首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a prior study, we showed that the few striatal projection neurons that contain both substance P (SP) and enkephalin (ENK) in rats may preferentially project to the substantia nigra pars compacta. Since striatal neurons that project to the pars compacta are thought to preferentially reside in the striosomal compartment, we investigated if striatal neurons that contain both SP and ENK are preferentially localized to the patch compartment. We used in situ hybridization histochemistry to double-label sections for SP and ENK to identify SP/ENK co-containing neurons, and immunolabeling of adjacent sections for the mu opiate receptor (MOR) to define the striosomal compartment. We found that 32.3% of neurons containing both SP and ENK were localized to the striosomal compartment, which itself only made up 12.8% of the striatum. Our results further showed that the density of neurons co-containing SP and ENK was three-fold higher in striosomes than in the matrix compartment. These results are consistent with the notion that SP/ENK colocalizing neurons preferentially project to pars compacta, and these and our prior results additionally raise the possibility that neurons of this type in the striatal matrix may also project to the pars compacta.  相似文献   

2.
GABA release was recorded in vivo by push-pull perfusion from the globus pallidus and substantia nigra of control rats, rats with unilateral ibotenic acid lesions of the neostriatum, and rats with embryonic striatal tissue grafts implanted in the lesioned striatum. The lesions reduced baseline levels of GABA release to 5% of control levels in the globus pallidus and to 13% of control levels in the substantia nigra pars reticulata. GABA release was substantially restored in both the globus pallidus and substantia nigra of the grafted rats, to 34 and 60%, respectively. Peripheral injection of the dopaminergic stimulant methamphetamine induced a short (lasting approximately 20 min) 4-5 fold increase in GABA release in the intact globus pallidus and a longer (lasting longer than 80 min) increase in the substantia nigra. The stimulatory effect of methamphetamine on GABA release was completely abolished in both sites by the strial lesions, suggesting that the effect was mediated via a direct or indirect dopaminergic action on striatal output neurons. The grafts reinstated methamphetamine-induced stimulation of GABA release in striatal output targets to a level (as a proportion of baseline) that was similar to that seen in the control rats. The results support the view that activation of the dopaminergic inputs to the striatum is functionally excitatory on the major striatal output projections to the globus pallidus and substantia nigra pars reticulata. The results also support the hypothesis that striatal grafts have the capacity to become functionally incorporated by reciprocal graft-host connections into the neural circuitry of the host brain.  相似文献   

3.
Dopaminergic neurons express both GABA(A) and GABA(B) receptors and GABAergic inputs play a significant role in the afferent modulation of these neurons. Electrical stimulation of GABAergic pathways originating in neostriatum, globus pallidus or substantia nigra pars reticulata produces inhibition of dopaminergic neurons in vivo. Despite a number of prior studies, the identity of the GABAergic receptor subtype(s) mediating the inhibition evoked by electrical stimulation of neostriatum, globus pallidus, or the axon collaterals of the projection neurons from substantia nigra pars reticulata in vivo remain uncertain. Single-unit extracellular recordings were obtained from substantia nigra dopaminergic neurons in urethane anesthetized rats. The effects of local pressure application of the selective GABA(A) antagonists, bicuculline and picrotoxin, and the GABA(B) antagonists, saclofen and CGP-55845A, on the inhibition of dopaminergic neurons elicited by single-pulse electrical stimulation of striatum, globus pallidus, and the thalamic axon terminals of the substantia nigra pars reticulata projection neurons were recorded in vivo. Striatal, pallidal, and thalamic induced inhibition of dopaminergic neurons was always attenuated or completely abolished by local application of the GABA(A) antagonists. In contrast, the GABA(B) antagonists, saclofen or CGP-55845A, did not block or attenuate the stimulus-induced inhibition and at times even increased the magnitude and/or duration of the evoked inhibition. Train stimulation of globus pallidus and striatum also produced an inhibition of firing in dopaminergic neurons of longer duration. However this inhibition was largely insensitive to either GABA(A) or GABA(B) antagonists although the GABA(A) antagonists consistently blocked the early portion of the inhibitory period indicating the presence of a GABA(A) component. These data demonstrate that dopaminergic neurons of the substantia nigra pars compacta are inhibited by electrical stimulation of striatum, globus pallidus, and the projection neurons of substantia nigra pars reticulata in vivo. This inhibition appears to be mediated via the GABA(A) receptor subtype, and all three GABAergic afferents studied appear to possess inhibitory presynaptic GABA(B) autoreceptors that are active under physiological conditions in vivo.  相似文献   

4.
In the infant and adult human basal ganglia, the finding of mRNA exclusively in the striatal medium-sized neurons together with the detection of [3H]CP55,940 binding sites in the caudate-putamen, accumbens, substantia nigra pars reticulata and globus pallidus suggests cannabinoid receptor localization on the striatal intrinsic enkephalinergic and substance P-projecting neurons and on their nigral and pallidal terminals. However, the consistent finding of higher binding in the substantia nigra pars reticulata and medial part of the globus pallidus over its lateral segment suggests cannabinoid receptor enrichment on the striatal substance P neurons which express selectively the dopamine D1 receptor.  相似文献   

5.
The localization of D1 and D2 dopamine receptors to striatal projection neuron types has been controversial, with some data favoring segregation of D1 to direct pathway neurons (substance P-containing) and D2 to indirect pathway neurons (enkephalinergic), and others reporting significant colocalization of D1 and D2 on individual projection neuron types. In the present study, we used subtype-specific antibodies against D1 and D2 and confocal laser scanning microscopy to determine their perikaryal localization in striatum in general, and in direct and indirect pathway neuron perikarya defined by retrograde labeling in particular. We found that D1 in rat was detectable on 49.5% of NeuN-immunolabeled striatal perikarya, and D2 on 61.6% of NeuN-immunolabeled perikarya, implying that at least 15–20% of D1+ neurons must possess D2 and vice versa. Secondly, we retrogradely labeled neuronal perikarya from the external globus pallidus (GPe), internal globus pallidus (GPi) or substantia nigra with rhodamine dextran amine 3 kDa (RDA3k). We found that 92% of perikarya labeled from nigra and 96% of perikarya labeled from GPi immunolabeled for D1, but only 23% of perikarya labeled from GPe immunolabeled for D1. Since direct pathway neurons (striato-nigral and striato-GPi) have a collateral projection to GPe, it is possible that many of the D1+ striatal perikarya retrogradely labeled from GPe were direct pathway neurons. About 96% of perikarya retrogradely labeled from GPe were immunolabeled for D2, while about 40% of those retrogradely labeled from GPi and 44% of those retrogradely labeled from nigra immunolabeled for D2. These findings suggest that: (1) while many striato-GPi/SN neurons possess D1 and D2, the majority mainly or exclusively possess D1 and (2) the vast majority of striato-GPe neurons mainly or exclusively possess D2.  相似文献   

6.
A Reiner  L Medina  S N Haber 《Neuroscience》1999,88(3):775-793
Single- and double-label immunohistochemical techniques using several different highly specific antisera against dynorphin peptides were used to examine the distribution of dynorphinergic terminals in globus pallidus and substantia nigra in rhesus monkeys and humans in comparison to substance P-containing and enkephalinergic terminals in these same regions. Similar results were observed in monkey and human tissue. Dynorphinergic fibers were very abundant in the medial half of the internal pallidal segment, but scarce in the external pallidal segment and the lateral half of the internal pallidal segment. In substantia nigra, dynorphinergic fibers were present in both the pars compacta and reticulata. Labeling of adjacent sections for enkephalin or substance P showed that the dynorphinergic terminals overlapped those for substance P in the medial half of the internal pallidal segment, but showed only slight overlap with enkephalinergic terminals in the external pallidal segment. The substance P-containing fibers were moderately abundant along the borders of the external pallidal segment, and enkephalinergic fibers were moderately abundant in parts of the internal pallidal segment. Dynorphinergic and substance P-containing terminals overlapped extensively in the nigra, and both extensively overlapped enkephalinergic fibers in medial nigra. Immunofluorescence double-labeling studies revealed that dynorphin co-localized extensively with substance P in individual fibers and terminals in the medial half of the internal pallidal segment and in substantia nigra. Thus, as has been found in non-primates, dynorphin within the striatum and its projection systems appears to be extensively localized to substance P-containing striatopallidal and striatonigral projection neurons. Nonetheless, our results also raise the possibility that a population of substance P-containing neurons that projects to the internal pallidal segment and does not contain dynorphin is present in primate striatum. Our results also suggest the possible existence of populations of striatopallidal and striatonigral projection neurons in which substance P and enkephalin or dynorphin and enkephalin, or all three, are co-localized. Thus, striatal projection neurons in primates may not consist of merely two types, one containing substance P and dynorphin and the other enkephalin.  相似文献   

7.
Hoover BR  Marshall JF 《Neuroscience》2002,111(1):111-125
The globus pallidus (external pallidum of primates) is an essential nucleus within basal ganglia circuitry, in part because it receives at least one-half of striatal efferent projections. Neurons of the globus pallidus can be divided into subpopulations based on anatomical, physiological, and chemical features. Globus pallidus neurons project to several structures (the striatum, subthalamic nucleus, entopeduncular nucleus, and substantia nigra pars reticulata), have one of two alternative waveforms (positive/negative versus negative/positive), contain either the calcium binding protein parvalbumin or the neuropeptide precursor preproenkephalin mRNA and show differential immediate early gene responses to dopamine receptor agonists and antagonists. The objective of the present study was to characterize in greater detail the preproenkephalin mRNA-containing pallidal neurons using Sprague-Dawley rats. In situ hybridization for preproenkephalin mRNA was combined with immunocytochemical detection of: (i) the neuron-specific nuclear protein, NeuN, (ii) FluoroGold-labeled pallidostriatal and pallidosubthalamic cells, or (iii) Fos induced by either systemic combined D1-class/D2-class dopamine receptor agonists or a D2-class receptor antagonist. These experiments demonstrated that a substantial population (42%) of globus pallidus neurons contains preproenkephalin mRNA, and that globus pallidus neurons retrogradely labeled after FluoroGold injections into the striatum are more frequently preproenkephalinergic, compared to the population of pallidosubthalamic neurons. Furthermore, systemic administration of a D2 receptor antagonist, eticlopride, induced Fos immunoreactivity predominantly in globus pallidus neurons expressing preproenkephalin mRNA, while combined administration of D1 and D2 receptor agonists induced Fos predominantly in pallidal neurons lacking preproenkephalin mRNA.These results support the conclusion that preproenkephalin mRNA identifies one of the two major subpopulations of pallidal neurons. This preproenkephalin mRNA-expressing pallidal subpopulation preferentially targets the striatum and is more readily activated in its immediate early gene expression by D2 receptor antagonists than by dopamine receptor agonists. This projection provides a pallidal substrate for the dopaminergic regulation of striatal information processing.  相似文献   

8.
DARPP32 is a D1-receptor associated signaling protein found in striatal projection neurons in mammals, including both substance P-containing (SP+) neurons and enkephalinergic (ENK+) projection neurons. The present study used immunohistochemical single- and double-labeling to examine the cellular localization of DARPP32 in pigeon striatum. Single-label studies revealed that DARPP32 is present in numerous medium-sized striatal perikarya and DARPP32+ axons and terminals were seen to profusely innervate the two major striatal projection targets, the pallidum and the substantia nigra. The single-labeling studies indicated that about 60% of all striatal perikarya labeled for DARPP32+ in striatum, which exceeds the abundance of either SP+ or ENK+ perikarya. Single-labeling studies also showed that the abundance of DARPP32+ fibers and terminals in pallidum exceeds that of either SP+ or ENK+ fibers and terminals in pallidum. Double-labeling found that 30–50% of striatal SP+ perikarya and 7–24% of ENK+ striatal perikarya labeled for DARPP32 in pigeon, and confirmed that DARPP32 was found in both SP+ and ENK+ fibers and terminals in pallidum. In contrast to its prevalence in striatal projection neurons, DARPP32 was virtually absent from cholinergic and NPY+ striatal interneurons, as also true in mammals. Our data are consistent with the interpretation that many SP+ neurons and many ENK+ neurons in avian striatum possess D1-type dopamine receptors and use a DARPP32 signalling pathway, although this may be more common for SP+ than for ENK+ neurons.  相似文献   

9.
Y Smith  A Parent 《Neuroscience》1986,18(2):347-371
The organization of the subcortical connections of caudate nucleus and putamen in the squirrel monkey was studied using horseradish peroxidase conjugated to wheat germ agglutinin as anterograde and retrograde neuronal tracer. The tracer was injected in similar quantities in the putamen on the left side and in the caudate nucleus on the right side in 10 monkeys, and its presence was revealed by means of the tetramethylbenzidine method. The study of anterogradely labeled fibers visualized after such injections shows that putaminofugal fibers terminate massively in the ventral two-thirds of the globus pallidus, where they display a band-like arrangement, and much less abundantly in the caudal third of the substantia nigra. In contrast, caudatofugal fibers occupy only the dorsal third of globus pallidus but arborize profusely in the rostral two-thirds of substantia nigra. In the pars reticulata of the substantia nigra the caudatonigral fibers form a highly complex network composed of fiber trabeculae while the putaminonigral fibers occur as more discrete fascicles confined to the dorsolateral region of the structure. In the pars compacta of the substantia nigra the retrogradely labeled cells occur in the form of clusters that are closely intermingled with clusters of unlabeled neurons. The labeled-cell clusters are particularly dense on the putamen-injected side and more loosely organized on the caudate-injected side. On both sides, however, the striatonigral fibers that reach the substantia nigra pars compacta can be seen to terminate almost exclusively upon clusters composed of retrogradely labeled cells, suggesting the existence of a precise reciprocal link between nigral and striatal neuronal aggregates. At thalamic levels the retrogradely labeled cells are distributed according to a strikingly asymmetric pattern. For instance, a prominent labeling of neurons in the central superior lateral nucleus is seen only on the caudate-injected side. Furthermore, in the centromedian/parafascicular complex retrograde cell labeling is seen exclusively in parafascicular nucleus on the caudate-injected side and only in the centromedian nucleus, except its lateralmost portion, on the putamen-injected side. Control experiments involving injection of the tracer in cerebral cortex overlying the striatum reveal that the neurons in the lateral segment of the centromedian, which do not project to striatum, are in fact reciprocally connected with the cerebral cortex. In addition, our data show that some of the so-called "specific" thalamic nuclei contribute significantly to the thalamostriatal projection in monkey.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Employing both anterograde and retrograde axonal tracing, we investigated direct projections from the central amygdaloid nucleus to the basal ganglia in the cat. The anterograde axonal tracing of Phaseolus vulgaris-leucoagglutinin revealed that projection fibers from the central amygdaloid nucleus to the basal ganglia ended in the globus pallidus (the feline homolog to the external segment of the globus pallidus of primates) and substantia nigra. The amygdalopallidal fibers terminated chiefly in the medial most part of the globus pallidus at its caudal level. The amygdalonigral fibers terminated densely in the substantia nigra pars lateralis, and moderately in the dorsolateral part of the substantia nigra pars reticulata; none of them were found to end in the substantia nigra pars compacta. Both of the amygdalopallidal and amygdalonigral projections were ipsilateral. These neuronal connections were confirmed by retrograde axonal tracing of cholera toxin B subunit in the second set of the experiments: The cells of origin of the amygdalopallidal and amygdalonigral projections were located predominantly in the lateral part of the central amygdaloid nucleus, and additionally in the intercalated cell islands of the amygdala. Most of them were of small bipolar or multipolar type. The cells projecting to the globus pallidus were preferentially distributed at the rostral levels of the central nucleus and intercalated cell islands of the amygdaloid complex, while those projecting to the substantia nigra were mainly located at the caudal levels of these amygdaloid subdivisions. In the third set of the experiments, sequential double-antigen immunofluorescence histochemistry for transported cholera toxin B subunit and horseradish peroxidase showed that some single neurons in the lateral part of the central amygdaloid nucleus, particularly at its middle level, issued axon collaterals to both the globus pallidus and substantia nigra pars lateralis. The results of the present study indicate that the central amygdaloid nucleus sends projection fibers to the globus pallidus and substantia nigra possibly to exert a limbic influence upon forebrain motor mechanisms.  相似文献   

11.
Y Smith  J P Bolam 《Neuroscience》1991,44(1):45-73
Two major sources of afferent synaptic inputs to projection neurons in the rat substantia nigra reticulata are the striatum and the globus pallidus. In order to understand better the functional relationships between these two afferents in the control of the activity of nigrofugal neurons, experiments have been performed to test the possibility that single nigrofugal cells receive convergent synaptic inputs from the striatum and the globus pallidus. To address this question we have used two different approaches. First, we have developed a double anterograde labelling technique suitable for both light and electron microscopy and combined this procedure with the retrograde transport of lectin-conjugated horseradish peroxidase in order to retrogradely label the nigrocollicular cells. Second, we have combined the anterograde transport of Phaseolus vulgaris-leucoagglutinin from the globus pallidus and immunocytochemistry for DARPP-32 as a marker for the striatal terminals, with the retrograde transport of lectin-conjugated horseradish peroxidase from the superior colliculus. In the double anterograde labelling experiment, biocytin was injected in the striatum, Phaseolus vulgaris-leucoagglutinin in the globus pallidus and lectin-conjugated horseradish peroxidase in the superior colliculus. Following these injections, rich plexuses of biocytin- and Phaseolus vulgaris-leucoagglutinin-labelled terminals were found in the ventral two-thirds of the substantia nigra. The biocytin-positive terminals (striatonigral) were generally small and formed rich plexuses without any apparent neuronal association whereas the Phaseolus vulgaris-leucoagglutinin-labelled terminals (pallidonigral) were much larger and formed baskets around the perikarya of retrogradely and non retrogradely labelled cells in the substantia nigra reticulata. In areas of the substantia nigra reticulata where the fields of biocytin- and Phaseolus vulgaris-leucoagglutinin-labelled terminals overlapped, the perikarya and the proximal dendrites of retrogradely and non retrogradely labelled cells were found to be apposed by numerous Phaseolus vulgaris-leucoagglutinin-immunoreactive pallidonigral terminals and a few biocytin-labelled striatonigral terminals. In the sections prepared for electron microscopy, the biocytin was localized using 3,3'-diaminobenzidine tetrahydrochloride whereas Phaseolus vulgaris-leucoagglutinin was localized using benzidine dihydrochloride. It was thus possible to distinguish the biocytin- from the Phaseolus vulgaris-leucoagglutinin-labelled terminals in the electron microscope by the texture of the reaction product associated with them.4+ Examination of 231 biocytin-labelled (striatonigral) terminals and 105 Phaseolus vulgaris-leucoagglutinin-immunoreactive (pallidronigral) terminals revealed that the striatonigral terminals were generally small, contained few mitochondria and formed symmetric synapses predominantly with the distal dendrites (77%) and far less frequently with the perikarya (3%) of substantia nigra reticulata cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The distribution of substance P (SP)-like immunoreactive neurons in the brains of aged normal human was analyzed quantitatively. Consecutive coronal sections in which the striatum and the substantia nigra were exposed widely, were obtained from the right hemisphere and stained immunohistochemically for SP. Each stained section was divided into approximately three million microareas and the immunohistochemical fluorescence intensity in each area was measured using a human brain mapping analyzer, which is a microphotometry system for analysis of the distribution of neurochemicals in a large tissue slice. These distributions are displayed in color and monochromatic graphics. In the analyzed brain regions, conspicuously intense SP-like immunoreactivity was observed in the substantia nigra and the internal segment of the globus pallidus. Within the substantia nigra, the SP-like immunoreactive intensity in the pars compacta was 25%, higher than that in the pars reticulata, and the distribution of melanin-containing neurons corresponded well to the distribution of the SP-containing structures. SP-like immunoreactive intensity in the internal segment of the globus pallidus, which was lower than that in the substantia nigra, was approximately twice as high as that in the external segment of the globus pallidus. Very intense immunoreactivity was localized at the most medial area of the internal segment of the globus pallidus. The SP-like immunoreactive intensity in the caudate nucleus and putamen was moderate, and the distribution was heterogeneous and observed in patches.  相似文献   

13.
Chronic neuroleptic treatment leads to the development of tardive dyskinesia in 20-30% of patients. While the pathogenesis of tardive dyskinesia remains elusive, altered opioid peptide function in striatal projection pathways of the basal ganglia has been implicated. Using a rodent model of vacuous chewing movements induced by chronic neuroleptic administration, we investigated regional involvement of opioid transmission in tardive dyskinesia. We examined the role of dynorphin in the direct striatonigral pathway by infusing nor-binaltorphimine, a selective kappa opioid receptor antagonist, into the substantia nigra pars reticulata. As well, infusions of naloxone (a non-specific opioid receptor antagonist), D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide (CTOP; a mu opioid receptor antagonist) or naltrindole (a delta opioid receptor antagonist) into the globus pallidus were used to establish the contribution of the striatopallidal pathway. Chronic fluphenazine treatment (25 mg/kg i.m. every 3 weeks for 18 weeks) resulted in a robust increase in vacuous chewing movements. Infusion of nor-binaltorphimine (5.0 nmol) into the substantia nigra pars reticulata significantly attenuated vacuous chewing movements. Infusion of naloxone (0.5 and 2.0 nmol) into the globus pallidus also significantly attenuated vacuous chewing. Infusion of naltrindole into the globus pallidus blocked vacuous chewing at all doses administered (0.5, 1.0, 2.0 nmol) while CTOP was only effective at the two higher doses. From these results we suggest that increases in dynorphin in the direct striatonigral pathway and enkephalin in the indirect striatopallidal pathway following chronic neuroleptic administration are both likely to contribute to tardive dyskinesia.  相似文献   

14.
Summary DARPP-32, a dopamine and cyclic AMP-regulated phosphoprotein, has been studied by light and electron microscopical immunocytochemistry in the rat caudatoputamen, globus pallidus and substantia nigra. In the caudatoputamen, DARPP-32 was present in neurons of the medium-sized spiny type. Immunoreactivity for DARPP-32 was present in dendritic spines, dendrites, perikaryal cytoplasm, most but not all nuclei, axons and a small number of axon terminals. Immunoreactive axon terminals in the caudatoputamen formed symmetrical synapses with immunolabelled dendritic shafts or somata. Neurons having indented nuclei were never immunoreactive. In the globus pallidus and substantia nigra pars reticulata, DARPP-32 was present in myelinated and unmyelinated axons and in axon terminals. The labelled axon terminals in these regions formed symmetrical synaptic contacts on unlabelled dendritic shafts or on unlabelled somata. These data suggest that DARPP-32 is present in striatal neurons of the medium-sized spiny type and that these DARPP-32-immunoreactive neurons form symmetrical synapses on target neurons in the globus pallidus and substantia nigra. The presence of DARPP-32 in these striatal neurons and in their axon terminals suggests that DARPP-32 mediates part of the response of medium-size spiny neurons in the striaturn to dopamine D-l receptor activation.  相似文献   

15.
Unilateral neurotoxin lesion of rat caudate-putamen and globus pallidus resulted in delayed, transneuronal degeneration of GABAergic substantia nigra pars reticulata neurons. To explore whether the disinhibition of endogenous glutamate excitatory input played a role in the degeneration of substantia nigra pars reticulata neurons, animals with unilateral striatal-pallidal lesions received three daily intraperitoneal injections of either dizocilpine maleate (MK-801, 1 or 10 mg/kg), an N-methyl-D-aspartate glutamate receptor blocker, or 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX, 30 mg/kg), an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor blocker, that began 24 h after the striatal-pallidal neurotoxin lesion. Drug treatment affected neither the volume of the initial lesion nor the volume of striatal-pallidal glial fibrillary acidic protein immunoreactivity. Neuron number in the substantia nigra pars reticulata ipsilateral to the lesioned striatopallidum was reduced on average by 37% in untreated control rats, in low dose MK-801, and NBQX-treated rats (P<0.0001). However, in animals treated with high doses of MK-801 there was no difference in the number of neurons in the substantia nigra pars reticulata ipsilateral or contralateral to the neurotoxin lesion. These data demonstrate that dose-related treatment with N-methyl-D-aspartate glutamate receptor blockers protects substantia nigra pars reticulata neurons, and suggests that glutamatergic mechanisms play a role in delayed transneuronal degeneration.  相似文献   

16.
Dopaminergic neurons in vivo fire spontaneously in three distinct patterns or modes. It has previously been shown that the firing pattern of substantia nigra dopaminergic neurons can be differentially modulated by local application of GABA(A) and GABA(B) receptor antagonists. The GABA(A) antagonists, bicuculline or picrotoxin, greatly increase burst firing in dopaminergic neurons whereas GABA(B) antagonists cause a modest shift away from burst firing towards pacemaker-like firing. The three principal GABAergic inputs to nigral dopaminergic neurons arise from striatum, globus pallidus and from the axon collaterals of nigral pars reticulata projection neurons, each of which appear to act in vivo primarily on GABA(A) receptors (see preceding paper). In this study we attempted to determine on which afferent pathway(s) GABA(A) antagonists were acting to cause burst firing. Substantia nigra dopaminergic neurons were studied by single unit extracellular recordings in urethane anesthetized rats during pharmacologically induced inhibition and excitation of globus pallidus. Muscimol-induced inhibition of pallidal neurons produced an increase in the regularity of firing of nigral dopaminergic neurons together with a slight decrease in firing rate. Bicuculline-induced excitation of globus pallidus neurons produced a marked increase in burst firing together with a modest increase in firing rate. These changes in firing rate were in the opposite direction to what would be expected for a monosynaptic GABAergic pallidonigral input. Examination of the response of pars reticulata GABAergic neurons to similar manipulations of globus pallidus revealed that the firing rates of these neurons were much more sensitive to changes in globus pallidus neuron firing rate than dopaminergic neurons and that they responded in the opposite direction. Pallidal inhibition produced a dramatic increase in the firing rate of pars reticulata GABAergic neurons while pallidal excitation suppressed the spontaneous activity of pars reticulata GABAergic neurons. These data suggest that globus pallidus exerts significant control over the firing rate and pattern of substantia nigra dopaminergic neurons through a disynaptic pathway involving nigral pars reticulata GABAergic neurons and that at least one important way in which local application of bicuculline induces burst firing of dopaminergic neurons is by disinhibition of this tonic inhibitory input.  相似文献   

17.
R M Beckstead 《Neuroscience》1987,20(2):557-576
A portion of the nigrostriatal projection that originates from presumably dopaminergic neurons in the caudal pars compacta of the substantia nigra and the suprajacent pars dorsalis (retrorubral area), was shown by [3H]amino acid autoradiographic tracing to distribute nonhomogeneously in the head of the caudate nucleus, such that zones of high density termination are in register with the archipelago of substance P cell clusters revealed immunohistochemically in the same and adjacent tissue sections of the cat's brain. Axons from this same portion of the substantia nigra distribute densely at caudal levels of the putamen where again substance P-immunoreactive striatal cells are numerous. In nearby tissue sections from the same cases, tyrosine hydroxylase-like immunoreactivity suggested only subtle variations in the density of the catecholamine axon network within the striatum. Thus, whereas dopamine axons are distributed densely throughout the striatum, those originating from cells in the caudal pars compacta et dorsalis of the substantia nigra and ending in the head of the caudate nucleus appear to terminate preferentially within the substance P cell clusters. These data suggest that the striatal substance P cells, which send their axons selectively to the entopeduncular nucleus and substantia nigra, but much less so the globus pallidus, are a major target of nigrostriatal dopamine transmission. This result is discussed with respect to the anatomical, neurochemical and functional organization of the striatifugal projection system.  相似文献   

18.
Anatomical tract-tracing and immunohistochemical techniques involving correlated light and electron microscopy were used to determine whether the descending striatal and pallidal afferents to the substantia nigra pars reticulata converge onto individual neurons projecting to the pontomedullary and medullary reticular formation in the rat. Injections of biocytin into the ventrolateral region of the striatum and Phaseolus vulgaris-leucoagglutinin into the ventrolateral and caudal regions of the globus pallidus led to overlapping anterogradely labelled terminal fields within the dorsolateral substantia nigra pars reticulata. These terminal fields were punctuated by neurons which had been retrogradely labelled following injections of wheatgerm agglutinin conjugated to horseradish peroxidase into the lateral pontomedullary reticular formation. The anterogradely labelled striatal and pallidal terminals displayed different morphological characteristics; the striatal terminals were small and diffusely distributed throughout the neuropil without any particular neuronal association whereas the pallidal terminals were large and formed pericellular baskets around the perikarya of retrogradely and non-retrogradely labelled nigral neurons. In areas of the substantia nigra where there was an overlap between the two terminal fields, individual retrogradely labelled nigroreticular neurons were found to be apposed by both sets of anterogradely labelled terminals. Electron microscopic analysis revealed that the striatonigral and pallidonigral terminals displayed different ultrastructural features, the striatal terminals were small, contained few mitochondria and formed symmetric synaptic contacts predominantly with the distal dendrites of nigroreticular neurons whereas the pallidal terminals were large, contained numerous mitochondria and formed symmetric synaptic contacts preferentially with perikarya and proximal dendrites of nigroreticular neurons. Post-embedding immunohistochemical staining revealed that both striatonigral and pallidonigral terminals, some which formed synaptic contact with nigroreticular neurons, displayed GABA immunoreactivity. Examination of twelve retrogradely labelled neurons in the electron microscope revealed that all received synaptic inputs from both sets of anterogradely labelled terminals. In addition to the substantia nigra pars reticulata, neurons of the retrorubral field were also retrogradely labelled following injections of wheatgerm agglutinin conjugated to horseradish peroxidase into pontomedullary reticular formation. These retrorubroreticular neurons were part of a continuum of labelled cells which extended from the dorsolateral substantia nigra pars reticulata caudally into the retrorubral field. When combined with anterograde tracing methods it was found that the retrorubroreticular neurons received synaptic inputs from pallidal terminals which were morphologically similar to the pallidonigral terminals and formed symmetric synapses with the neuronal somata and proximal dendrites. In contrast to nigroreticular neurons, the stratonigral terminals were not seen in contact with retrorubroreticular cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Peptidase-containing neurons in rat striatum   总被引:1,自引:0,他引:1  
The effects of surgical lesions on peptidase activity have been studied in the striatonigral system of the rat brain. Knife cuts separating the anterior part of the caudate putamen from the globus pallidus resulted in a decrease in the activity of angiotensin-converting enzyme and alanyl aminopeptidase in both the globus pallidus and substantia nigra. The activity of nigral prolyl endopeptidase and leucyl aminopeptidase was also decreased. An increase in dipeptidyl aminopeptidase and arginyl endopeptidase activity was observed in both the caudate putamen and globus pallidus. These results suggest that the striatal neurons containing angiotensin-converting enzyme or alanyl aminopeptidase project to both the globus pallidus and substantia nigra, and the neurons containing prolyl endopeptidase and/or leucyl aminopeptidase project to the substantia nigra. Dipeptidyl aminopeptidase and arginyl endopeptidase are probably associated with glial function.  相似文献   

20.
Zhang J  Stanton DM  Nguyen XV  Liu M  Zhang Z  Gash D  Bing G 《Neuroscience》2005,135(3):829-838
Increasing evidence suggests that abnormal iron handling may be involved in the pathogenesis of Parkinson's disease. The present study investigates the role of iron and the iron-storage protein ferritin in inflammation-induced degeneration of dopaminergic neurons of the substantia nigra pars compacta. Injection of lipopolysaccharide into the globus pallidus of young and middle-aged rats substantially decreased tyrosine hydroxylase immunostaining in substantia nigra pars compacta four weeks after injection. Loss of tyrosine hydroxylase expression was accompanied by increased iron and ferritin levels in glial cells of the substantia nigra pars reticulata. Despite greater increases in nigral iron levels, ferritin induction was less pronounced in older rats, suggesting the regulation of ferritin was compromised with age. Automated movement tracking analyses showed that young rats recovered from LPS-induced locomotor deficits within four weeks, yet older rats failed to improve on measures of speed and total distance moved. Intrapallidal lipopolysaccharide injection also increased expression of alpha-synuclein and ubiquitin in tyrosine hydroxylase-positive neurons of the substantia nigra pars compacta. These results suggest that pallidal inflammation significantly increases stress on dopamine-containing neurons in the substantia nigra pars compacta. Alterations in nigral iron levels and protein handing may increase the vulnerability of nigral neurons to degenerative processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号