首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infectious diseases due to microbes of high pathogenic potential remain a constant and variable threat for human and animal health. The emergence of new diseases or the re-emergence of diseases that were previously under control complicates the situation to date. Infectious disease research, which has undergone a dramatic progress in understanding disease mechanisms such as host-pathogen interactions, is now focusing increasingly on new strategies for prevention and therapy. Significant progress has been achieved in the development of delivery systems for protective heterologous protein antigens and in veterinary vaccinology. A landmark of infectious diseases research is the chemical synthesis of genomes, a major new field of research referred to as "synthetic biology", that to date has resulted in the chemical synthesis of the poliovirus and of phage phiX174 genomes and their expression as infectious viruses. On the molecular level the evolution of pathogens and mechanisms of genome flexibility, which account for several pathogenic properties of infectious agents, have received increased attention. Bacterial toxins are an additional threat to human health and their interference with host cells and cellular functions is receiving more attention.  相似文献   

2.
Emerging and reemerging infectious diseases, drug-resistant bacteria and nosocomial infection are becoming increasingly serious social problems. To control infectious diseases, it is important to develop effective therapies and to achieve complete prevention of pathogen transmission. For these purposes, rapid detection of pathogenic microorganisms is essential. Recent development and technical innovation in laboratory tests and diagnosis for infectious diseases are remarkable. New techniques such as antigen detection and genetic diagnosis, neither of which require conventional culture, have been intensively developed and introduced into clinical practice. These methods are now widely accepted as effective diagnostic tools because of their high specificity, high sensitivity and rapidity. In this article, we describe the burden of medical expenses under the law on novel infectious diseases and medical reimbursement for diagnostic tests for these diseases.  相似文献   

3.
A major challenge for the future is the development of effective vaccines against chronic infections and the application of therapeutic immunization to the treatment of noninfectious diseases, such as cancer, allergy and autoimmune disorders. In recent years, many of the immunological principles governing the immune response to infectious agents have been clarified and can now be exploited for the rational design of new and better vaccines. As an elucidative example, this review will describe the key immunogenic determinants of viruses and discuss how they can be harnessed for the development of tailor-made vaccines against a wide array of human diseases.  相似文献   

4.
Mycoplasmas and ureaplasmas as neonatal pathogens   总被引:12,自引:0,他引:12       下载免费PDF全文
The genital mycoplasmas represent a complex and unique group of microorganisms that have been associated with a wide array of infectious diseases in adults and infants. The lack of conclusive knowledge regarding the pathogenic potential of Mycoplasma and Ureaplasma spp. in many conditions is due to a general unfamiliarity of physicians and microbiology laboratories with their fastidious growth requirements, leading to difficulty in their detection; their high prevalence in healthy persons; the poor design of research studies attempting to base association with disease on the mere presence of the organisms in the lower urogenital tract; the failure to consider multifactorial aspects of diseases; and considering these genital mycoplasmas only as a last resort. The situation is now changing because of a greater appreciation of the genital mycoplasmas as perinatal pathogens and improvements in laboratory detection, particularly with regard to the development of powerful molecular nucleic acid amplification tests. This review summarizes the epidemiology of genital mycoplasmas as causes of neonatal infections and premature birth; evidence linking ureaplasmas with bronchopulmonary dysplasia; recent changes in the taxonomy of the genus Ureaplasma; the neonatal host response to mycoplasma and ureaplasma infections; advances in laboratory detection, including molecular methods; and therapeutic considerations for treatment of systemic diseases.  相似文献   

5.
Bacteriophages (hence termed phages) are viruses that target bacteria and have long been considered as potential future treatments against antibiotic-resistant bacterial infection. However, the molecular nature of phage interactions with bacteria and the human host has remained elusive for decades, limiting their therapeutic application. While many phages and their functional repertoires remain unknown, the advent of next-generation sequencing has increasingly enabled researchers to decode new lytic and lysogenic mechanisms by which they attack and destroy bacteria. Furthermore, the last decade has witnessed a renewed interest in the utilization of phages as therapeutic vectors and as a means of targeting pathogenic or commensal bacteria or inducing immunomodulation. Importantly, the narrow host range, immense antibacterial repertoire, and ease of manipulating phages may potentially allow for their use as targeted modulators of pathogenic, commensal and pathobiont members of the microbiome, thereby impacting mammalian physiology and immunity along mucosal surfaces in health and in microbiome-associated diseases. In this review, we aim to highlight recent advances in phage biology and how a mechanistic understanding of phage–bacteria–host interactions may facilitate the development of novel phage-based therapeutics. We provide an overview of the challenges of the therapeutic use of phages and how these could be addressed for future use of phages as specific modulators of the human microbiome in a variety of infectious and noncommunicable human diseases.  相似文献   

6.
Fundamental advances in the fields of molecular biology and immunology have facilitated investigation of the autoimmune blistering disorders. Recently, the use of human autoantibodies has helped to identify biologically important adhesion molecules of the skin, and the pathogenic mechanisms involved in bullous skin diseases are now being precisely defined.  相似文献   

7.
The present status and future prospect of the molecular diagnostic tests   总被引:2,自引:0,他引:2  
Assays for DNA or RNA sequences to diagnose infectious, neoplastic and genetic diseases have been widely used through recent progress in the molecular biology and biotechnology, and are now essential in care of patients under the advanced medicine through earlier and more accurate diagnosis. Automated systems have been developed for amplification and detection of nucleic acid sequence for infectious agents, using various nucleic acid amplification technology such as PCR. A fully automated PCR system and automated extraction of specific sequence for infectious agents such as hepatitis C virus RNA has been developed. These automated systems have provided improvement of not only assay efficiency but also quality control of the tests and have contributed to the standardization of them. Importance of development of systems for quality assessment and laboratory accreditation has been emphasized, particularly in those that still have been performed with manual methods. Based on the information on the genome sequence as the outcome of the human genome project, functions of genes and proteins have been studied by post-genomics such as expression profiling using DNA microarray, proteomics, single nucleotide polymorphisms analysis, coupled with bioinformatics. Along with advances in pharmacogenomics, these studies have raised the prospect of the development of tests for individualized medicine based on genetic information such as those predicting individual susceptibility to diseases for prevention and responsiveness to drugs for choice of treatment. For practice of such medicine, each genetic information and tests for it must be carefully evaluated and determined whether it is appropriate for cost-effective medicine through contributions to efficient process of decision-makings on patient care for prevention or avoidance of diseases and thus to cost savings.  相似文献   

8.
The contribution of non-MHC genes to susceptibility to autoimmune diseases.   总被引:3,自引:0,他引:3  
Genetic studies of experimental models of autoimmune diseases, including systemic lupus-like syndromes and organ-specific autoimmunity, provide major information on genetic control of autoimmune diseases. In addition to genes known to be linked to the major histocompatibility complex (MHC), these studies point to multiple genes located outside the MHC that influence the onset and the progression of autoimmune diseases. Identification of these genes and of their interrelationships is now a major task that will be facilitated by recent progress in molecular biology and gene mapping. Among candidate genes, antigen-receptor genes (i.e., immunoglobulin- and T-cell receptor genes) most likely contribute an important part of the autoimmune susceptibility in several of these animal models. Available linkage data suggest a similar involvement of these antigen-receptor genes in several human autoimmune diseases. In addition to a better understanding of pathogenic mechanisms associated with autoimmunity, the knowledge of these disease-predisposing genes is expected to permit a better classification of often complex syndromes as well as the design of new treatments.  相似文献   

9.
Chronic inflammation is now known to contribute to several forms of human cancer, with an estimated 20% of adult cancers attributable to chronic inflammatory conditions caused by infectious agents, chronic non-infectious inflammatory diseases and/or other environmental factors. Indeed, chronic inflammation is now regarded as an 'enabling characteristic' of human cancer. The aim of this review is to summarize the current literature on the evidence for a role for chronic inflammation in prostate cancer aetiology, with a specific focus on recent advances regarding the following: (i) potential stimuli for prostatic inflammation; (ii) prostate cancer immunobiology; (iii) inflammatory pathways and cytokines in prostate cancer risk and development; (iv) proliferative inflammatory atrophy (PIA) as a risk factor lesion to prostate cancer development; and (v) the role of nutritional or other anti-inflammatory compounds in reducing prostate cancer risk.  相似文献   

10.
Lipid-specific T cells are important participants in human immune responses. Recognition of lipid antigens contributes to host defense against pathogens that can cause debilitating diseases, including mycobacterial, viral, and parasitic infections. Lipid-specific T cells also play important roles in various autoimmune diseases, atherosclerosis, and in tumor surveillance. A better understanding of the mechanisms that regulate lipid-reactive T-cell functions will enable the development of novel therapies across a wide range of diseases. In recent years, our laboratory has investigated lipid antigen specificities, mechanisms of lipid antigen presentation, molecular interaction of lipid antigens with CD1 antigen-presenting molecules, and the pathogenic and regulatory functions of lipid-specific T cells in a variety of disease settings. In this review, we present recent data that illustrate the critical role played by lipid-specific immune responses in host protection, with a particular focus on human studies.  相似文献   

11.
Interactions between bacteria and fungi are well known, but it is often underestimated how intimate and decisive such associations can be with respect to behaviour and survival of each participating organism. In this article we review recent advances in molecular bacterium–fungus interactions, combining the data of different model systems. Emphasis is given to the positive or negative consequences these interactions have on the microbe accommodating plants and animals. Intricate mechanisms of antagonism and tolerance have emerged, being as important for the biological control of plants against fungal diseases as for the human body against fungal infections. Bacterial growth promoters of fungal mycelium have been characterized, and these may as well assist plant-fungus mutualism as disease development in animals. Some of the toxins that have been previously associated with fungi are actually produced by endobacteria, and the mechanisms that lie behind the maintenance of such exquisite endosymbioses are fascinating. Bacteria do cause diseases in fungi, and a synergistic action between bacterial toxins and extracellular enzymes is the hallmark of such diseases. The molecular study of bacterium–fungus associations has expanded our view on microbial communication, and this promising field shows now great potentials in medicinal, agricultural and biotechnological applications.  相似文献   

12.
Recent advances in molecular medicine have shown that soluble MHC-multimers can be valuable tools for both analysis and modulation of antigen-specific immune responses in vitro and in vivo. In this review, we describe the use of dimeric human and mouse major histocompatibility complexes, MHC-Ig, as part of an artificial Antigen-Presenting Cell (aAPC). MHC-Ig-based aAPC and its derivatives represent an exciting new platform technology for measuring and manipulating immune responses in vitro as well as in vivo. This new technology has the potential to help overcome many of the obstacles associated with limitations in current antigen-specific approaches of immunotherapy for the treatment of cancer, infectious diseases and autoimmunity.  相似文献   

13.
Cell death is a fundamental biological phenomenon that is essential for the survival and development of an organism. Emerging evidence also indicates that cell death contributes to immune defense against infectious diseases. Pyroptosis is a form of inflammatory programmed cell death pathway activated by human and mouse caspase-1, human caspase-4 and caspase-5, or mouse caspase-11. These inflammatory caspases are used by the host to control bacterial, viral, fungal, or protozoan pathogens. Pyroptosis requires cleavage and activation of the pore-forming effector protein gasdermin D by inflammatory caspases. Physical rupture of the cell causes release of the pro-inflammatory cytokines IL-1β and IL-18, alarmins and endogenous danger-associated molecular patterns, signifying the inflammatory potential of pyroptosis. Here, we describe the central role of inflammatory caspases and pyroptosis in mediating immunity to infection and clearance of pathogens.  相似文献   

14.
Through the advancement of biological and medical sciences and the application of modern technology, the disease burden imposed by viral, chlamydial and rickettsial disease has steadily decreased. Smallpox has been eradicated, poliomyelitis is under control in many countries, and measles, mumps and rubella viruses may eventually be eliminated in many developed countries. New and improved vaccines have also recently become available for rabies and hepatitis. These are major advancements. Not to be overshadowed however, are the developments which may lead to the prevention or control of other infectious diseases. For many agents, recently acquired knowledge relating to virology, replication, structural and genetic characteristics, and host responses to infection pave the way for disease intervention in numerous ways. For other agents, recent advances in molecular biology make possible new classes of effective vaccines. It is crucial that these advances be incorporated as soon as possible into effective public health programmes for developing as well as developed nations. Much work yet remains, particularly in the prevention and control of respiratory diseases, diarrhoeal diseases, vector-borne diseases and hepatitis. The WHO Viral Diseases Programme has a major role in supporting laboratory and field research on new technologies and intervention strategies, in disseminating technological advances through teaching and training, and in translating the newer knowledge into action programmes for the prevention and control of viral, chlamydial and rickettsial diseases.  相似文献   

15.
A century of conceptual and technological advances in infectious disease research has changed the face of medicine. However, there remains a lack of effective interventions and a poor understanding of host immunity to the most significant and complex pathogens, including malaria. The development of successful interventions against such intractable diseases requires a comprehensive understanding of host-pathogen immune responses. A major advance of the past decade has been a paradigm switch in thinking from the contemporary reductionist (gene-by-gene or protein-by-protein) view to a more holistic (whole organism) view. Also, a recognition that host-pathogen immunity is composed of complex, dynamic interactions of cellular and molecular components and networks that cannot be represented by any individual component in isolation. Systems immunology integrates the field of immunology with omics technologies and computational sciences to comprehensively interrogate the immune response at a systems level. Herein, we describe the system immunology toolkit and report recent studies deploying systems-level approaches in the context of natural exposure to malaria or controlled human malaria infection. We contribute our perspective on the potential of systems immunity for the rational design and development of effective interventions to improve global public health.  相似文献   

16.
Immune tolerance therapies are designed to reprogram immune cells in a highly specific fashion to eliminate pathogenic responses while preserving protective immunity. A concept that has tantalized immunologists for decades, the development of tolerance-inducing therapies, would revolutionize the management of a wide range of chronic and often debilitating diseases by obviating the need for lifelong immunosuppressive regimens. The advances of the past decade have provided a more detailed understanding of the molecular events associated with T-cell recognition and activation. Building on these advances, immunologists have demonstrated the feasibility of various tolerance-inducing approaches in small- and large-animal models of autoimmunity, allergy, and transplant graft rejection. Unprecedented opportunities to test these approaches in a variety of human diseases have now emerged. To capitalize on these advances, the National Institutes of Health recently established the Immune Tolerance Network (ITN), an international consortium of more than 70 basic and clinical immunologists dedicated to the evaluation of novel tolerance-inducing therapies and associated studies of immunologic mechanisms. By using a unique interactive approach to accelerate the development of clinical tolerance therapies, the ITN is partnering with the biotechnology and pharmaceutical industries to examine innovative tolerogenic approaches in a range of allergic and autoimmune diseases and to prevent graft rejection after transplantation. Two years since its inception, the ITN now has approximately 2 dozen clinical trials or tolerance assays studies ongoing or in later stages of protocol development. This report summarizes the rationale for emphasizing clinical research on immune tolerance and highlights the progress of the ITN.  相似文献   

17.
Novel concepts and methodologies are emerging that hold great promise for the directed improvement of food-related bacteria, specifically lactic acid bacteria. Also, the battle against food spoilage and pathogenic bacteria can now be fought more effectively. Here we describe recent advances in microbial physiology and genomic research of these organisms that enable novel strategies for obtaining safe, healthy, and good-tasting fermented food products.  相似文献   

18.
More than 25 years after their discovery, monoclonal antibodies are now the most rapid expanding pharmaceutical viable drugs in clinical trials. The emergence of these antibodies was made possible by the development of genetic recombinant techniques. It is now possible to obtain engineered antibodies: chimearic or humanized or fully human monoclonal antibodies via the use of phage display technology or of transgenic mice. These antibodies are tolerable to the human immune system and eleven have been approved for therapeutic by the US Food and Drug Administration (FDA), the majority of them in the past four years. At least an additional 400 monoclonal antibodies are in clinical trials to treat cancer, transplant rejection or to combat autoimmune or infectious diseases. Important advances have been made in the design of highly specific fragment antibodies, fused or not with drugs or radioisotopes, and in the large industrial scale production with different expression systems (bacteria, yeasts, mammalian cells and transgenic plants and animals). In the next future new molecular promising strategies will enhance affinity, stability and expression levels and reduce the price of these engineering monoclonal to permit their use to treat a large number of diseases.  相似文献   

19.
Microsporidia are obligate intracellular protozoan parasites that infect a broad range of vertebrates and invertebrates. These parasites are now recognized as one of the most common pathogens in human immunodeficiency virus-infected patients. For most patients with infectious diseases, microbiological isolation and identification techniques offer the most rapid and specific determination of the etiologic agent. This is not a suitable procedure for microsporidia, which are obligate intracellular parasites requiring cell culture systems for growth. Therefore, the diagnosis of microsporidiosis currently depends on morphological demonstration of the organisms themselves. Although the diagnosis of microsporidiosis and identification of microsporidia by light microscopy have greatly improved during the last few years, species differentiation by these techniques is usually impossible and transmission electron microscopy may be necessary. Immunfluorescent-staining techniques have been developed for species differentiation of microsporidia, but the antibodies used in these procedures are available only at research laboratories at present. During the last 10 years, the detection of infectious disease agents has begun to include the use of nucleic acid-based technologies. Diagnosis of infection caused by parasitic organisms is the last field of clinical microbiology to incorporate these techniques and molecular techniques (e.g., PCR and hybridization assays) have recently been developed for the detection, species differentiation, and phylogenetic analysis of microsporidia. In this paper we review human microsporidial infections and describe and discuss these newly developed molecular techniques.  相似文献   

20.
During the last decade, numerous studies have associated genetic variations in complement components and regulators with a number of chronic and infectious diseases. The functional characterization of these complement protein variants, in addition to recent structural advances in understanding of the assembly, activation and regulation of the AP C3 convertase, have provided important insights into the pathogenic mechanisms involved in some of these complement related disorders. This knowledge has identified potential targets for complement inhibitory therapies which are demonstrating efficacy and generating considerable expectation in changing the natural history of these diseases. Comprehensive understanding of the genetic and non-genetic risk factors contributing to these disorders will also result in targeting of the right patient groups in a stratified medicine approach through better diagnostics and individually tailored treatments, thereby improving management of patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号