-cell autoimmunity. NOD.scid mice lacking expression of the IFNγR β chain (NOD.scid.IFNγRB(null) ) developed diabetes following transfer of β cell-specific CD8(+) T cells alone. In contrast, β cell-specific CD4(+) T cells alone failed to induce diabetes despite significant infiltration of the islets in NOD.scid.IFNγRB(null) recipients. The lack of pathogenicity of CD4(+) T-cell effectors was due to the resistance of IFNγR-deficient β cells to inflammatory cytokine-induced cell death. On the other hand, CD4(+) T cells indirectly promoted β-cell destruction by providing help to CD8(+) T cells in NOD.scid.IFNγRB(null) recipients. These results demonstrate that IFN-γR may play a key role in CD4(+) T cell-mediated β-cell destruction.  相似文献   

14.
Administration of autoantigen can be of value for prevention of autoimmune diabetes and it has been speculated that the control point of dendritic cells (DC) for the induction of peripheral tolerance may be highly relevant. We examined the properties of DC associated with immune suppression in NOD mice by insulin injection subcutaneously and the ability of which to suppress diabetes transfer by diabetogenic effector cells in secondary NOD-SCID recipients. Our data showed that the surface expressions of MHC II and CD86 on NOD-derived DC were increased after insulin treatment compared with those on PBS controlled mice. The dendritic cells with a mature phenotype and increased MLR stimulation adoptively transferred immune tolerogenic effects in secondary NOD-SCID mice, which were associated with significant greater IL-10, TGF-β production and CD4+CD25+T differentiation from splenocytes compared with NOD-SCID control recipients. Moreover, treatment with DC remarkably decreased the incidence of diabetes in secondary recipients. These results suggest that a subtype of DC generated by insulin subcutaneous treated NOD mice confers potential protection from diabetes through polarizing the immune response towards a Th2 regulatory pathway.  相似文献   

15.
Although regulatory T cells (Tregs) are well described, identifying autoaggressive effector T cells has proven more difficult. However, we identified CD4loCD40+ (Th40) cells as being necessary and sufficient for diabetes in the NOD mouse model. Importantly, these cells are present in pancreata of prediabetic and diabetic NOD mice, and Th40 cells but not CD4+CD40(-) T cells transfer progressive insulitis and diabetes to NOD.scid recipients. Nonobese-resistant (NOR) mice have the identical T cell developmental background as NOD mice, yet they are diabetes-resistant. The seminal issue is how NOR mice remain tolerant to diabetogenic self-antigens. We show here that autoaggressive T cells develop in NOR mice and are confined to the Th40 subset. However, NOR mice maintain Treg numbers equivalent to their Th40 numbers. NOD mice have statistically equal numbers of CD4+CD25+forkhead box P3+intrinsic Tregs compared with NOR or nonautoimmune BALB/c mice, and NOD Tregs are equally as suppressive as NOR Tregs. A critical difference is that NOD mice develop expanded numbers of Th40 cells. We suggest that a determinant factor for autoimmunity includes the Th40:Treg ratio. Mechanistically, NOD Th40 cells have low susceptibility to Fas-induced cell death and unlike cells from NOR and BALB/c mice, have predominantly low Fas expression. CD40 engagement of Th40 cells induces Fas expression but further confers resistance to Fas-mediated cell death in NOD mice. A second fundamental difference is that NOD Th40 cells undergo much more rapid homeostatic expansion than Th40 cells from NOR mice.  相似文献   

16.
Autoimmune diabetes is characterized by an early mononuclear infiltration of pancreatic islets and later selective autoimmune destruction of insulin-producing beta cells. Lymphocyte homing receptors have been considered candidate targets to prevent autoimmune diabetes. L-selectin (CD62L) is an adhesion molecule highly expressed in naive T and B cells. It has been reported that blocking L-selectin in vivo with a specific antibody (Mel-14) partially impairs insulitis and diabetes in autoimmune diabetes-prone non-obese diabetic (NOD) mice. In the present study we aimed to elucidate whether genetic blockade of leukocyte homing into peripheral lymph nodes would prevent the development of diabetes. We backcrossed L-selectin-deficient mice onto the NOD genetic background. Surprisingly NOD/L-selectin-deficient mice exhibited unaltered islet mononuclear infiltration, timing of diabetes onset and cumulative incidence of spontaneous diabetes when compared to L-selectin-sufficient animals. CD4, CD8 T cells and B cells were present in islet infiltrates from 9-week-old L-selectin-sufficient and -deficient littermates. Moreover, total splenocytes from wild-type, heterozygous or NOD/L-selectin-deficient donor mice showed similar capability to adoptively transfer diabetes into NOD/SCID recipients. On the other hand, homing of activated, cloned insulin-specific autoaggressive CD8 T cells (TGNFC8 clone) is not affected in NOD/L-selectin-deficient recipients. We conclude that L-selectin plays a small role in the homing of autoreactive lymphocytes to regional (pancreatic) lymph nodes in NOD mice.  相似文献   

17.
In general, gamma interferon (IFN-gamma)-producing CD4(+) Th1 cells are important for the immunological control of intracellular pathogens. We previously demonstrated an association between parasite-specific induction of IFN-gamma responses and resistance to the intracellular protozoan Trypanosoma cruzi. To investigate a potential causal relationship between Th1 responses and T. cruzi resistance, we studied the ability of Th1 cells to protect susceptible BALB/c mice against virulent parasite challenges. We developed immunization protocols capable of inducing polarized Th1 and Th2 responses in vivo. Induction of parasite-specific Th1 responses, but not Th2 responses, protected BALB/c mice against virulent T. cruzi challenges. We generated T. cruzi-specific CD4(+) Th1 and Th2 cell lines from BALB/c mice that were activated by infected macrophages to produce their corresponding cytokine response profiles. Th1 cells, but not Th2 cells, induced nitric oxide production and inhibited intracellular parasite replication in T. cruzi-infected macrophages. Despite the ability to inhibit parasite replication in vitro, Th1 cells alone could not adoptively transfer protection against T. cruzi to SCID mice. In addition, despite the fact that the adoptive transfer of CD4(+) T lymphocytes was shown to be necessary for the development of immunity protective against primary T. cruzi infection in our SCID mouse model, protective secondary effector functions could be transferred to SCID mice from memory-immune BALB/c mice in the absence of CD4(+) T lymphocytes. These results indicate that, although CD4(+) Th1 cells can directly inhibit intracellular parasite replication, a more important role for these cells in T. cruzi systemic immunity may be to provide helper activity for the development of other effector functions protective in vivo.  相似文献   

18.
19.
Chemokines and their receptors are part of polarized T helper 1 (Th1)- and Th2-mediated immune responses which control trafficking of immunogenic cells to sites of inflammation. The chemokine stromal cell-derived factor-1 CXCL-12 (SDF-1) and its ligand the CXCR4 chemokine receptor are important regulatory elements. CXCR4 is expressed on the surface of CD4(+) T cells, dendritic cells and B lymphocytes. Levels of CXCR4 mRNA were increased in pancreatic lymph nodes (PLNs) of 4-week-old non-obese diabetic (NOD) mice in comparison to Balb/C mice. However, a significant reduction of CXCR4 was noticed at 12 weeks both at the mRNA and protein levels while expression increased in the inflamed islets. The percentage of SDF-1 attracted splenocytes in a transwell chemotaxis assay was significantly increased in NOD versus Balb/c mice. SDF-1 attracted T cells completely abolished the capacity of diabetogenic T cells to transfer diabetes in the recipients of an adoptive cell co-transfer. When T splenocytes from NOD females treated with AMD3100, a specific CXCR4 antagonist, were mixed with diabetogenic T cells during adoptive cell co-transfer experiments, prevalence of diabetes in the recipients rose from 33% to 75% (P < 0.001). This effect was associated with an increase of interferon (IFN)-gamma mRNA and a reduction of interleukin (IL)-4 mRNA levels both in PLNs and isolated islets. AMD3100 also reduced IL-4 and IL-10 production of plate-bound anti-CD3 and anti-CD28-stimulated splenocytes. Immunofluorescence studies indicated that AMD3100 reduced the number of CXCR4(+) and SDF-1 positive cells in the inflamed islets. We can conclude that the CXCL-12/CXCR4 pathway has protective effects against autoimmune diabetes.  相似文献   

20.
Diabetes was dramatically accelerated in non-obese diabetic (NOD) transgenic mice that expressed interleukin-2 (IL-2) in their β cells. A single cross to C57BL/6 completely prevented this effect and a further backcross to the NOD genetic background showed that at least two diabetes susceptibility loci (Idd1s and Idd3/10s) were required for the diabetes acceleration. T cells activated to islet antigens were not circulating in the mice. The accelerating effect of IL-2 was present, but decreased, in NOD mice that lacked CD8+ T cells as well as in NOD SCID mice. The implications are that in the NOD genetic background, the production of cytokines, such as IL-2, by islet-specific CD4+ T cells can lead to β cell damage and diabetes and that CD8+ T cells may have a role in accelerating diabetes onset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号