首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduction  Conclusive evidence of cerebral ischemia following head injury has been elusive. We aimed to use 15O and 18Fluorodeoxyglucose positron emission tomography (PET) to investigate pathophysiological derangements following head injury. Results   Eight patients underwent PET within 24 h of injury to map cerebral blood flow (CBF), cerebral oxygen metabolism (CMRO2), oxygen extraction fraction (OEF), and cerebral glucose metabolism (CMRglc). Physiological regions of interest (ROI) were generated for each subject using a range of OEF values from very low (<10), low (10–30), normal range (30–50), high (50–70), and critically high (≥70%). We applied these ROIs to each subject to generate data that would examine the balance between blood flow and metabolism across the injured brain independent of structural injury. Discussion   Compared to the normal range, brain regions with higher OEF demonstrate a progressive CBF reduction (P < 0.01), CMRO2 increase (P < 0.05), and no change in CMRglc, while regions with lower OEF are associated with reductions in CBF, CMRO2, and CMRglc (P < 0.01). Although all subjects demonstrate a decrease in CBF with increases in OEF > 70%, CMRO2 and CMRglc were generally unchanged. One subject demonstrated a reduction in CBF and small fall in CMRO2 within the high OEF region (>70%), combined with a progressive increase in CMRglc. Conclusions  The low CBF and maintained CMRO2 in the high OEF ROIs is consistent with classical cerebral ischemia and the presence of an ‘ischemic penumbra’ following early head injury, while the metabolic heterogeneity that we observed suggests significant pathophysiological complexity. Other mechanisms of energy failure are clearly important and further study is required to delineate the processes involved.  相似文献   

2.
Brief neural stimulation results in a stereotypical pattern of vascular and metabolic response that is the basis for popular brain-imaging methods such as functional magnetic resonance imagine. However, the mechanisms of transient oxygen transport and its coupling to cerebral blood flow (CBF) and oxygen metabolism (CMRO2) are poorly understood. Recent experiments show that brief stimulation produces prompt arterial vasodilation rather than venous vasodilation. This work provides a neurovascular response model for brief stimulation based on transient arterial effects using one-dimensional convection–diffusion transport. Hemoglobin oxygen dissociation is included to enable predictions of absolute oxygen concentrations. Arterial CBF response is modeled using a lumped linear flow model, and CMRO2 response is modeled using a gamma function. Using six parameters, the model successfully fit 161/166 measured extravascular oxygen time courses obtained for brief visual stimulation in cat cerebral cortex. Results show how CBF and CMRO2 responses compete to produce the observed features of the hemodynamic response: initial dip, hyperoxic peak, undershoot, and ringing. Predicted CBF and CMRO2 response amplitudes are consistent with experimental measurements. This model provides a powerful framework to quantitatively interpret oxygen transport in the brain; in particular, its intravascular oxygen concentration predictions provide a new model for fMRI responses.  相似文献   

3.
Recent reports showed noxious forepaw stimulation in rats evoked an unexpected sustained decrease in cerebral blood volume (CBV) in the bilateral striatum, whereas increases in spike activity and Fos-immunoreactive cells were observed. This study aimed to further evaluate the hemodynamic and metabolic needs in this model and the sources of negative functional magnetic resonance imaging (fMRI) signals by measuring blood oxygenation-level-dependent (BOLD), cerebral-blood-flow (CBF), CBV, and oxygen-consumption (i.e., cerebral metabolic rate of oxygen (CMRO2)) changes using an 11.7-T MRI scanner, and glucose-consumption (i.e., cerebral metabolic rate of glucose (CMRglc)) changes using micro-positron emission tomography. In the contralateral somatosensory cortex, BOLD, CBF, CBV, CMRO2 (n=7, P<0.05), and CMRglc (n=5, P<0.05) increased. In contrast, in the bilateral striatum, BOLD, CBF, and CBV decreased (P<0.05), CMRO2 decreased slightly, although not significantly from baseline, and CMRglc was not statistically significant from baseline (P>0.05). These multimodal functional imaging findings corroborate the unexpected negative hemodynamic changes in the striatum during noxious forepaw stimulation, and support the hypothesis that striatal hemodynamic response is dominated by neurotransmitter-mediated vasoconstriction, overriding the stimulus-evoked fMRI signal increases commonly accompany elevated neuronal activity. Multimodal functional imaging approach offers a means to probe the unique attributes of the striatum, providing novel insights into the neurovascular coupling in the striatum. These findings may have strong implications in fMRI studies of pain.  相似文献   

4.
Cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) are physiological parameters that not only reflect brain health and disease but also jointly contribute to blood oxygen level-dependent (BOLD) signals. Nevertheless, unsolved issues remain concerning the CBF–CMRO2 relationship in the working brain under various oxygen conditions. In particular, the CMRO2 responses to functional tasks in hypoxia are less studied. We extended the calibrated BOLD model to incorporate CMRO2 measurements in hypoxia. The extended model, which was cross-validated with a multicompartment BOLD model, considers the influences of the reduced arterial saturation level and increased baseline cerebral blood volume (CBV) and deoxyhemoglobin concentration on the changes of BOLD signals in hypoxia. By implementing a pulse sequence to simultaneously acquire the CBV-, CBF- and BOLD-weighted signals, we investigated the effects of mild hypoxia on the CBF and CMRO2 responses to graded visual stimuli. Compared with normoxia, mild hypoxia caused significant alterations in both the amplitude and the trend of the CMRO2 responses but did not impact the corresponding CBF responses. Our observations suggested that the flow-metabolism coupling strategies in the brain during mild hypoxia were different from those during normoxia.  相似文献   

5.
The coupling of cerebral blood flow (CBF) to neuronal activity is well preserved during evolution. Upon changes in the neuronal activity, an incompletely understood coupling mechanism regulates diameter changes of supplying blood vessels, which adjust CBF within seconds. The physiologic brain tissue oxygen content would sustain unimpeded brain function for only 1 second if continuous oxygen supply would suddenly stop. This suggests that the CBF response has evolved to balance oxygen supply and demand. Surprisingly, CBF increases surpass the accompanying increases of cerebral metabolic rate of oxygen (CMRO2). However, a disproportionate CBF increase may be required to increase the concentration gradient from capillary to tissue that drives oxygen delivery. However, the brain tissue oxygen content is not zero, and tissue pO2 decreases could serve to increase oxygen delivery without a CBF increase. Experimental evidence suggests that CMRO2 can increase with constant CBF within limits and decreases of baseline CBF were observed with constant CMRO2. This conflicting evidence may be viewed as an oxygen paradox of neurovascular coupling. As a possible solution for this paradox, we hypothesize that the CBF response has evolved to safeguard brain function in situations of moderate pathophysiological interference with oxygen supply.  相似文献   

6.
Chronic brain atrophy after traumatic brain injury (TBI) is a well-known phenomenon, the causes of which are unknown. Early nonischemic reduction in oxidative metabolism is regionally associated with chronic brain atrophy after TBI. A total of 32 patients with moderate-to-severe TBI prospectively underwent positron emission tomography (PET) and volumetric magnetic resonance imaging (MRI) within the first week and at 6 months after injury. Regional lobar assessments comprised oxidative metabolism and glucose metabolism. Acute MRI showed a preponderance of hemorrhagic lesions with few irreversible ischemic lesions. Global and regional chronic brain atrophy occurred in all patients by 6 months, with the temporal and frontal lobes exhibiting the most atrophy compared with the occipital lobe. Global and regional reduction in cerebral metabolic rate of oxygen (CMRO2), cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of glucose were observed. The extent of metabolic dysfunction was correlated with the total hemorrhage burden on initial MRI (r=0.62, P=0.01). The extent of regional brain atrophy correlated best with CMRO2 and CBF. Lobar values of OEF were not in the ischemic range and did not correlate with chronic brain atrophy. Chronic brain atrophy is regionally specific and associated with regional reductions in oxidative brain metabolism in the absence of irreversible ischemia.  相似文献   

7.
The neural mechanisms underlying motor impairment in multiple sclerosis (MS) remain unknown. Motor cortex dysfunction is implicated in blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies, but the role of neural–vascular coupling underlying BOLD changes remains unknown. We sought to independently measure the physiologic factors (i.e., cerebral blood flow (ΔCBF), cerebral metabolic rate of oxygen (ΔCMRO2), and flow–metabolism coupling (ΔCBF/ΔCMRO2), utilizing dual-echo calibrated fMRI (cfMRI) during a bilateral finger-tapping task. We utilized cfMRI to measure physiologic responses in 17 healthy volunteers and 32 MS patients (MSP) with and without motor impairment during a thumb-button-press task in thumb-related (task-central) and surrounding primary motor cortex (task-surround) regions of interest (ROIs). We observed significant ΔCBF and ΔCMRO2 increases in all MSP compared to healthy volunteers in the task-central ROI and increased flow–metabolism coupling (ΔCBF/ΔCMRO2) in the MSP without motor impairment. In the task-surround ROI, we observed decreases in ΔCBF and ΔCMRO2 in MSP with motor impairment. Additionally, ΔCBF and ΔCMRO2 responses in the task-surround ROI were associated with motor function and white matter damage in MSP. These results suggest an important role for task-surround recruitment in the primary motor cortex to maintain motor dexterity and its dependence on intact white matter microstructure and neural–vascular coupling.  相似文献   

8.
While it is known that specific nuclei of the brain, for example hypothalamus, contain glucose‐sensing neurons thus their activity is affected by blood glucose level, the effect of glucose modulation on whole‐brain metabolism is not completely understood. Several recent reports have elucidated the long‐term impact of caloric restriction on the brain, showing that animals under caloric restriction had enhanced rate of tricarboxylic acid cycle (TCA) cycle flux accompanied by extended life span. However, acute effect of postprandial blood glucose increase has not been addressed in detail, partly due to a scarcity and complexity of measurement techniques. In this study, using a recently developed noninvasive MR technique, we measured dynamic changes in global cerebral metabolic rate of O2 (CMRO2) following a 50 g glucose ingestion (N = 10). A time dependent decrease in CMRO2 was observed, which was accompanied by a reduction in oxygen extraction fraction (OEF) with unaltered cerebral blood flow (CBF). At 40 min post‐ingestion, the amount of CMRO2 reduction was 7.8 ± 1.6%. A control study without glucose ingestion was performed (N = 10), which revealed no changes in CMRO2, CBF, or OEF, suggesting that the observations in the glucose study was not due to subject drowsiness or fatigue after staying inside the scanner. These findings suggest that ingestion of glucose may alter the rate of cerebral metabolism of oxygen in an acute setting. Hum Brain Mapp 36:707–716, 2015. © 2014 Wiley Periodicals, Inc .  相似文献   

9.
Acute nicotine administration stimulates [14C]deoxyglucose trapping in thalamus and other regions of rat brain, but acute effects of nicotine and smoking on energy metabolism have rarely been investigated in human brain by positron emission tomography (PET). We obtained quantitative PET measurements of cerebral blood flow (CBF) and metabolic rate of oxygen (CMRO2) in 12 smokers who had refrained from smoking overnight, and in a historical group of nonsmokers, testing the prediction that overnight abstinence results in widespread, coupled reductions of CBF and CMRO2. At the end of the abstention period, global grey-matter CBF and CMRO2 were both reduced by 17% relative to nonsmokers. At 15 minutes after renewed smoking, global CBF had increased insignificantly, while global CMRO2 had increased by 11%. Regional analysis showed that CMRO2 had increased in the left putamen and thalamus, and in right posterior cortical regions at this time. At 60 and 105 minutes after smoking resumption, CBF had increased by 8% and CMRO2 had increased by 11-12%. Thus, we find substantial and global impairment of CBF/CMRO2 in abstaining smokers, and acute restoration by resumption of smoking. The reduced CBF and CMRO2 during acute abstention may mediate the cognitive changes described in chronic smokers.  相似文献   

10.

Introduction

Cognitive performance-induced brain oxygen metabolism has been successfully measured by functional magnetic resonance imaging (fMRI) in human studies. The measurement of the cerebral metabolic rate of oxygen consumption (CMRO2) is typically achieved by assuming a fixed coupling of cerebral blood flow (CBF) and cerebral blood volume (CBV) and by performing a separate experiment to assess the vascular response to a hypercapnic challenge. Psychoactive drugs may have directly effect on the cerebral vasculature, potentially confounding the interpretation of pharmacological MRI (phMRI) data. In this study, we tested the assumptions of the standard CMRO2 calculation following the administration of cocaine, in order to test the validity of this measurement in phMRI studies. The initial transient state and later steady state CBF and CBV responses to a hypercapnic challenge were measured.

Methods

CBF and CBV responses were directly measured by fMRI using continuous arterial spin-labeling (ASL) and contrast-enhanced fMRI, respectively. The coupling between changes in CBF and CBV during a hypercapnic challenge was examined under normal conditions and following the administration of cocaine.

Results

A decoupling of changes in CBF and CBV was observed during the transient state immediately following the administration of cocaine, and an altered coupling of CBF and CBV was found during the steady state after cocaine injection.

Discussion

These data suggest caution in interpreting CMRO2 measurements from phMRI studies and may also lead to an improved understanding of the complex neuronal and vascular mechanisms of drug action.  相似文献   

11.
Regional cerebral blood flow (CBF) and oxygen metabolism can be measured by positron emission tomography (PET) with 15O-labeled compounds. Hemoglobin (Hb) concentration of blood, a primary determinant of arterial oxygen content (CaO2), influences cerebral circulation. We investigated interindividual variations of CBF, cerebral blood volume (CBV), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2) in relation to Hb concentration in healthy human volunteers (n=17) and in patients with unilateral steno-occlusive disease (n=44). For the patients, data obtained only from the contralateral hemisphere (normal side) were analyzed. The CBF and OEF were inversely correlated with Hb concentration, but CMRO2 was independent of Hb concentration. Oxygen delivery defined as a product of CaO2 and CBF (CaO2 CBF) increased with a rise of Hb concentration. The analysis with a simple oxygen model showed that oxygen diffusion parameter (L) was constant over the range of Hb concentration, indicating that a homeostatic mechanism controlling CBF is necessary to maintain CMRO2. The current findings provide important knowledge to understand the control mechanism of cerebral circulation and to interpret the 15O PET data in clinical practice.  相似文献   

12.
A series of studies have revealed that nocturnal enuresis is closely related to hypoxia in children with primary nocturnal enuresis (PNE). However, brain oxygen metabolism of PNE children has not been investigated before. The purpose of this study was to investigate changes in whole‐brain cerebral metabolic rate of oxygen (CMRO2), cerebral blood flow (CBF), and oxygen extraction fraction (OEF) in children suffering from PNE. We used the newly developed T2‐relaxation‐under‐spin‐tagging (TRUST) magnetic resonance imaging technique. Neurological evaluation, structural imaging, phase‐contrast, and the TRUST imaging method were applied in children with PNE (n = 37) and healthy age‐ and sex‐matched control volunteers (n = 39) during natural sleep to assess whole‐brain CMRO2, CBF, OEF, and arousal from sleep scores. Results showed that whole‐brain CMRO2 and OEF values of PNE children were higher in controls, while there was no significant difference in CBF. Consequently, OEF levels of PNE children were increased to maintain oxygen supply. The elevation of OEF was positively correlated with the difficulty of arousal. Our results provide the first evidence that high oxygen consumption and high OEF values could make PNE children more susceptible to hypoxia, which may induce cumulative arousal deficits and make them more prone to nocturnal enuresis. Hum Brain Mapp 38:2532–2539, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

13.
Cortical spreading depression (CSD) is associated with mitochondrial depolarization, increasing intracellular Ca2+, and the release of free fatty acids, which favor opening of the mitochondrial permeability transition pore (mPTP) and activation of calcineurin (CaN). Here, we test the hypothesis that cyclosporine A (CsA), which blocks both mPTP and CaN, ameliorates the persistent reduction of cerebral blood flow (CBF), impaired vascular reactivity, and a persistent rise in the cerebral metabolic rate of oxygen (CMRO2) following CSD. In addition to CsA, we used the specific mPTP blocker NIM811 and the specific CaN blocker FK506. Cortical spreading depression was induced in rat frontal cortex. Electrocortical activity was recorded by glass microelectrodes, CBF by laser Doppler flowmetry, and tissue oxygen tension with polarographic microelectrodes. Electrocortical activity, basal CBF, CMRO2, and neurovascular and neurometabolic coupling were unaffected by all three drugs under control conditions. NIM811 augmented the rise in CBF observed during CSD. Cyclosporine A and FK506 ameliorated the persistent decrease in CBF after CSD. All three drugs prevented disruption of neurovascular coupling after CSD; the rise in CMRO2 was unchanged. Our data suggest that blockade of mPTP formation and CaN activation may prevent persistent CBF reduction and vascular dysfunction after CSD.  相似文献   

14.
Small shifts in brain temperature after hypoxia–ischaemia affect cell viability. The main determinants of brain temperature are cerebral metabolism, which contributes to local heat production, and brain perfusion, which removes heat. However, few studies have addressed the effect of cerebral metabolism and perfusion on regional brain temperature in human neonates because of the lack of non-invasive cot-side monitors. This study aimed (i) to determine non-invasive monitoring tools of cerebral metabolism and perfusion by combining near-infrared spectroscopy and echocardiography, and (ii) to investigate the dependence of brain temperature on cerebral metabolism and perfusion in unsedated newborn infants.Thirty-two healthy newborn infants were recruited. They were studied with cerebral near-infrared spectroscopy, echocardiography, and a zero-heat flux tissue thermometer. A surrogate of cerebral blood flow (CBF) was measured using superior vena cava flow adjusted for cerebral volume (rSVC flow). The tissue oxygenation index, fractional oxygen extraction (FOE), and the cerebral metabolic rate of oxygen relative to rSVC flow (CMRO2 index) were also estimated.A greater rSVC flow was positively associated with higher brain temperatures, particularly for superficial structures. The CMRO2 index and rSVC flow were positively coupled. However, brain temperature was independent of FOE and the CMRO2 index. A cooler ambient temperature was associated with a greater temperature gradient between the scalp surface and the body core.Cerebral oxygen metabolism and perfusion were monitored in newborn infants without using tracers. In these healthy newborn infants, cerebral perfusion and ambient temperature were significant independent variables of brain temperature. CBF has primarily been associated with heat removal from the brain. However, our results suggest that CBF is likely to deliver heat specifically to the superficial brain. Further studies are required to assess the effect of cerebral metabolism and perfusion on regional brain temperature in low-cardiac output conditions, fever, and with therapeutic hypothermia.  相似文献   

15.
《Neurological research》2013,35(7):678-683
Abstract

Objective: Pre- and post-operative cerebral circulation and metabolism were evaluated in patients with low-grade acute aneurysmal subarachnoid hemorrhage (SAH) who underwent early surgery to investigate the effects on brain dysfunction.

Methods: Positron emission tomography (PET) was performed to measure the regional cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO2), oxygen extraction fraction (OEF) and cerebral blood volume in four patients (one male and three females, mean age: 60.3 years) with low-grade SAH within 30 hours of onset. Post-operative PET was performed on the seventh post-operative day. No patient suffered clinical deterioration during the study. Pre-operative PET scans demonstrated significant global reduction of CBF and CMRO2, compared to 16 normal control subjects, and no significant change in OEF. CBF and CMRO2 reduction post-operatively improved to the normal control values. Post-operative OEF was significantly increased compared to the normal control value.

Conclusions: Patients with low-grade SAH have impairment of cerebral circulation and metabolism in the acute period, which improves after surgery. Early surgery for low-grade SAH, necessary to avoid rerupture of the aneurysm, did not worsen the impairment of cerebral circulation and metabolism. However, measures to protect the brain from perioperative damage are necessary to achieve the optimum outcome.  相似文献   

16.
The poststimulus blood oxygenation level-dependent (BOLD) undershoot has been attributed to two main plausible origins: delayed vascular compliance based on delayed cerebral blood volume (CBV) recovery and a sustained increased oxygen metabolism after stimulus cessation. To investigate these contributions, multimodal functional magnetic resonance imaging was employed to monitor responses of BOLD, cerebral blood flow (CBF), total CBV, and arterial CBV (CBVa) in human visual cortex after brief breath hold and visual stimulation. In visual experiments, after stimulus cessation, CBVa was restored to baseline in 7.9±3.4 seconds, and CBF and CBV in 14.8±5.0 seconds and 16.1±5.8 seconds, respectively, all significantly faster than BOLD signal recovery after undershoot (28.1±5.5 seconds). During the BOLD undershoot, postarterial CBV (CBVpa, capillaries and venules) was slightly elevated (2.4±1.8%), and cerebral metabolic rate of oxygen (CMRO2) was above baseline (10.6±7.4%). Following breath hold, however, CBF, CBV, CBVa and BOLD signals all returned to baseline in ∼20 seconds. No significant BOLD undershoot, and residual CBVpa dilation were observed, and CMRO2 did not substantially differ from baseline. These data suggest that both delayed CBVpa recovery and enduring increased oxidative metabolism impact the BOLD undershoot. Using a biophysical model, their relative contributions were estimated to be 19.7±15.9% and 78.7±18.6%, respectively.  相似文献   

17.
Assays of mitochondrial electron transport system (ETS) activity in circulating blood platelets have been used to investigate the cause of neurodegenerative diseases. However, the correspondence between platelet ETS function and cerebral mitochondrial metabolism is not well characterized. To assess the validity of using platelet ETS activity to infer cerebral mitochondrial metabolism, we measured platelet ETS activity (complex I and complex I+III), cerebral metabolic rate of oxygen (CMRO2), and the CMRO2/cerebral metabolic rate for glucose ratio in 40 subjects: 7 with never-medicated Parkinson''s disease, 13 with genetically proved Huntington''s disease, and 20 normal controls. We found no correlation between in vivo measures of cerebral mitochondrial oxidative metabolism and ex vivo assays of platelet complex I and complex I+III activity performed on blood collected immediately before cerebral metabolism studies. We saw no evidence of a threshold effect when comparing platelet complex I and complex I+III activity with cerebral oxidative metabolism across a 4- to 10-fold range of platelet ETS activity. On the basis of these data, we conclude that measures of mitochondrial complex I and I+III activity in platelets within the ranges we have studied do not correlate with oxidative function of cerebral mitochondria.  相似文献   

18.
Measuring the global cerebral metabolic rate of oxygen (CMRO2) is a valuable tool for assessing brain vitality and function. Measurement of blood oxygen saturation (HbO2) and flow in the major cerebral outflow and inflow vessels can provide a global estimate of CMRO2. We demonstrate a rapid noninvasive method for quantifying CMRO2 by simultaneously measuring venous oxygen saturation in the superior sagittal sinus with magnetic resonance susceptometry-based oximetry, a technique that exploits the intrinsic susceptibility of deoxygenated hemoglobin, and the average blood inflow rate with phase-contrast magnetic resonance imaging. The average venous HbO2, cerebral blood flow, and global CMRO2 values in eight healthy, normal study subjects were 64%±4%, 45.2±3.2 mL per 100 g per minute, and 127±7 μmol per 100 g per minute, respectively. These values are in good agreement with those reported in literature. The technique described is noninvasive, robust, and reproducible for in vivo applications, making it ideal for use in clinical settings for assessing the pathologies associated with dysregulation of cerebral metabolism. In addition, the short acquisition time (∼30 seconds) makes the technique suitable for studying the temporal variations in CMRO2 in response to physiologic challenges.  相似文献   

19.
The effects of partial acclimatization to high altitude (HA; 5,050 m) on cerebral metabolism and cerebrovascular function have not been characterized. We hypothesized (1) increased cerebrovascular reactivity (CVR) at HA; and (2) that CO2 would affect cerebral metabolism more than hypoxia. PaO2 and PaCO2 were manipulated at sea level (SL) to simulate HA exposure, and at HA, SL blood gases were simulated; CVR was assessed at both altitudes. Arterial–jugular venous differences were measured to calculate cerebral metabolic rates and cerebral blood flow (CBF). We observed that (1) partial acclimatization yields a steeper CO2-H+ relation in both arterial and jugular venous blood; yet (2) CVR did not change, despite (3) mean arterial pressure (MAP)-CO2 reactivity being doubled at HA, thus indicating effective cerebral autoregulation. (4) At SL hypoxia increased CBF, and restoration of oxygen at HA reduced CBF, but neither had any effect on cerebral metabolism. Acclimatization resets the cerebrovasculature to chronic hypocapnia.  相似文献   

20.
A recently reported quantitative magnetic resonance imaging (MRI) method denoted OxFlow has been shown to be able to quantify whole-brain cerebral metabolic rate of oxygen (CMRO2) by simultaneously measuring oxygen saturation (SvO2) in the superior sagittal sinus and cerebral blood flow (CBF) in the arteries feeding the brain in 30 seconds, which is adequate for measurement at baseline but not necessarily in response to neuronal activation. Here, we present an accelerated version of the method (referred to as F-OxFlow) that quantifies CMRO2 in 8 seconds scan time under full retention of the parent method''s capabilities and compared it with its predecessor at baseline in 10 healthy subjects. Results indicate excellent agreement between both sequences, with mean bias of 2.2% (P=0.18, two-tailed t-test), 3.4% (P=0.08, two-tailed t-test), and 2.0% (P=0.56, two-tailed t-test) for SvO2, CBF, and CMRO2, respectively. F-OxFlow''s potential to monitor dynamic changes in SvO2, CBF, and CMRO2 is illustrated in a paradigm of volitional apnea applied to five of the study subjects. The sequence captured an average increase in SvO2, CBF, and CMRO2 of 10.1±2.5%, 43.2±9.2%, and 7.1±2.2%, respectively, in good agreement with literature values. The method may therefore be suited for monitoring alterations in CBF and SvO2 in response to neurovascular stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号