首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Effects of epinephrine on the automaticity of canine AV nodal fibers were studied on spontaneously beating AV node-His bundle preparations. Transmembrane potentials of single fibers of the AV node or His bundle were recorded with microelectrode techniques. Action potentials of most AV nodal fibers were characterized by steep phase-4 depolarization and smooth transition from phases 4 to 0. Epinephrine (0.1-0.2 mug/ml) increased the spontaneous rate of the AV nodal fibers. The slope of phase 4 depolarization was increased and the threshold shifted to a more negative level. These changes probably accounted for the increase in the automaticity of the node. Also, in the presence of epinephrine, the pacemaker of the preparation was consistently located at the AV node had a higher degree of automaticity than the His bundle. The findings of the present experiment, therefore, further support the view that the AV node is automatic.  相似文献   

2.
Aims: Changes in the rabbit sinoatrial node (SAN) activation sequence with the cholinergic and adrenergic factors were studied. The correlation between the sinus rhythm rate and the leading pacemaker site shift was determined. The hypothesis concerning the cholinergic suppression of nodal cell excitability as one of the mechanisms associated with pacemaker shift was tested. Methods: A high‐resolution optical mapping technique was used to register beat‐to‐beat changes in the SAN activation pattern under the influence of the cholinergic and adrenergic factors. Results: Acetylcholine (10 μm ) and strong intramural parasympathetic nerve stimulation caused a pacemaker shift as well as rhythmic slowing and the formation of an inexcitable region in the central part of SAN. In this region the generation of action potentials was suppressed. The slowing of the sinus rhythm (which exceeded 12.8 ± 3.1% of the rhythm control rate) always accompanied the pacemaker shift. Isoproterenol (10, 100 nm , 1 μm ) and sympathetic postganglionic nerve stimulation also evoked a pacemaker shift but without formation of an inexcitable zone. The acceleration of the sinus rhythm, which exceeded 10.5 ± 1.3% of the control rate of the rhythm, always accompanied the shift. Conclusions: Both cholinergic and adrenergic factors cause pacemaker shifts in the rabbit SAN. While modest changes in the sinus rhythm do not coincide with the pacemaker shift, greater changes always accompany the shift and may be caused by it, according to one hypothesis. The formation of an inexcitable zone at the place where the leading pacemaker is situated is one of the mechanisms associated with pacemaker shift.  相似文献   

3.
We have examined sino-atrial node (SAN) function in hearts from adult mice with heterozygous targeted disruption of the Scn5a gene to clarify the role of Scn5a-encoded cardiac Na+ channels in normal SAN function and the mechanism(s) by which reduced Na+ channel function might cause sinus node dysfunction. Scn5a +/− mice showed depressed heart rates and occasional sino-atrial (SA) block. Their isolated peripheral SAN pacemaker cells showed a reduced Na+ channel expression and slowed intrinsic pacemaker rates. Wild-type (WT) and Scn5a+/− SAN preparations exhibited similar activation patterns but with significantly slower SA conduction and frequent sino-atrial conduction block in Scn5a+/− SAN preparations. Furthermore, isolated WT and Scn5a+/− SAN cells demonstrated differing correlations between cycle length, maximum upstroke velocity and action potential amplitude, and cell size. Small myocytes showed similar, but large myocytes reduced pacemaker rates, implicating the larger peripheral SAN cells in the reduced pacemaker rate that was observed in Scn5a+/− myocytes. These findings were successfully reproduced in a model that implicated i Na directly in action potential propagation through the SAN and from SAN to atria, and in modifying heart rate through a coupling of SAN and atrial cells. Functional alterations in the SAN following heterozygous-targeted disruption of Scn5a thus closely resemble those observed in clinical sinus node dysfunction. The findings accordingly provide a basis for understanding of the role of cardiac-type Na+ channels in normal SAN function and the pathophysiology of sinus node dysfunction and suggest new potential targets for its clinical management.  相似文献   

4.
There are important postnatal changes in the sino-atrial node (SAN), the pacemaker of the heart. Compared with the neonate, the adult has a slower intrinsic heart rate and a longer SAN action potential. These changes may be due to differences in ion channel expression. Consequently, we investigated postnatal developmental changes in the expression of ion channels and Ca(2+)-handling proteins in the SAN to see whether this is indeed the case. Using quantitative PCR, in situ hybridization and immunohistochemistry, we investigated the expression of ion channels, Ca(2+)-handling proteins and connexins in the SAN from neonatal (2-7 days of age) and adult (~6 months of age) New Zealand White rabbits. The spontaneous beating rate of adult SAN preparations was 21% slower than that of neonatal preparations. During postnatal development, quantitative PCR revealed a significant decline in the SAN of the following mRNAs: HCN4 (major isoform responsible for I(f)), Na(V)1.5 (responsible for I(Na)), Ca(V)1.3 (in part responsible for I(Ca,L)) and NCX1 (responsible for inward I(NaCa)). These declines could be responsible for the slowing of the pacemaker during postnatal development. There was a significant decline during development in mRNA for delayed rectifier K(+) channel subunits (K(V)1.5, responsible for I(K,ur), K(V)LQT1 and minK, responsible for I(K,s), and ERG, responsible for I(K,r)) and this could explain the prolongation of the action potential. In situ hybridization confirmed the changes observed by quantitative PCR. In addition, immunohistochemistry revealed hypertrophy of nodal cells during postnatal development. Moreover, there were complex changes in the expression of Ca(2+)-handling proteins with age. In summary, there are significant postnatal changes in the expression of ion channels and Ca(2+)-handling proteins in the SAN that could explain the established changes in heart rate and action potential duration that occur during normal development.  相似文献   

5.
The function of the sino-atrial node (SAN), the pacemaker of the heart, is known to decline with age, resulting in pacemaker disease in the elderly. The aim of the study was to investigate the effects of ageing on the SAN by characterizing electrophysiological changes and determining whether changes in gene expression are involved. In young and old rats, SAN function was characterized in the anaesthetized animal, isolated heart and isolated right atrium using ECG and action potential recordings; gene expression was characterized using quantitative PCR. The SAN function declined with age as follows: the intrinsic heart rate declined by 18 ± 3%; the corrected SAN recovery time increased by 43 ± 13%; and the SAN action potential duration increased by 11 ± 3% (at 75% repolarization). Gene expression in the SAN changed considerably with age, e.g. there was an age-dependent decrease in the Ca(2+) clock gene, RYR2, and changes in many ion channels (e.g. increases in Na(v)1.5, Na(v)β1 and Ca(v)1.2 and decreases in K(v)1.5 and HCN1). In conclusion, with age, there are changes in the expression of ion channel and Ca(2+) clock genes in the SAN, and the changes may provide a partial explanation for the age-dependent decline in pacemaker function.  相似文献   

6.
In this paper, we present the experimentally measured Compound Action Current (CACs) and Compound Action Potentials (CAPs) from frog sciatic nerves and earthworm nerve cords. We used histologically prepared cross sections of these nerve bundles to determine the distribution of fiber diameters. A modified volume conduction model that includes frequency-dependent conductivities was used to compute the Single Fiber Action Signals (SFASs). The recorded CACs and CAPs are used to predict the Conduction Velocity Distributions (CVDs) from the nerve bundles. The predicted CVDs are then compared with the histological CVDs. Analysis of Compound Action Signals from the three giant axons in the earthworm nerve cord and microelectrode data for the transmembrane action potential demonstrate the validity of our mathematical model. We found that the CVDs predicted from the recorded CACs and CAPs differ from the histological CVD for a variety of reasons. The validity of the assumption of a linear relationship between axon diameter and conduction velocity of a propagating action signal was investigated using CVDs from both the CAC and CAP. Variations of the CVDs with the propagation distance of the CASs and the recording temperature were investigated.  相似文献   

7.
Female sexual steroids are known to modify the expression of various K+ channels and thus they can alter cardiac repolarization. In the present work, using conventional microelectrode techniques, action potential characteristics were studied in atrial myocardium isolated from virgin, late pregnant, early (1-3 days) post-partum and late (2-3 weeks) post-partum rabbits. No changes in action potential configuration were observed during pregnancy. However, the duration, overshoot and amplitude of action potentials were significantly increased in the early (1-3 days) post-partum period. Resting potential and maximum rate of depolarization remained unchanged. The observed changes were transient, normal action potential characteristics were obtained at weeks 2-3 post-partum. 4-aminopyridine (1 mmol L(-1)). caused a marked lengthening of action potential duration in all preparations obtained from non-pregnant and pregnant rabbits, whereas this 4-aminopyridine-induced prolongation was moderate in those preparations excised from the hearts of early post-partum animals. Action potential configuration was not affected by pinacidil (10 micromol L(-1)) or glibenclamide (5 micromol L(-1)) in non-pregnant or pregnant animals. In preparations obtained from early post-partum rabbits, pinacidil significantly shortened action potential duration, which was reverted by glibenclamide. The lengthening of action potential duration together with the decreased sensitivity to 4-aminopyridine observed in early post-partum animals may probably be caused by reduction of the transient outward K+ current at this stage. The results also suggest that electrophysiological alterations in the early post-partum period may probably be more pronounced than those associated with pregnancy itself.  相似文献   

8.
The presence of M3 cholinoreceptors and their role in mediation of action potential waveform modulation were determined by immunolabeling of receptor proteins and standard microelectrode technique, respectively. The sinoatrial node (SAN), which was determined as a connexin 43 negative area within the intercaval region, the surrounding atrial tissue, and the working ventricular myocardium exhibited labeling of both M3 and M2 receptors. However, the density of M3 and M2 labeling was about twofold higher in the SAN compared to working myocardium. The stimulation of M3 receptors was obtained by application of nonselective M1 and M3 muscarinic agonist pilocarpine (10−5 M) in the presence of selective M2 blocker methoctramine (10−7 M). Stimulation of M3 receptors provoked marked shortening of action potential duration in atrial and ventricular working myocardium. In the SAN, M3 stimulation leads to a significant reduction of sinus rhythm rate accompanied with slowing of diastolic depolarization and increase of action potential upstroke velocity. All electrophysiological effects of selective M3 stimulation were suppressed by specific blocker of M3 receptors 4-DAMP (10−8 M). We conclude that M3 cholinoreceptors are present in pacemaker and working myocardium of murine heart, where they mediate negative cholinergic effects: slowing of sinus rhythm and shortening of action potentials.  相似文献   

9.
Female sexual steroids are known to modify the expression of various K+ channels and thus they can alter cardiac repolarization. In the present work, using conventional microelectrode techniques, action potential characteristics were studied in atrial myocardium isolated from virgin, late pregnant, early (1–3 days) post-partum and late (2–3 weeks) post-partum rabbits. No changes in action potential configuration were observed during pregnancy. However, the duration, overshoot and amplitude of action potentials were significantly increased in the early (1–3 days) post-partum period. Resting potential and maximum rate of depolarization remained unchanged. The observed changes were transient, normal action potential characteristics were obtained at weeks 2–3 post-partum. 4-aminopyridine (1 mmol L–1). caused a marked lengthening of action potential duration in all preparations obtained from non-pregnant and pregnant rabbits, whereas this 4-aminopyridine-induced prolongation was moderate in those preparations excised from the hearts of early post-partum animals. Action potential configuration was not affected by pinacidil (10 μmol L–1) or glibenclamide (5 μmol L–1) in non-pregnant or pregnant animals. In preparations obtained from early post-partum rabbits, pinacidil significantly shortened action potential duration, which was reverted by glibenclamide. The lengthening of action potential duration together with the decreased sensitivity to 4-aminopyridine observed in early post-partum animals may probably be caused by reduction of the transient outward K+ current at this stage. The results also suggest that electrophysiological alterations in the early post-partum period may probably be more pronounced than those associated with pregnancy itself.  相似文献   

10.
Simultaneous intracellular microelectrode recording and Fura-2 imaging was used to investigate the relationship between intracellular calcium ion concentration ([Ca2+]i) and excitability of tonic S neurons in intact myenteric plexus of the guinea-pig ileum. S neurons were impaled in myenteric ganglia, at locations near connections with internodal strands. The calcium indicator Fura-2 was loaded via the recording microelectrode. The estimated [Ca2+]i of these neurons was approximately 95 nM (n = 25). Intracellular current injection (200 ms pulses, 0.2 nA, delivered at 0.05 Hz) resulted in action potential firing throughout the stimulus pulse, accompanied by transient increases in [Ca2+]i (to approximately 240 nM, n = 12). Increasing the number of evoked action potentials by increasing stimulus duration (100-500 ms) or intensity (0.05-0.3 nA) produced correspondingly larger [Ca2+]i transients. Single action potentials rarely produced resolvable [Ca2+]i events, while short bursts of action potentials (three to five events) invariably produced resolvable [Ca2+]i increases. Some neurons demonstrated spontaneous action potential firing, which was accompanied by sustained [Ca2+]i increases. Action potential firing and [Ca2+]i increases were also observed by activation of slow synaptic input to these neurons, in cases where the slow depolarization initiated action potential firing. Action potentials (evoked or spontaneous) and associated [Ca2+]i transients were abolished by tetrodotoxin (1 microM). Omega-conotoxin GVIA (100 nM) reduced [Ca2+]i transients by approximately 67%, suggesting that calcium influx through N-type calcium channels contributes to evoked [Ca2+]i increases. The S neurons in this study showed prominent afterhyperpolarizations following bursts of action potential firing. The time-course of afterhyperpolarizations was correlated with the time-course of evoked [Ca2+]i transients. Afterhyperpolarizations were blocked by tetrodotoxin and reduced by omega-conotoxin GVIA, suggesting that calcium influx through N-type channels contributes to these events. The electrical properties of Fura-2-loaded neurons were not significantly different from properties of neurons recorded without Fura-2 injection, suggesting that Fura-2 injection alone does not significantly influence the electrical properties of these cells. These data indicate that myenteric S neurons in situ show prominent, activity-dependent increases in [Ca2+]i. These events can be generated spontaneously, or be evoked by intracellular current injection or synaptic activation. [Ca2+]i transients in these neurons appear to involve action potential-dependent opening of N-type calcium channels, and the elevation in [Ca2+]i increase may underlie afterhyperpolarizations and regulate excitability of these enteric neurons.  相似文献   

11.
In vitro and in vivo studies have identified the pre-B?tzinger complex as an important kernel for the generation of inspiratory activity. The mechanisms underlying inspiratory rhythm generation involve pacemaker as well as synaptic mechanisms. In slice preparations, blockade of pacemaker properties with blockers for the persistent Na+ current, and the Ca2+-activated inward cationic current, abolishes respiratory activity. Here we show that blockade of the persistent Na+ current alone is sufficient to abolish respiratory activity in the in situ preparation. Although pacemaker neurons may be critical for establishing the basic respiratory rhythm, their rhythmic output is modulated by many elements of the respiratory network. For example, levels of synaptic inhibition control whether they burst or not, and endogenously released neuromodulators, such as serotonin and substance P modulate their intrinsic membrane currents. We hypothesize that the balance between synaptic and intrinsic pacemaker properties in the respiratory network is plastic, and that alterations of this balance may lead to dynamic reconfigurations of the respiratory network, which ultimately give rise to different activity patterns.  相似文献   

12.
目的:探讨卡托普利对豚鼠心肌细胞动作电位间期及延迟整流钾电流的作用。 方法: 采用内充3 mol/L KCl的玻璃微电极记录心肌动作电位。采用膜片钳全细胞技术,钳制电位-50 mV, 保持时间100 ms, 指令电位+40 mV, 记录外向延迟整流钾电流(Ik)最大峰电流。 结果: 与缺血组比较卡托普利组APD30、APD50及ERP显著延长,APD90无显著变化,缺血组Ik幅度显著增高而卡托普利组及卡托普利+缺血组显著降低。电流-电压关系曲线形状各组间无显著变化, 缺血组显著上移而卡托普利组及卡托普利+缺血组下移。 结论: 卡托普利具有的电生理作用是由于它降低外向延迟整流钾电流及延长APD30、APD50和ERP。  相似文献   

13.
1. When guinea pig cardiac tissue is stimulated, the rising phase of the action potential is influenced by the shape of the concomitant local surface electrogram. This, in turn, depends on the direction of the wave of excitation passing the recording microelectrode. 2. A symmetrical biphasic surface electrogram yields sigmoid upstrokes with masimum upstroke velocity (Vmax) lower than when it is either zero or uniphasic and negative. 3. When the main direction of the depolarization wave in guinea pig ventricular myocardium is receding from the recording microelectrode, giving rise to negative uniphasic extracellular potentials, a notch might distort the registration of the rising phase of the action potential. 4. When the main direction of the depolarization wave is approaching the recording microelectrode, giving rise to positive uniphasic extracellular potentials, Vmax is transferred to less negative membrane potentials. 5. The extracellular surface electrogram influences the overshoot of the action potentials of the normal atrial and depressed (D-600) ventricular myocardium and is changed, depending on how the wave of excitation passes the recording microelectrode.  相似文献   

14.
Action potential fatigue in single skeletal muscle fibres of Xenopus   总被引:2,自引:0,他引:2  
Action potential fatigue has been studied in single short toe muscle fibres of Xenopus under three different conditions: in rested fibres which produced maximum tension, in fibres during post-contractile depression (PCD), a state of depressed tension generation but seemingly normal membrane properties, and in fibres de-tubulated by glycerol treatment. The fibres were stimulated continuously at 70 Hz (22.5 degrees C) and membrane potential was measured throughout the stimulation period with an intracellular microelectrode. Rested and PCD fibres exhibited similarities in the development of action potential fatigue during a 30 s stimulation period; the amplitude was reduced by 86 and 70 mV, respectively, and the duration, measured at a level of one-third of the peak amplitude, was increased from 1.1 to 4.2 and 1.3 to 3.7 ms, respectively. De-tubulated fibres were more resistant to action potential fatigue; the amplitude decreased by only 20 and 35 mV during 30 and 60 s of stimulation, respectively, and the duration was increased from 1.1 to 2.7 ms. It is concluded that action potential fatigue in skeletal muscle fibres is primarily caused by failing regenerative activity in the t-tubules, which is reflected in an altered shape of conventionally recorded action potentials.  相似文献   

15.
OBJECTIVES: The proarrhythmic early afterdepolarizations (EADs) during phase-2 of the cardiac action potential (phase-2 EADs) are associated with secondary Ca2+-release of the sarcoplasmic reticulum. This makes it probable that the Ca2+-activated Cl- current [ICl(Ca)] is present during phase-2 EADs. Activation of ICl(Ca) during phase-2 of the action potential will result in an outwardly directed, repolarizing current and may thus be expected to prevent excessive depolarization of phase-2 EADs. The present study was designed to test this hypothesis. METHODS AND RESULTS: The contribution of ICl(Ca) during phase-2 EADs was studied in enzymatically isolated sheep and human ventricular myocytes using the patch-clamp methodology. EADs were induced by a combination of a low stimulus frequency (0.5 Hz) and exposure to 1 microm noradrenaline. In sheep myocytes, the ICl(Ca) blocker 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS, 0.5 mm) abolished phase-1 repolarization of the action potential in all myocytes tested. This indicates that ICl(Ca) is present in all sheep myocytes. However, DIDS had no effect on phase-2 EAD characteristics. In human myocytes, DIDS neither affected phase-1 repolarization nor phase-2 EAD characteristics. CONCLUSION: In sheep ventricular myocytes, but not in human ventricular myocytes, ICl(Ca) contributes to phase-1 repolarization of the action potential. In both sheep and human myocytes, ICl(Ca) plays a limited role during phase-2 EADs.  相似文献   

16.
We investigated the relative influence of cellular and network properties on the extreme spike timing precision observed in the medullary pacemaker nucleus (Pn) of the weakly electric fish Apteronotus leptorhynchus. Of all known biological rhythms, the electric organ discharge of this and related species is the most temporally precise, with a coefficient of variation (CV = standard deviation/mean period) of 2 x 10(-4) and standard deviation (SD) of 0.12-1.0 micros. The timing of the electric organ discharge is commanded by neurons of the Pn, individual cells of which we show in an in vitro preparation to have only a slightly lesser degree of precision. Among the 100-150 Pn neurons, dye injection into a pacemaker cell resulted in dye coupling in one to five other pacemaker cells and one to three relay cells, consistent with previous results. Relay cell fills, however, showed profuse dendrites and contacts never seen before: relay cell dendrites dye-coupled to one to seven pacemaker and one to seven relay cells. Moderate (0.1-10 nA) intracellular current injection had no effect on a neuron's spiking period, and only slightly modulated its spike amplitude, but could reset the spike phase. In contrast, massive hyperpolarizing current injections (15-25 nA) could force the cell to skip spikes. The relative timing of subthreshold and full spikes suggested that at least some pacemaker cells are likely to be intrinsic oscillators. The relative amplitudes of the subthreshold and full spikes gave a lower bound to the gap junctional coupling coefficient of 0.01-0.08. Three drugs, called gap junction blockers for their mode of action in other preparations, caused immediate and substantial reduction in frequency, altered the phase lag between pairs of neurons, and later caused the spike amplitude to drop, without altering the spike timing precision. Thus we conclude that the high precision of the normal Pn rhythm does not require maximal gap junction conductances between neurons that have ordinary cellular precision. Rather, the spiking precision can be explained as an intrinsic cellular property while the gap junctions act to frequency- and phase-lock the network oscillations.  相似文献   

17.
In the isolated right atrium of the rabbit heart the influence of the atrial myocardium on impulse formation in the sinus node was investigated. Under normal conditions the pacemaker (earliest activation) was located in the center of the node where fibers with the highest rate of diastolic depolarization were found. After disconnection of the atrium from the sinus node spontaneous cycle length decreased from a mean of 348 ms to a mean of 288 ms (–18%) in all experiments (n=15). This was accompanied by a shift of the pacemaker from the nodal center towards the border zone. By means of multiple microelectrode impalements changes in action potential configuration were studied. After disconnection of atrium and sinus node the rate of diastolic depolarization of fibers in the border zone was increased from a mean of 26 mV/s to a mean of 78 mV/s, whereas in the center of the sinus node no increase was found (mean: 52 mV/s). It was concluded that the fibers in the border zone of the sinus node are better pacemaker fibers than in the nodal center. However under normal conditions the intrinsic pacemaker properties of the border zone fibers are electronically depressed by the connected atrial myocardium.  相似文献   

18.
'Funny-' (f-) channels of cardiac sino-atrial node (SAN) cells are key players in the process of pacemaker generation and mediate the modulatory action of autonomic transmitters on heart rate. The molecular components of f-channels are the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels. Of the four HCN isoforms known, two (HCN4 and HCN1) are expressed in the rabbit SAN at significant levels. However, the properties of f-channels of SAN cells do not conform to specific features of the two isoforms expressed locally. For example, activation kinetics and cAMP sensitivity of native pacemaker channels are intermediate between those reported for HCN1 and HCN4. Here we have explored the possibility that both HCN4 and HCN1 isoforms contribute to the native I f in SAN cells by co-assembling into heteromeric channels. To this end, we used heterologous expression in human embryonic kidney (HEK) 293 cells to investigate the kinetics and cAMP response of the current generated by co-transfected (HCN4 + HCN1) and concatenated (HCN4-HCN1 (4–1) tandem or HCN1-HCN4 (1–4) tandem) rabbit constructs and compared them with those of the native f-current from rabbit SAN. 4–1 tandem, but not co-transfected, currents had activation kinetics approaching those of I f; however, the activation range of 4–1 tandem channels was more negative than that of the f-channel and their cAMP sensitivity were poorer (although that of 1–4 tandem channels was normal). Co-transfection of 4–1 tandem channels with minK-related protein 1(MiRP1) did not alter their properties. HCN1 and HCN4 may contribute to native f-channels, but a 'context'-dependent mechanism is also likely to modulate the channel properties in native tissues.  相似文献   

19.
The effects of mibefradil, a non-dihydropyridine Ca2+ channel antagonist, on the action potential configuration of isolated rabbit sino-atrial node preparations, membrane currents of guinea-pig ventricular myocytes and the contractile force of isolated ventricular papillary muscles were examined. In sino-atrial node preparations, 10 microM mibefradil decreased the slope of the pacemaker depolarization (phase 4 depolarization) and maximum rate of rise, and shifted the threshold potential to the positive direction with no effect on action potential duration. In ventricular myocytes, 1 microM mibefradil inhibited the T-type Ca2+ current by about 40% while it had no effect on the L-type Ca2+ current. At 10 microM, mibefradil inhibited the L-type and T-type Ca2+ currents by about 40% and 90%, respectively. Mibefradil had no effect on contractile force at concentrations up to 1 microM. Thus, mibefradil was shown to produce potent prolongation of the pacemaker depolarization, mainly through inhibition of the T-type Ca2+ current. It is suggested that the T-type Ca2+ current may not be involved in ventricular contraction.  相似文献   

20.
Recent studies have proposed that release of calcium from the sarcoplasmic reticulum (SR) modulates the spontaneous activity of the sinoatrial node (SAN). Previously we have shown that several calcium regulatory proteins are expressed at a lower level in the centre of the SAN compared with the periphery. Such differences may produce heterogeneity of intracellular calcium handling and pacemaker activity across the SAN. Selective isolations showed that the centre of the SAN is composed of smaller cells than the periphery. Measurements of cytosolic calcium in spontaneously beating cells showed that diastolic calcium, systolic calcium, the calcium transient amplitude and spontaneous rate were greater in larger (likely to be peripheral) cells compared with smaller (likely to be central) SAN cells. The SR calcium content was greater in larger cells, although SR recruitment was more efficient in smaller cells. The sodium–calcium exchanger and sarcolemmal calcium ATPase had a lower activity and the exchanger was responsible for a larger proportion of sarcolemmal calcium extrusion in smaller cells compared with larger cells. Ryanodine had a greater effect on the spontaneous calcium transient in larger cells compared with smaller cells, and slowed pacemaker activity in larger cells but not smaller cells, thus abolishing the difference in cycle length. This study shows heterogeneity of intracellular calcium regulation within the SAN and this contributes to differences in pacemaker activity between cells from across the SAN. The smallest central cells of the leading pacemaker region of the SAN do not require SR calcium for spontaneous activity nor does disruption of the SR alter pacemaking in these primary pacemaker cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号