首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu H  Wu T  Li M  Wang J 《Neurobiology of disease》2012,45(1):388-394
Previous studies have indicated that 2,2′-dipyridyl, a lipid-soluble ferrous iron chelator, can reduce brain injury after cerebral ischemia and reduce cerebral vasospasm after subarachnoid hemorrhage. In this study, we examined the efficacy of 2,2′-dipyridyl after intracerebral hemorrhage (ICH) in 12-month-old mice. ICH was modeled by intrastriatal injection of collagenase or autologous whole blood. 2,2′-Dipyridyl or vehicle was administered intraperitoneally 2 h before ICH (pretreatment) or 6 h after ICH (post-treatment) and then once daily for up to 3 days. Mice in the pretreatment group were sacrificed 1 or 3 days after ICH and examined for iron deposition, neuronal death, oxidative stress, microglial/astrocyte activation, neutrophil infiltration, and white matter damage. Mice in the post-treatment group were examined for brain lesion volume and edema on day 3 and for neurologic deficits on days 1, 3, and 28 after ICH. Pretreatment with 2,2′-dipyridyl decreased iron accumulation and neuronal death, attenuated production of reactive oxygen species, reduced microglial activation without affecting astrocytes or neutrophil infiltration, and attenuated white matter damage. Post-treatment reduced brain lesion volume and edema and improved neurologic function. These results indicate that the lipid-soluble ferrous iron chelator 2,2′-dipyridyl can reduce brain injury and improve functional outcome after ICH.  相似文献   

2.
Yao Y  Tsirka SE 《Glia》2012,60(6):908-918
Intracerebral hemorrhage (ICH) has been associated with inflammation and apoptosis. The CCL2-CCR2 chemotactic system is one of the major signaling pathways that induce inflammation and apoptosis. However, its role on ICH has not been investigated. We subjected wild-type, CCL2(-/-) , and CCR2(-/-) mice to collagenase-induced ICH, and assessed histological and behavioral outcomes. Lack of CCL2 or CCR2 decreased the hematoma volume early after collagenase-induced ICH but delayed its recovery. The hematoma size was accompanied by brain edema, neuronal death, and neurological scores. Although microglia activation/migration was attenuated in CCL2(-/-) or CCR2(-/-) mice 1 day after injury, more microglia were present at later time points, suggesting that alternative signaling pathways had been activated to recruit them. On the contrary, leukocyte and neutrophil infiltration were decreased in these mice, suggesting a tighter/recovered blood-brain barrier. In addition, we also found that FL- and K104Stop-CCL2 were able to restore the changes found in CCL2(-/-) mice, but K104A-CCL2 failed to do so. These results suggest that plasmin-mediated truncation of CCL2 may be an indispensable step to fully activate the chemokine in vivo. The data also indicate that CCL2-CCR2 signaling pathway may be a molecular target for the treatment of ICH.  相似文献   

3.
The systemic immune response has a vital role in propagating the damage of an intracerebral hemorrhage (ICH). Vascular adhesion protein-1 (VAP-1), a semicarbazide (SCZ)-sensitive-amine-oxidase, was found in previous studies to have a role in migration of immune cells. In this study, we hypothesize that VAP-1 inhibition may decrease brain injury by attenuating the transmigration of immune cells to the injury site, and by doing so, reduce cerebral edema and improve neurobehavioral function in mice. Two VAP-1 inhibitors, LJP1586 and SCZ were given 1 hour after ICH induction by either collagenase or autologous blood injection. The VAP-1 siRNA, a VAP-1 gene silencer, and human recombinant AOC3 protein, a VAP-1 analogue, were delivered by intracerebroventricular injection. Postassessment included neurobehavioral testing, brain edema measurement, quantification of neutrophil infiltration and microglia/macrophage activation, and measurement of intercellular adhesion molecule-1 (ICAM-1), P-selectin, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-α (TNF-α) expression 24 hours after ICH. We found that LJP1586 and SCZ reduced brain edema and neurobehavioral deficits 24 hours after ICH induction. These two drugs were also found to decrease levels of ICAM-1, MCP-1, TNF-α, and inhibit neutrophilic infiltration and microglia/macrophage activation. We conclude that VAP-1 inhibition provided antiinflammation effect by reducing adhesion molecule expression and immune cell infiltration after ICH.  相似文献   

4.
Lipocalin-2 (LCN2) is a siderophore-binding protein involved in cellular iron transport and neuroinflammation. Both iron and inflammation are involved in brain injury after intracerebral hemorrhage (ICH) and this study examined the role of LCN2 in such injury. Male adult C57BL/6 wild-type (WT) or LCN2-deficient (LCN2−/−) mice had an intracerebral injection of autologous blood or FeCl2. Control animals had a sham operation or saline injection. T2-weighted magnetic resonance imaging and behavioral tests were performed at days 1, 3, 7, 14, and 28 after injection. In WT mice, brain LCN2 levels were increased in the ipsilateral basal ganglia after ICH or iron injection. Lipocalin-2-positive cells were astrocytes, microglia, neurons, and endothelial cells. Intracerebral hemorrhage resulted in a significant increase in ferritin expression in the ipsilateral basal ganglia. Compared with WT mice, ICH caused less ferritin upregulation, microglia activation, brain swelling, brain atrophy, and neurologic deficits in LCN2−/− mice (P<0.05). The size of the lesion induced by FeCl2 injection as well as the degree of brain swelling and blood–brain barrier disruption were also less in LCN2−/− mice (P<0.05). These results suggest a role of LCN2 in enhancing brain injury and iron toxicity after ICH.  相似文献   

5.
Deferoxamine (DFX), a potent iron-chelating agent, reduces brain edema and neuronal cell injury that develop due to the hemolysis cascade. Statins have neuroprotective effects via anti-inflammatory action and increment of cerebral blood flow after intracerebral hemorrhage (ICH). The purpose of this study was to identify the effects of combined DFX and statins treatment in an experimental ICH rat model. The treatments were: intraperitoneal (i.p.) injection of DFX (group I), combined treatment of i.p. DFX and oral statins (group II), statins only (group III) and treatment with vehicle (group IV). Induction of ICH was performed with injection of bacterial collagenase type IV into the left striatum. After removal of the brain, hematoma volume, water content and brain atrophy were measured. Immunohistochemistry in the perihematomal region was performed for identification of microglial infiltration, astrocyte expression and apoptotic cell presence. Statistical analysis was performed using the non-parametric Kruskal–Wallis test and significance was evaluated when the p value was less than 0.05. According to behavioral tests, significant differences among treatment groups were noted 4 weeks after ICH induction (p < 0.05). However, there were no significant differences among treatment groups in hematoma volume, brain water content or brain atrophy. In the perihematomal area, the activated microglial cells were reduced in the combined treatment group. Among the four groups, a significant difference in immunohistochemical staining was identified (p < 0.05). These results suggest that combined treatment with DFX and statins improves neurologic outcomes after ICH through reduction of microglial infiltration, apoptosis, inflammation and brain edema.  相似文献   

6.
Intracerebral hemorrhage (ICH) is a stroke subtype with significant mortality and morbidity. The role of unconjugated bilirubin (UBR) in ICH brain injury is not well understood. Therefore, we studied the effects of UBR on brain injury markers and inflammation, as well as mechanisms involved therein. We induced ICH in mice by infusion of autologous whole blood with vehicle (dimethyl sulfoxide) or UBR. We found that UBR led to an increase in edema (P⩽0.05), but a decrease in nitrate/nitrite formation (7.0±0.40 nmol/mg versus 5.2±0.70 nmol/mg protein, P⩽0.05) and no change in protein carbonyls. Unconjugated bilirubin was also associated with an increase in neutrophil infiltration compared with ICH alone, as determined by both immunofluorescence and flow cytometry (36%±3.2% versus 53%±1.3% of CD45+ cells, P⩽0.05). In contrast, we observed reduced perihematomal microglia immunoreactivity in animals receiving UBR (P⩽0.05). Using in vitro techniques, we show neutrophil activation by UBR and also show that protein kinase C participates in this signaling pathway. Finally, we found that UBR was associated with an increased expression of the leukocyte adhesion molecule intercellular adhesion molecule-1. Our results suggest that UBR possesses complex immune-modulatory and antioxidant effects.  相似文献   

7.
The purpose of this study was to investigate hemoglobin and iron handling after subarachnoid hemorrhage (SAH), examine the relationship between iron and neuroglial cell changes, and determine whether deferoxamine (DFX) can reduce SAH-induced injury. The SAH was induced in Sprague-Dawley rats (n=110) using an endovascular perforation technique. Animals were treated with DFX (100 mg/kg) or vehicle 2 and 6 hours after SAH induction followed by every 12 hours for 3 days. Rats were killed at 6 hours, Days 1 and 3 to determine nonheme iron and examine iron-handling proteins using Western blot and immunohistochemistry. 8-Hydroxyl-2′-deoxyguanosine and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining were performed to assess oxidative DNA damage and neuronal cell death. After SAH, marked heme-oxygenase-1 (HO-1) upregulation at Day 3 (P<0.01) was accompanied by elevated nonheme iron (P<0.01), transferrin (Tf) (P<0.01), Tf receptor (P<0.05), and ferritin levels (P<0.01). Deferoxamine treatment reduced SAH-induced mortality (12% versus 29%, P<0.05), brain nonheme iron concentration, iron-handling protein expression, oxidative stress, and neuronal cell death at Day 3 (P<0.01) after SAH. These results suggest that iron overload in the acute phase of SAH causes oxidative injury leading to neuronal cell death. Deferoxamine effectively reduced oxidative stress and neuronal cell death, and may be a potential therapeutic agent for SAH.  相似文献   

8.
Intracranial hemorrhage (ICH) is a common subtype of stroke with high morbidity and mortality. However, few clinical therapies that can reduce ICH-induced brain injury and promote the recovery outcome in ICH patients are available to improve the recovery from ICH. Given that aquaporin 9 (AQP9) plays a critical role in brain edema after ischemic stroke and traumatic brain injury and is involved in the regulation of angiogenesis, we examined the role of AQP9 in preventing neuronal loss and in neovascularization in the dorsal hippocampus (DH) after ICH. We found that intra-DH collagenase-induced ICH increased AQP9 protein levels in the hippocampus, which was associated with behavioral deficits in wild-type mice. However, ICH robustly enhanced behavioral deficits in the AQP9-null mice, as compared with the wild-type mice. Furthermore, neovascularization and proliferation of brain microvascular endothelial cells following ICH were severely impaired in the AQP9-null mice, as compared with the wild-type mice. Finally, hippocampal neuronal loss following ICH became severer in the AQP9-null mice, relative to the wild-type mice. Taken together, our findings indicated that AQP9 in the brain may play a compensatory role in response to ICH, promote brain angiogenesis, and prevent subsequent neuronal death, thus preventing the deterioration of neurological outcome of ICH.  相似文献   

9.
Intracerebral hemorrhage (ICH) is the second most common and deadliest form of stroke. Currently, no pharmacologic treatment strategies exist for this devastating disease. Following the initial mechanical injury suffered at hemorrhage onset, secondary brain injury proceeds through both direct cellular injury and inflammatory cascades, which trigger infiltration of granulocytes and monocytes, activation of microglia, and disruption of the blood–brain barrier with resulting cerebral edema. The complement cascade has been shown to play a central role in the pathogenesis of secondary injury following ICH, although the specific mechanisms responsible for the proximal activation of complement remain incompletely understood. Cerebral injury following cleavage of complement component 3 (C3) proceeds through parallel but interrelated pathways of anaphylatoxin-mediated inflammation and direct toxicity secondary to membrane attack complex-driven erythrocyte lysis. Complement activation also likely plays an important physiologic role in recovery following ICH. As such, a detailed understanding of the variation in functional effects of complement activation over time is critical to exploiting this target as an exciting translational strategy for intracerebral hemorrhage.  相似文献   

10.
Am80 (tamibarotene) is a retinoic acid receptor (RAR) agonist clinically available for treatment of acute promyelocytic leukemia. As intracerebral hemorrhage (ICH) accompanies inflammatory reactions in the brain and also because retinoids may suppress activation of microglia, we investigated the effect of Am80 on collagenase-induced experimental model of ICH in adult mice. Daily oral administration of Am80 (5 mg/kg) starting from 1 day before or from up to 6 hours after intrastriatal injection of collagenase significantly inhibited the decrease in the number of striatal neurons at 3 days after the insult. Am80 showed no significant effect on the hematoma size and the extent of edema associated with hemorrhage. Prominent expression of RARα was observed in activated microglia/macrophages, and the number of activated microglia/macrophages in the perihematoma region was lower in Am80-treated mice than in vehicle-treated mice. Am80 treatment also reduced areas affected by hemorrhage-associated oxidative stress as indicated by nitrotyrosine immunoreactivity, and attenuated heme oxygenase-1 expression in activated microglia/macrophages. Moreover, Am80-treated mice exhibited better recovery from hemorrhage-induced neurologic deficits than vehicle-treated mice. These results suggest that RAR is a promising target of neuroprotective therapy for ICH.  相似文献   

11.
Intracerebral hemorrhage (ICH) causes morbidity and mortality and commonly follows the reperfusion after an ischemic event. Tissue plasminogen activator (tPA), a fibrinolytic serine protease, is routinely given for the treatment of stroke. However, tPA also can promote neuronal death, suggesting that caution should be exercised when using it. Furthermore, tPA upon brain injury mediates microglial activation and modulates neuronal survival. To investigate the role of tPA and microglia during brain hemorrhage, we induced experimentally ICH by intracerebral injection of collagenase. Seven days after the introduction of ICH, it persisted in tPA-deficient (tPA(-/-)) mice but is drastically reduced in size in wild-type mice. Three weeks after ICH, there are still red blood cells in tPA(-/-) but not in wild-type animals. Activated microglia persist around the injury site. When microglial activation is inhibited by tuftsin fragment 1-3 macrophage/microglial inhibitory factor (MIF), the stroke injury volume is significantly reduced, and the neurobehavioral deficits exhibited by the mice are improved. Our results suggest that endogenous tPA assists in the clearance of intracerebral hemorrhage, presumably by affecting microglial activation, and MIF could be a valuable neuroprotective agent for the treatment of ICH.  相似文献   

12.
Inflammatory mechanisms mediated by prostaglandins may contribute to the progression of intracerebral hemorrhage (ICH)-induced brain injury, but they are not fully understood. In this study, we examined the effect of prostaglandin E2 receptor EP1 (EP1R) activation and inhibition on brain injury in mouse models of ICH and investigated the underlying mechanism of action. ICH was induced by injecting collagenase, autologous blood, or thrombin into the striatum of middle-aged male and female mice and aged male mice. Effects of selective EP1R agonist ONO-DI-004, antagonist SC51089, and nonspecific Src family kinase inhibitor PP2 were evaluated by a combination of histologic, magnetic resonance imaging (MRI), immunofluorescence, molecular, cellular, and behavioral assessments. EP1R was expressed primarily in neurons and axons but not in astrocytes or microglia after ICH induced by collagenase. In middle-aged male mice subjected to collagenase-induced ICH, EP1R inhibition mitigated brain injury, brain edema, cell death, neuronal degeneration, neuroinflammation, and neurobehavioral deficits, whereas its activation exacerbated these outcomes. EP1R inhibition also was protective in middle-aged female mice and aged male mice after collagenase-induced ICH and in middle-aged male mice after blood- or thrombin-induced ICH. EP1R inhibition also reduced oxidative stress, white matter injury, and brain atrophy and improved functional outcomes. Histologic results were confirmed by MRI. Src kinase phosphorylation and matrix metalloproteinase-9 activity were increased by EP1R activation and decreased by EP1R inhibition. EP1R regulated matrix metalloproteinase-9 activity through Src kinase signaling, which mediated EP1R toxicity after collagenase-induced ICH. We conclude that prostaglandin E2 EP1R activation plays a toxic role after ICH through mechanisms that involve the Src kinases and the matrix metalloproteinase-9 signaling pathway. EP1R inhibition could be a novel therapeutic strategy to improve outcomes after ICH.  相似文献   

13.
Intracerebral hemorrhage (ICH) is a devastating stroke causing considerable tissue destruction from mechanical trauma and secondary degeneration. Free iron, released over days from degrading erythrocytes, causes free radicals that likely contribute to delayed injury. Indeed, an intracerebral injection of iron rapidly kills cells and causes cerebral edema. We expanded upon these observations by: determining a dose-response relationship of iron infusion, examining the structural appearance of surviving striatal neurons, and evaluating injury over months. First, we measured 24-h edema in rats given 3.8, 19.0 or 38.0μg infusions of FeCl(2) (i.e., 30μL of a 1, 5 or 10mmol/L solution). Second, rats were given these infusions (vs. saline controls) followed by behavioral assessment and histology at 7days. Third, dendritic structure was measured in Golgi-Cox stained neurons at 7days after a 0.95-μg dose (30μL of a 0.25mmol/L solution). Last, rats survived 7 or 60days post-injection (19.0μg) for histological assessment. Larger doses of iron caused greater injury, but this was generally not reflected in behavior that indicated similar deficits among the 3.8-38.0μg groups. Similarly, edema occurred but was not linearly related to dose. Even after a low iron dose the surviving neurons in the peri-injury zone were considerably atrophied (vs. contralateral side and controls). Finally, continuing tissue loss occurred over weeks with prominent neuronal death and iron-positive cells (e.g., macrophages) at 60days. Iron alone may account for the chronic degeneration found after ICH in rodent models.  相似文献   

14.
Intracerebral hemorrhage (ICH) results from rupture of a blood vessel in the brain. After ICH, the blood–brain barrier (BBB) surrounding the hematoma is disrupted, leading to cerebral edema. In both animals and humans, edema coincides with inflammation, which is characterized by production of pro-inflammatory cytokines, activation of resident brain microglia and migration of peripheral immune cells into the brain. Accordingly, inflammation is an attractive target for reducing edema following ICH. In the present study, BBB damage was assessed by quantifying intact microvessels surrounding the hematoma, monitoring extravasation of IgG and measuring brain water content 3 days after ICH induced by collagenase injection into the rat striatum. In the injured brain, the water content increased in both ipsilateral and contralateral hemispheres compared with the normal brain. Quantitative real-time RT-PCR revealed an up-regulation of inflammatory genes associated with BBB damage; IL1β, TNFα and most notably, MMP-12. Immunostaining showed MMP-12 in damaged microvessels and their subsequent loss from tissue surrounding the hematoma. MMP-12 was also observed for the first time in neurons. Dual-antibody labeling demonstrated that neutrophils were the predominant source of TNFα protein. Intraperitoneal injection of the tetracycline derivative, minocycline, beginning 6 h after ICH ameliorated the damage by reducing microvessel loss, extravasation of plasma proteins and edema; decreasing TNFα and MMP-12 expression; and reducing the numbers of TNFα-positive cells and neutrophils in the brain. Thus, minocycline, administered at a clinically relevant time, appears to target the inflammatory processes involved in edema development after ICH.  相似文献   

15.
Iron-mediated free radical damage contributes to secondary damage after intracerebral hemorrhage (ICH). Iron is released from heme after hemoglobin breakdown and accumulates in the parenchyma over days and then persists in the brain for months (e.g., hemosiderin). This non-heme iron has been linked to cerebral edema and cell death. Deferoxamine, a ferric iron chelator, has been shown to mitigate iron-mediated damage, but results vary with less protection in the collagenase model of ICH. This study used rapid-scanning X-ray fluorescence (RS-XRF), a synchrotron-based imaging technique, to spatially map total iron and other elements (zinc, calcium and sulfur) at three survival times after collagenase-induced ICH in rats. Total iron was compared to levels of non-heme iron determined by a Ferrozine-based spectrophotometry assay in separate animals. Finally, using RS-XRF we measured iron levels in ICH rats treated with deferoxamine versus saline. The non-heme iron assay showed elevations in injured striatum at 3 days and 4 weeks post-ICH, but not at 1 day. RS-XRF also detected significantly increased iron levels at comparable times, especially notable in the peri-hematoma zone. Changes in other elements were observed in some animals, but these were inconsistent among animals. Deferoxamine diminished total parenchymal iron levels but did not attenuate neurological deficits or lesion volume at 7 days. In summary, ICH significantly increased non-heme and total iron levels. We evaluated the latter and found it to be significantly lowered by deferoxamine, but its failure to attenuate injury or functional impairment in this model raises concern about successful translation to patients.  相似文献   

16.
Statin therapy has been associated with improved cerebral blood flow (CBF) and decreased perihematoma edema in animal models of intracerebral hemorrhage (ICH). We aimed to assess the relationship between statin use and cerebral hemodynamics in ICH patients. A post hoc analysis of 73 ICH patients enrolled in the Intracerebral Hemorrhage Acutely Decreasing Arterial Pressure Trial (ICH ADAPT). Patients presenting <24 hours from ICH onset were randomized to a systolic blood pressure target <150 or <180 mm Hg with computed tomography perfusion imaging 2 hours after randomization. Cerebral blood flow maps were calculated. Hematoma and edema volumes were measured planimetrically. Regression models were used to assess the relationship between statin use, perihematoma edema and cerebral hemodynamics. Fourteen patients (19%) were taking statins at the time of ICH. Statin-treated patients had similar median (IQR Q25 to 75) hematoma volumes (21.1 (9.5 to 38.3) mL versus 14.5 (5.6 to 27.7) mL, P=0.25), but larger median (IQR Q25 to 75) perihematoma edema volumes (2.9 (1.7 to 9.0) mL versus 2.2 (0.8 to 3.5) mL, P=0.02) compared with nontreated patients. Perihematoma and ipsilateral hemispheric CBF were similar in both groups. A multivariate linear regression model revealed that statin use and hematoma volumes were independent predictors of acute edema volumes. Statin use does not affect CBF in ICH patients. Statin use, along with hematoma volume, are independently associated with increased perihematoma edema volume.  相似文献   

17.
Intracerebral hemorrhage (ICH) is a stroke subtype associated with high mortality and morbidity. Following ICH, excitotoxicity and inflammation significantly contribute to secondary brain injury and poor outcomes. Prostaglandin E2 (PGE2) levels rise locally with insult to the nervous system, and PGE2 is known to modulate these processes mainly through its E prostanoid (EP) receptors, EP1‐4. EP receptor subtype 3 (EP3) is the most abundant EP receptor in the brain and we have previously shown that signaling through the PGE2–EP3 axis exacerbates excitotoxicity and ischemic stroke outcomes. This study aimed to investigate the contribution of this pathway in modulating anatomical outcomes and functional recovery following ICH. Genetic deletion of EP3 resulted in 48.2 ± 7.3% less ICH‐induced brain injury (< 0.005) and improved functional recovery (P < 0.05), as identified by neurological deficit scoring. To start investigating the mechanisms involved in neuroprotection with impaired PGE2–EP3 signaling, histological staining was performed to evaluate blood and ferric iron accumulation, neuroinflammation, blood–brain barrier dysfunction, and peripheral neutrophil infiltration. After ICH, EP3 knockout mice demonstrated 49.5 ± 8.8% and 42.8 ± 13.1% less blood (P < 0.01) and ferric iron (P < 0.05), respectively. Furthermore, EP3 knockout mice had significantly reduced astrogliosis, microglial activation, blood–brain barrier breakdown, and neutrophil infiltration. Collectively, these results suggest an injurious role for the PGE2–EP3 signaling axis in modulating brain injury, inflammation, and neurological functional recovery after ICH. Modulation of the PGE2–EP3 signaling axis may represent a putative therapeutic avenue for the treatment of ICH.  相似文献   

18.
Matrix metalloproteinase-9 (MMP-9) participates in the disregulation of blood-brain barrier during hemorrhagic transformation, and exacerbates brain injury after cerebral ischemia. However, the consequences of long-term inhibition or deficiency of MMP-9 activity (which might affect normal collagen or matrix homeostasis) remains to be determined. The authors investigated how MMP-9 gene deficiency enhances hemorrhage and increases mortality and neurologic deficits in a collagenase-induced intracerebral hemorrhage (ICH) model in MMP-9-knockout mice. MMP-9-knockout and corresponding wild-type mice at 20 to 35 weeks were used to model an aged population (because advanced age is a significant risk factor in human ICH). Collagenase VII-S (0.5 microL, 0.075 U) was injected into the right basal ganglia in mice and mortality, neurologic deficits, brain edema, and hemorrhage size measured. In addition, MMP-9 activity, brain collagen content, blood coagulation, cerebral arterial structure, and expressions of several MMPs were examined. Increased hemorrhage and brain edema that correlated with higher mortality and neurologic deficits were found in MMP-9-knockout mice. No apparent structural changes were observed in cerebral arteries, even though brain collagen content was reduced in MMP-9-knockout mice. MMP-9-knockout mice did exhibit an enhanced expression of MMP-2 and MMP-3 in response to ICH. The results indicate that a deficiency of MMP-9 gene in mutant mice increases collagenase-induced hemorrhage and the resulting brain injury. The intriguing relationship between MMP-9 deficiency and collagenase-induced ICH may reflect the reduction in collagen content and an enhanced expression of MMP-2 and MMP-3.  相似文献   

19.
Autophagy contributes to ischemic brain injury, but it is not clear if autophagy occurs after intracerebral hemorrhage (ICH). This study examined whether ICH-induced cell death is partly autophagic. It then examined the role of iron in inducing this form of cell death after ICH. Male, adult Sprague-Dawley rats received an infusion of autologous whole blood or ferrous iron into the right basal ganglia. Control rats (sham) had a needle insertion. The rats were killed at 1, 3, 7, or 28 days later. Some rats were treated with either deferoxamine or vehicle after ICH. Microtubule-associated protein light chain-3 (LC3), a biomarker of autophagosome, and cathepsin D, a lysosomal biomarker, were measured by Western blot analysis and immunohistochemistry. Immunofluorescent double-labeling was used to identify the cell types expressing cathepsin D. Electron microscopy was performed to examine the cellular ultrastructure changes after ICH. We found that conversion of LC3-I to LC3-II, cathepsin D expression, and vacuole formation are increased in the ipsilateral basal ganglia after ICH. Intracerebral infusion of iron also resulted in enhanced conversion of LC3-I to LC3-II and increased cathepsin D levels. Deferoxamine (an iron chelator) treatment significantly reduced the conversion of LC3-I to LC3-II and cathepsin D levels after ICH. Our results demonstrated that autophagy occurs after ICH, and iron has a key role in ICH-induced autophagy. This also suggests that iron-induced autophagy may play a role in brain injury in other diseases associated with iron overload.  相似文献   

20.
Brain edema after intracerebral hemorrhage in rats: the role of inflammation   总被引:13,自引:0,他引:13  
Zhang X  Li H  Hu S  Zhang L  Liu C  Zhu C  Liu R  Li C 《Neurology India》2006,54(4):402-407
BACKGROUND: Intracerebral hemorrhage (ICH) results in secondary brain edema and injury that may lead to death and disability. ICH also causes inflammation. It is unclear whether inflammation contributes to brain edema and neuron injury or functions in repairing the brain tissue. AIMS: To understand the effect of inflammation in ICH, we have carried out an investigation on the various aspects and the dynamic changes of inflammation. SETTINGS AND DESIGN: An ICH model was generated by injecting 50 microl autologous tail artery blood stereotactically into the right caudate nucleus of 30 rats, which were randomly divided into five ICH groups. Similarly, five Sham control groups were generated by inserting the needle to the right caudate nucleus of rats. MATERIALS AND METHODS: Rat behavior was evaluated over the time course (6 h, 24 h, 48 h, 72 h and 7 d) in each group. The rats were then killed by administering an overdose of pentobarbital. Following the euthanasia, the brain water content, neuronal loss, glia proliferation, inflammatory infiltration and brain morphology of the rats were measured. Additionally, the expression of TNF-alpha, IL-6, ICAM-1, VEGF, NF-kappaB, C3 and CR2 was analyzed by immunohistochemistry. STATISTICAL ANALYSIS: The data were analyzed by student's t test. RESULTS: Rat brain water content increased progressively over the time course and reached its peak at 48 h followed ICH. The maximum of inflammatory infiltrate (especially neutrophils) and immunopositive cells of TNF-alpha, IL-6 and NF-kappaB, were at 48 h. The expression of C3 and CR2 reached their peaks at 48-72 h, while the expression ICAM-1 and VEGF were at maximum at 72 h followed ICH. CONCLUSIONS: The results suggested that the inflammatory cytokines, complement system and VEGF may have a function in the development of the brain edema and neuron injury followed ICH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号