首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was conducted to examine the effects of tramadol, an atypical opioid on convulsive behaviour in maximal electroshock (MES) seizure test on mice. Moreover, an attempt was also made to investigate the role of possible receptor mechanisms involved. MES seizures were induced via transauricular electrodes (60 mA, 0.2 sec). Seizure severity was determined by (1) the duration of tonic hindlimb extensor (THE) phase and by (2) mortality due to electroconvulsions. Intraperitoneal (i.p.) administration of tramadol dose-dependently (10-50 mg/kg) decreased the duration of THE phase of MES. The anticonvulsant effect of tramadol was antagonized by the opioid antagonists, naloxone in high dose, and MR2266, a selective kappa antagonist but not by naltrindole, a delta opioid antagonist. Coadministration of either gamma-aminobutyric acid (GABA)-ergic drugs (diazepam, GABA, muscimol and baclofen) or N-methyl-D-aspartate (NMDA) receptor antagonist, MK801 with tramadol augmented the anticonvulsant effect of the latter drug. By contrast, flumazenil, a central benzodiazepine (BZD) receptor antagonist, counteracted the diazepam-induced facilitation of anti-MES effect of tramadol. Similarly, delta-aminovaleric acid (DAVA), a GABAB receptor antagonist, abolished the facilitatory effect of baclofen, a GABAB agonist on anti-MES action of tramadol. These BZD-GABAergic antagonists, flumazenil or DAVA, on their own also antagonized the anti-MES effect of tramadol administered alone. No significant effect on mortality was observed in any of the studied groups. Taken together, the current results have demonstrated a possible role for multitude of important neurotransmitter systems, i.e., opioid (kappa), GABAA-BZD receptors system, GABAB receptors and NMDA channel involvement in the antielectroshock effect of tramadol in mice.  相似文献   

2.
The present study was designed to investigate the effect of U50488H, a prototype non-peptide kappa opioid agonist on convulsive behaviour using a maximal electroshock (MES) seizure test in mice. An attempt was also made to explore the role of possible receptors involved. MES seizures were induced via transauricular electrodes (60 mA, 0.2 s). Seizure severity was evaluated by means of two parameters, i.e., (1). duration of tonic hindlimb extensor phase and (2). mortality due to convulsions. Intraperitoneal (i.p.) administration of U50488H dose dependently (5-20 mg/kg) decreased the hindlimb extensor phase of MES. The anticonvulsant effect of U50488H was attenuated by the general opioid antagonist, naloxone at a high dose, and by MR2266, a selective kappa antagonist, but not by naltrindole, a delta antagonist. Coadministration of gamma-aminobutyric acid (GABA)ergic drugs (diazepam, GABA, muscimol, and baclofen) and the N-methyl-D-aspartate (NMDA) receptor antagonist, dizocilpine (MK801), with U50488H augmented the anticonvulsant effect of the latter drug in mice. On the other hand, flumazenil, a central benzodiazepine (BZD) receptor antagonist, reversed the protective effect of diazepam and similarly, delta-aminovaleric acid (DAVA), a GABA(B) receptor antagonist, blocked the protective effect of baclofen, a GABA(B) agonist on the anti-MES action of U50488H. These BZD-GABAergic antagonists, namely, flumazenil or DAVA, on their own also counteracted the anti-electroshock seizure effect of U50488H given alone. However, mortality was not significantly altered in any of the above animal groups. Taken together, the findings have shown a possible role for multitude of important neurotransmitter systems, i.e., opioid (kappa), NMDA channel, GABA(A)-BZD-chloride channel complex, and GABA(B) receptors in the anticonvulsant action of U50488H.  相似文献   

3.
Pentobarbital and phenobarbital exhibited anticonvulsant effect against maximal electroshock (MES) and picrotoxin-induced seizures in rats. Bicuculline, a GABAA receptor antagonist, reversed the anticonvulsant effect of pentobarbital, but not of phenobarbital, at a dose having no effect per se. Although picrotoxin (2 mg/kg, IP) potentiated MES seizures, it did not reverse the anticonvulsant effect due to either pentobarbital or phenobarbital. GABAB receptor antagonists such as delta-amino-n-valeric acid and homotaurine failed to modify the anticonvulsant effect due to pentobarbital or phenobarbital. Furthermore, GABAA agonist muscimol but not baclofen, a GABAB receptor agonist, exhibited the anticonvulsant effect against MES-induced seizures. However, baclofen when combined with sub-effective dose of pentobarbital or phenobarbital offered protection against MES seizures. Pentobarbital and phenobarbital were effective in almost equivalent doses against MES, as well as against picrotoxin-induced seizures. These observations indicated that pentobarbital exhibits anticonvulsant effect against MES seizures through the involvement of GABAA receptors, and activation of GABAB receptors alone does not seem to play any significant role in MES seizures and in the anticonvulsant effect of pentobarbital. However, activation of GABAB receptor does potentiate the facilitatory effect of barbiturates on GABAAergic transmission and in their anti-MES effect. Moreover, these results also suggest that the anticonvulsant effect of barbiturates against MES-seizures may involve other mechanisms in addition to GABAAergic transmission.  相似文献   

4.
In the present study, the mechanism behind flurothyl-induced seizures was examined using drugs acting on the GABA-benzodiazepine receptor complex in Mongolian gerbils. In addition, amino acid concentrations in the brain were also investigated. In behavioral experiments, the incidence of tonic extensor was 83.3% in both the control and picrotoxin (0.5 mg/kg)-treated groups, 0% in the valproate (200 mg/kg)-treated group, and 50% in the picrotoxin plus valproate-treated group. However, picrotoxin did not antagonize the effect of valproate on clonic seizure latency at all. Flumazenil, a benzodiazepine receptor antagonist, was found to have an inhibitory effect on the anticonvulsant action of diazepam (0.5 mg/kg). The incidence of tonic extensor was 83.3% in flumazenil (10 mg/kg)-treated group, 0% in the diazepam (0.5 mg/kg)-treated group, and 83% in the flumazenil plus diazepam-treated group as well as the control group. Flumazenil also completely reversed the effect of diazepam on clonic seizure latency. In biochemical experiments, the concentration of the inhibitory amino acid, GABA, was significantly increased in the hippocampus (P<0.05) and cerebellum (P<0.01) in diazepam-treated animals. The increase of GABA in the hippocampus and cerebellum was antagonized by the administration of flumazenil. These results suggested that the anticonvulsant action of diazepam may be linked to increase in hippocampus and cerebellum GABA concentrations. The findings suggest that the mechanism of flurothyl-induced seizures, in part, is related to the highly sensitive benzodiazepine site of the GABA-benzodiazepine receptor complex.  相似文献   

5.
The present study investigates the mechanisms involved in the anticonvulsant effect of melatonin in maximum electroshock (MES) seizures. Melatonin (25-100 mg/kg) dose-dependently decreased the duration of tonic hindlimb extension (THLE). The anticonvulsant effect of melatonin was blocked by bicuculline, a GABA(A) receptor antagonist, and luzindole, an ML(1) receptor antagonist, while prazosin, an ML(2) receptor antagonist, enhanced the anticonvulsant actions of melatonin in this seizure model. Administration of serotonergic agents, mianserin and ondansetron, along with melatonin, increased the antiseizurogenic activity of melatonin, while buspirone had no effect. Pretreating the animals with diazepam, carbamazepine or lamotrigine enhanced the anticonvulsant effect of melatonin. Melatonin thus appears to be an effective anticonvulsant, and melatonin ML(1) receptors, GABAergic and serotonergic mechanisms may play an important role in mediating the anticonvulsant activity of melatonin in electroshock seizures.  相似文献   

6.
In this paper we examined the effect of flumazenil (Ro 15-1788, 10 mg/kg), a benzodiazepine receptor antagonist, on the anticonflict activity of DL-(E)-2-amino-4-methyl-5-phosphono-3-pentenoic acid (CGP 37849), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, and 1-aminocyclopropanecarboxylic acid (ACPC), a partial agonist at glycine(B) receptors, in the Vogel conflict drinking test in rats. The effect of flumazenil on the anxiolytic-like (in the plus-maze test) and the anticonvulsant (in the maximal electroshock-induced seizures) activities of CGP 37849 in rats was also studied. Diazepam was used as a reference drug. CGP 37849 (2. 5-5 mg/kg), ACPC (50-200 mg/kg) and diazepam (2.5-5 mg/kg) significantly and dose-dependently increased the number of shocks accepted during experimental sessions in the conflict drinking test. Flumazenil partly but significantly reduced the anticonflict effect of CGP 37849, and it fully blocked the anticonflict effect of ACPC and diazepam. CGP 37849 (2.5-5 mg/kg) and diazepam (2.5-5 mg/kg) were also active in the plus-maze test, as they significantly increased the percentage of the time spent in and entries into the open arms of the plus-maze, both those effects having been antagonized by flumazenil. Flumazenil alone was inactive in both the conflict drinking and the plus-maze tests. In the maximal electroshock-induced seizures, both CGP 37849 (2.5-5 mg/kg) and diazepam (5-10 mg/kg) produced anticonvulsant effects, of which only that of diazepam was antagonized by flumazenil. The results of the present study showing antagonism of flumazenil towards the anxiolytic-like effects of CGP 37849 and ACPC suggest involvement of benzodiazepine receptors in such an activity of the NMDA and glycine(B) receptor ligands, respectively, which may be due to a possible interaction between NMDA and GABA/benzodiazepine systems. The lack of effect of the benzodiazepine antagonist on the anticonvulsant activity of CGP 37849 indicates that involvement of benzodiazepine receptors in the pharmacological action of the NMDA antagonist is not a general phenomenon.  相似文献   

7.
In vivo interactions between phenytoin (PHT) and baclofen (a GABAb receptor agonist) or PHT and progabide (a GABAa receptor agonist) were investigated by the rotorod minimal neurotoxicity test and maximal electroshock seizure (MES) test. The combination of PHT and baclofen produced an additive effect by the rotorod test, whereas the combination of PHT and progabide elicited a supra-additive (synergistic) effect. The median minimal neurotoxic dose of baclofen augmented the anti-MES activity of PHT. The combination of PHT and progabide induced a supra-additive effect by the MES test. These results imply that GABAa receptors are involved in both the minimal neurotoxicity and anti-MES activity of PHT.  相似文献   

8.
1. The effects of gamma-aminobutyric acid (GABA), 3-aminopropane sulphonic acid (3-APS) and baclofen on spontaneous, electrically-induced and propulsive motility were investigated in rabbit distal colon. 2. In unstimulated longitudinal (LMPs) and circular muscle strip preparations (CMPs) 3-APS (10-200 microM) and GABA caused a clear-cut relaxation susceptible to desensitization. Baclofen (10-200 microM) caused relaxation in a minority (30%) of preparations. The 3-APS response was sensitive to tetrodotoxin (TTX; 1 microM), SR 95531 (a novel competitive GABAA-receptor antagonist) (10 microM), picrotoxinin (30 microM), and insensitive to hyoscine (1 microM) and to a combination of prazosin (1 microM) and propranolol (1 microM). The baclofen response was antagonized by 5-aminovaleric acid (DAVA, 500 microM), TTX and hyoscine and resistant to GABAA-receptor and adrenoceptor blockade. GABAA-receptors were therefore associated with non-adrenergic non-cholinergic (NANC) inhibitory nerve activation while GABAB-receptors were involved in depression of cholinergic tone of smooth muscle. GABA (10-200 microM) elicited both above mentioned effects. 3. In LMPs, baclofen (10-200 microM) dose-dependently inhibited submaximal responses to both cholinergic and NANC inhibitory nerve stimulation. This effect was resistant to SR 95531 and picrotoxinin and prevented by DAVA and baclofen desensitization. GABA (10-200 microM) mimicked the action of baclofen. GABA inhibitory effects persisted in the presence of GABAA-receptor blockade. 4. In segments of distal colon, GABA and baclofen (1-200 microM), but not 3-APS (1-200 microM), dose-dependently decreased the velocity of propulsion of an intraluminally-distended balloon. This effect was antagonized by DAVA and GABA or baclofen desensitization and resistant to SR 95531 and picrotoxinin. These antagonists per se had no effect on propulsion. In preparations in which propulsion was slowed by hyoscine (1 microM), baclofen caused no consistent further depression of propulsive activity. 5. Our results show that GABAA- and GABAB-receptors are present in rabbit colon. GABAA-receptor stimulation activates NANC inhibitory nerves without apparently affecting propulsion. GABAB-receptors are associated with a reduction of neural (mainly cholinergic) activity subserving muscular tone and peristalsis and appear to be located on both cholinergic and NANC inhibitory nerves. However, the persisting propulsive activity during suppression of GABAA- and GABAB-receptor function suggests that GABA in enteric neurones is not crucial for the neural circuitry subserving colonic peristalsis in this species.  相似文献   

9.
Systemic administration of diazepam (5 mg/kg, i.p.) produced a prompt anticonvulsant effect in pilocarpine-induced seizures in freely moving rats. The anticonvulsant effect was associated with significant attenuation of pilocarpine-evoked increases in extracellular hippocampal glutamate levels to below the baseline levels. The purpose of the present microdialysis study, therefore, was to investigate if the effect of diazepam on glutamate release was mediated at the level of the benzodiazepine gamma-aminobutyric acid(A) (GABA(A)) receptor complex to preclude any non-GABAergic mechanisms. Systemic administration of the specific benzodiazepine-receptor antagonist flumazenil (10 mg/kg, i.p. )-elicited complete reversal of diazepam-evoked anticonvulsant action and concomitant attenuation of extracellular glutamate efflux below the baseline levels. This provides evidence that under the given experimental conditions, diazepam-evoked alterations in glutamate overflow associated with the anticonvulsant action were indeed mediated at the level of benzodiazepine-GABA(A) receptor complex, possibly involving the modulation of both pre- and post-synaptic sites of the receptor complex.  相似文献   

10.
1. GYKI 52466 is a benzodiazepine derivative that has muscle relaxant and anticonvulsant properties thought to be mediated by highly selective, noncompetitive antagonism of non-NMDA receptors. However, recent electrophysiological data showed that, in addition to non-NMDA receptors, the GABAA-receptor associated benzodiazepine site is involved in the depressant effect of GYKI 52466 on spinal reflex transmission. In view of the structural similarities between the 2,3 benzodiazepine derivative GYKI 52466 and 1,4-benzodiazepines such as diazepam, the benzodiazepine site of GABAA receptor complex could also be involved in the anticonvulsant activity of GYKI 52466, which has not yet been proven. This prompted us to study the effect of the benzodiazepine receptor antagonist, flumazenil, on anticonvulsant and adverse effects of GYKI 52466 in different seizure models in mice. The non-NMDA antagonist, NBQX and diazepam were used for comparison. 2. Seizure threshold models for different types of generalized seizures were used. The threshold for maximal (tonic) electroshock seizures (MES) was significantly increased by GYKI 52466 (10-20 mg kg-1), NBQX (80-120 mg kg-1) and diazepam (5 mg kg-1) shortly after i.p. drug administration. The same dose-range of the non-NMDA antagonists also significantly increased the threshold for myoclonic and clonic seizures induced by i.v. infusion of pentylenetetrazol (PTZ), although the magnitude of threshold increases obtained with the respective drugs, differed, at least in part, from that seen in the MES experiments. GYKI 52466 was clearly less potent in increasing PTZ thresholds for myoclonic and clonic seizures than on the MES threshold, while NBQX exerted about the same potency in both models.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Many reports demonstrate that extremely low frequency magnetic fields (ELF MFs, 60 Hz) may be involved in hyperalgesia. In a previous investigation, we suggested that MFs may produce hyperalgesia and such a response may be regulated by the benzodiazepine system. In order to further confirm this effect of MFs, we used diazepam and/or flumazenil with MFs exposure. When testing the pain threshold of rats using hot plate tests, MFs or diazepam (0.5 microg, i.c.v.; a benzodiazepine receptor agonist) induced hyperalgesic effects with the reduction of latency. These effects were blocked by a pretreatment of flumazenil (1.5 mg/kg, i.p.; a benzodiazepine receptor antagonist). When the rats were exposed simultaneously to MFs and diazepam, the latency tended to decrease without statistical significance. The induction of hyperalgesia by co-exposure to MFs and diazepam was also blocked by flumazenil. However, the pretreatment of GABA receptor antagonists such as bicuculline (0.1 microg, i.c.v.; a GABA(A) antagonist) or phaclofen (10 microg, i.c.v.; a GABA(B) antagonist) did not antagonize the hyperalgesic effect of MFs. These results suggest that the benzodiazepine system may be involved in MFs-induced hyperalgesia.  相似文献   

12.
In the present study, the effects of gamma-aminobutyric acid (GABA) receptor agonists and antagonists on antinociception induced by morphine in the formalin test were investigated in rats. Intraperitoneal (i.p.) injection of different doses of morphine (1, 3, 6 and 9 mg/kg) and intracerebroventricular (i.c.v.) injection of different doses of muscimol (0.5, 1 and 2 microg per rat) or baclofen (0.25, 0.5 and 1 microg per rat) induced a dose-related antinociception in the both first and second phases of the formalin test. The responses induced by muscimol or baclofen in both phases were reduced by bicuculline or CGP35348 [p-(3-aminopropyl)-p-diethoxymethyl-phosphinic acid], respectively. Bicuculline alone has produced antinociception in the second phase and CGP35348 alone has had antinociception in both phases of the formalin test. Morphine in combination with different doses of muscimol or baclofen did not elicit potentiation. The opioid receptor antagonist naloxone reduced the response induced by muscimol in the second phase and baclofen in both phases of the formalin test. It may be concluded that central GABA(A) and GABA(B) receptor stimulation induces antinociception in the formalin test. However, the antinociception induced by GABA receptor agonists may be mediated partly through supraspinal opioid receptor mechanisms and, for the GABA(B) receptor agonist, through spinal and supraspinal opioid receptor mechanisms.  相似文献   

13.
The effect of diazepam on cardiac contractility was investigated in electrically-driven right ventricular strips of the rat. Diazepam produced a concentration-dependent negative inotropic effect which was antagonized by either flumazenil, a benzodiazepine central-type receptor antagonist, or PK 11195, a benzodiazepine peripheral type receptor antagonist. The results suggest that the inhibitory effect of diazepam on cardiac contractility in the rat is mediated by both central and peripheral benzodiazepine receptors.  相似文献   

14.
Non-extensor rats do not normally respond to maximal electroshock stimulation (MES) with the typical hindlimb extension (HLE) response of extensor rats. However, non-extensors responded to MES with HLE after reserpine, pCPA and digitoxigenin (DIGT), but not after α-methyl-p-tyrosine or pentylenetetrazol. Only DIGT increased convulsive intensity (HLE duration); this effect was 2–4 fold greater in non-extensors compared to extensors. In pCPA pretreated non-extensors, DIGT increased convulsive intensity to the same degree as in untreated extensors. Since non-extensors had a significantly greater whole brain serotonin concentration than extensors, the results indicate the atypical MES hindlimb response of non-extensors is related to quantitative and/or qualitative differences in central serotonergic systems.  相似文献   

15.
The effect of the benzodiazepine receptor antagonist flumazenil was examined on an antiaggressive effect of (S)-5-[3-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3- benzodioxole HCl (MKC-242), a 5-HT(1A) receptor agonist. MKC-242 (0.1-1.0 mg/kg, p.o.) selectively reduced isolation-induced aggressive behavior in a dose-dependent manner. Flumazenil (10 mg/kg, i.p.) antagonized the antiaggressive effects of MKC-242 and diazepam, although it alone did not affect the behaviors of isolated mice. These findings suggest that a gamma-aminobutyric acid(A) (GABA(A)) receptor system is involved in the antiaggressive effect by 5-HT(1A) receptor activation.  相似文献   

16.
This study investigated the impact of benzodiazepine receptor agonist, midazolam and antagonist, flumazenil, on the rat frontal cortex slices oxygen consumption (QO(2)), in presence and absence of gamma-aminobutyric acid (GABA). QO(2) was polarographically determined, using the biological oxygen monitor. As it was previously shown, GABA on its own decreases QO(2) moderately. Midazolam decreased QO(2) at 1.0mg/kg, whereas flumazenil had no effect. In combination with per se ineffective GABA (10(-6)mol/l), flumazenil showed respiratory depressant action, presumably revealing partial agonistic activity at some of GABA(A) receptor subtypes. However, it completely antagonized effects of midazolam on QO(2), on its own and in presence of GABA. Our results show that in vivo well-established effects of midazolam on cerebral metabolic activity could be reproduced in in vitro settings. Moreover, flumazenil antagonized this action, indicating the role of GABA(A)-benzodiazepine receptor complex activation in QO(2) regulation.  相似文献   

17.
Rationale We previously reported that the head-twitch responses induced by the 5-HT2 receptor agonist (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) (DOI-HTRs) were decreased in streptozotocin-induced diabetic mice.Objectives We examined the involvement of γ-aminobutyric acid (GABA)/benzodiazepine system on the suppression of DOI-HTRs in diabetic mice.Results The benzodiazepine receptor antagonist flumazenil (0.1–1 mg/kg, i.v.) dose-dependently and significantly increased DOI-HTRs in diabetic mice to the same levels as in nondiabetic mice. However, flumazenil (0.1–1 mg/kg, i.v.) did not affect DOI-HTRs in nondiabetic mice. The benzodiazepine receptor agonist diazepam (0.1–1 mg/kg, i.p.) had no effect on DOI-HTRs in either nondiabetic or diabetic mice. The GABAA receptor antagonist bicuculline (0.1–1 mg/kg, i.p.) and the benzodiazepine receptor partial inverse agonist Ro 15-4513 (0.1–1 mg/kg, i.v.) dose-dependently and significantly suppressed DOI-HTRs in nondiabetic mice to the same levels as in diabetic mice. Ro 15-4513-induced reduction of DOI-HTRs in nondiabetic mice was completely antagonized by flumazenil (1 mg/kg, i.v.), but not diazepam (0.3 mg/kg, i.p.).Conclusions We suggest that the abnormal diazepam-insensitive benzodiazepine receptor function partly underlies the suppression of DOI-HTRs in diabetic mice.  相似文献   

18.
Evidence for GABAB autoreceptors in median eminence   总被引:3,自引:0,他引:3  
The effect of the selective GABAB receptor agonist baclofen was examined on stimulus-induced release of [3H]GABA from crude synaptosomal preparations of median eminence (ME) and pituitary neurointermediate lobe (NI). Baclofen stereospecifically inhibited release of [3H]GABA in a concentration-dependent manner from ME but had no effect in NI. The effect of (+/-) baclofen was partly antagonized by the putative GABAB receptor antagonist delta-aminovaleric acid, but these experiments were complicated by a degree of heteroexchange. These results provide the first evidence for GABAB autoreceptors in the CNS.  相似文献   

19.
A number of studies have shown that activation of gamma-aminobutyric acid(B) (GABA(B)) receptors potentiates neurotransmitter-induced accumulation of cyclic AMP in brain slices, but the mechanisms involved in the facilitatory effect have not been fully elucidated. In the present study, we showed that in membranes of rat frontal cortex the GABA(B) receptor agonist (-)baclofen increased basal adenylyl cyclase activity and potentiated the maximal enzyme stimulation elicited by corticotropin-releasing hormone (CRH). The less active enantiomer (+)baclofen had no effect on cyclic AMP formation, whereas the natural agonist GABA mimicked the stimulatory action of (-)baclofen. In radioligand-binding experiments, the affinity and maximal binding capacity of (125)I-Tyr-CRH was not affected by (-)baclofen. The GABA(B) receptor antagonist CGP 55845A competitively counteracted the (-)baclofen potentiation of CRH-stimulated adenylyl cyclase activity with a pA(2) value of 6.70. Moreover, both (-)baclofen and GABA, but not (+)baclofen, caused a concentration-dependent stimulation of [(35)S]GTP gamma S binding to membrane G-proteins. The intracerebral injection of pertussis toxin significantly reduced the facilitatory effects of (-)baclofen on both basal and CRH-stimulated adenylyl cyclase activities. Moreover, membrane incubation with the GDP-bound form of the alpha subunit of transducin, a scavenger of G protein beta gamma subunits, blocked the stimulatory effects of (-)baclofen. The data indicate that in rat frontal cortex activation of GABA(B) receptors potentiates the CRH stimulation of adenylyl cyclase activity through a mechanism involving the beta gamma subunits of the pertussis toxin-sensitive G protein G(i)/G(o).  相似文献   

20.
Behavioral studies have suggested an involvement of the glutamate pathway in the mechanism of action of anxiolytic drugs, including the NMDA receptor complex. It was shown that magnesium, an NMDA receptor inhibitor, exhibited anxiolytic-like activity in the elevated plus-maze test in mice. The purpose of the present study was to examine interaction between magnesium and benzodiazepine/GABA(A) receptors in producing anxiolytic-like activity. We examined behavior of mice treated with magnesium and benzodiazepine/GABA(A) receptor ligands, in the elevated plus maze. The anxiolytic-like effect of magnesium (20 mg/kg) was antagonized by flumazenil (10 mg/kg) (benzodiazepine receptor antagonist) while combined treatment with the non-effective doses of magnesium (10 mg/kg) and benzodiazepines (diazepam (0.5 mg/kg) or chlordiazepoxide (2 mg/kg)) produced synergistic interaction (increased time in open arms and number of open arm entries) in this test. The obtained data indicate that benzodiazepine receptors are nvolved in the anxiolytic-like effects of magnesium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号