首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rationale Temporal differentiation in the free-operant psychophysical procedure is sensitive to the 5-hydroxytryptamine (5-HT)1A receptor agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) and the 5-HT2 receptor agonist 2,5-dimethoxy-4-iodo-amphetamine (DOI); both drugs shift the psychophysical curve leftwards, reducing the indifference point, T 50. We have examined the effect of the 5-HT releasing agent fenfluramine on temporal differentiation.Objective We examined whether fenfluramines effect on temporal differentiation can be antagonised by the 5-HT1A receptor antagonist N-[2-(4-[2-methoxy-phenyl]-1-piperazinyl)ethyl]-N-2-pyridinylcyclohexane-carboxamide (WAY-100635) and the 5-HT2A receptor antagonist ketanserin, and compared the effects of fenfluramine, DOI and 8-OH-DPAT in intact rats and rats whose 5-HTergic pathways had been destroyed by 5,7-dihydroxytryptamine.Methods Rats were trained under the free-operant psychophysical procedure to press levers A and B in 50-s trials in which reinforcers were provided intermittently for responding on A in the first half, and B in the second half of the trial. Percent responding on B (%B) was recorded in successive 5-s epochs of the trials; logistic psychophysical curves were fitted to the data for derivation of timing indices (T 50, time corresponding to %B=50%, and Weber fraction). Experiment 1 examined the effects of acute treatment with fenfluramine, and the interaction between fenfluramine and the 5-HT1A and 5-HT2A receptor antagonists WAY-100635 and ketanserin; experiment 2 compared the effects of fenfluramine, 8-OH-DPAT and DOI in intact rats and rats whose 5-HTergic pathways had been destroyed by intra-raphe injection of 5,7-dihydroxytryptamine. Concentrations of 5-HT and catecholamines in the brain were measured by high-performance liquid chromatography.Results Experiment 1: fenfluramine (2 mg/kg) reduced T 50; this effect was attenuated by ketanserin (1.0 mg/kg) but not by WAY-100635 (100 g/kg). Experiment 2: 8-OH-DPAT (100 g/kg) and DOI (250 g/kg) reduced T 50 in both groups; fenfluramine reduced T 50 only in the sham-lesioned group. Levels of 5-HT were reduced by 80% in the lesioned group; catecholamine levels were not affected.Conclusions The results suggest that fenfluramine affects temporal differentiation via the release of endogenous 5-HT which acts mainly on postsynaptic 5-HT2A receptors.  相似文献   

2.
In this experiment we examined the effect of a serotonin receptor (5-HT1A) agonist and antagonist WAY-100635 (N-[2-(4-[2-methoxy-phenyl]-1-piperazinyl)ethyl]-N-2-pyridinylcyclohexane-carboxamide) on temporal differentiation, in intact rats and rats whose serotonergic (5-HTergic) pathways had been destroyed by 5,7-dihydroxytryptamine (5,7-DHT). Thirteen rats received 5,7-DHT-induced lesions of the median and dorsal raphe nuclei; 14 rats received sham lesions. They were trained to press two levers (A and B) in 50-s trials, in which reinforcement was contingent upon responding on A in the first half, and B in the second half, of the trial. Logistic psychophysical curves were fitted to the relative response rate data (percent responding on B, %B), for derivation of timing indices [T50 (time corresponding to %B=50%), slope, Weber fraction] following WAY-100635, 8-OH-DPAT [8-hydroxy-2-(di-n-propylamino)tetralin], combinations of WAY-100635+8-OH-DPAT, and vehicle alone. WAY-100635 (30, 100 and 300 microg/kg, s.c.) did not affect the timing indices. 8-OH-DPAT (100, 200 microg/kg, s.c.) reduced T50 without affecting the Weber fraction. WAY-100635 (300 microg/kg) abolished the effect of 8-OH-DPAT on T50 in both the lesioned and sham-lesioned groups. 5-HT levels in the neocortex, hippocampus, amygdala, nucleus accumbens and hypothalamus of the lesioned group were <20% of those in the sham-lesioned group; catecholamine levels were unaffected. The results confirm that 8-OH-DPAT disrupts temporal differentiation in a free-operant psychophysical schedule, reducing T50, and indicate that this effect of 8-OH-DPAT is mediated by postsynaptic 5-HT1A receptors.  相似文献   

3.
This experiment examined the effect of a 5-HT2 receptor agonist DOI (2,5-dimethoxy-4-iodoamphetamine), and antagonist, ketanserin, on temporal differentiation performance. Twelve rats were trained under the free-operant psychophysical procedure to press two levers (A and B) in 50-s trials in which sucrose reinforcement (0.6 mol/l, 50 microl) was provided intermittently for responding on A during the first half, and on B during the second half of the trial. Psychometric curves were derived from percent responding on B (%B), recorded in successive 5-s epochs of the trials; logistic functions were fitted to these data for the derivation of timing indices (T50 [time corresponding to %B=50%], epsilon [slope of the logistic curve], Weber fraction). Cumulative probability of switching in successive 5-s epochs was used to estimate the mean switching time, S50. DOI (0.0625, 0.125 and 0.25 mg/kg, s.c.) dose-dependently reduced T50 and S50. These effects of DOI (0.25 mg/kg) were antagonized by ketanserin (1.0 mg/kg). The results show that DOI alters temporal differentiation in the free-operant psychophysical procedure. The antagonistic effect of ketanserin indicates that the effect of DOI was probably mediated by 5-HT2A rather than 5-HT2C receptors, since ketanserin is relatively selective for 5-HT2A receptors. Comparison of these results with our previous findings with a 5-HT1A receptor agonist indicates that 5-HT1A and 5-HT2A receptors mediate qualitatively similar effects on temporal differentiation.  相似文献   

4.
RATIONALE: The 5-hydroxytryptamine (5-HT)(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) alters temporal differentiation of behaviour on the free-operant psychophysical procedure, displacing the psychophysical curve to the left, thereby reducing the indifference point T(50). However, it is not known whether this effect of 8-OH-DPAT is mediated by an action of the drug at somatodendritic autoreceptors or at postsynaptic receptors. OBJECTIVE: To compare the effects of 8-OH-DPAT on performance on the free-operant psychophysical procedure in normal (sham-lesioned) rats and in rats whose 5-HTergic pathways had been lesioned by means of intra-raphe injections of the selective neurotoxin 5,7-dihydroxytryptamine (5,7-DHT). METHODS: Twelve rats received 5,7-DHT-induced lesions of the median and dorsal raphe nuclei, and twelve received sham lesions. They were trained under the free-operant psychophysical procedure to press two levers (A and B) in 50-s trials, during which reinforcement was provided intermittently for responding on A in the first half and B in the second half of the trial. Percentage responding on B (%B) was recorded in successive 5-s epochs of the trials; logistic psychophysical curves were fitted to the data from each rat for the derivation of timing indices [T(50) (time corresponding to %B=50%) and Weber fraction] following treatment with acute doses of 8-OH-DPAT (25, 50, 100, 200 microg kg(-1), s.c.) and saline (vehicle-alone treatment). Levels of 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), noradrenaline and dopamine were measured in forebrain regions after the completion of the experiment. RESULTS: Under the vehicle-alone condition, the lesioned group displayed a greater propensity for switching between the levers, but T(50) and the Weber fraction did not differ between the groups. In both groups, 8-OH-DPAT shifted the psychophysical curve to the left, significantly reducing T(50) at the 200-microg kg(-1) dose; the effect of 8-OH-DPAT did not differ significantly between the groups. Levels of 5-HT and 5-HIAA in the lesioned group were about 10% of those in the sham-lesioned group; there was no effect of the lesion on catecholamine levels. CONCLUSIONS: The results confirm that 8-OH-DPAT disrupts temporal differentiation in the free-operant psychophysical schedule, reducing the indifference time, T(50). The failure of central 5-HT depletion to alter the effect of 8-OH-DPAT suggests that this effect may be mediated by stimulation of postsynaptic 5-HT(1A) (or possibly 5-HT(7)) receptors rather than somatodendritic 5-HT(1A) autoreceptors.  相似文献   

5.
To evaluate the possible role of 5-HT 1A and 5-HT 2A receptors in the anticonvulsant effect of swim stress, mice were pre-treated with agonists and antagonists of these receptors prior to exposure to stress and the intravenous infusion of picrotoxin. 8-OH-DPAT ((+/-)-8-hydroxy-2-(di-n-propylamino) tetralin) and WAY-100635 (a selective agonist and antagonist of 5-HT 1A receptors), DOI (1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane) and ketanserin (a 5-HT 2A/2C receptor agonist and antagonist) were used. Results demonstrated that 1 and 3 mg/kg of 8-OH-DPAT increased the doses of picrotoxin producing running/bouncing clonus, tonic hindlimb extension and death in stressed and unstressed mice, respectively. Pre-treatment with WAY (0.3 mg/kg) prevented the effect of 8-OH-DPAT (3 mg/kg). DOI (2.5 mg/kg) and ketanserin (1 mg/kg) failed to affect the seizure threshold for picrotoxin. The results show that stimulation of 5-HT 1A receptors exerts anticonvulsant actions in stressed and unstressed mice, while stimulation of 5-HT 2A/2C receptors does not interfere with the effect of stress on picrotoxin-induced convulsions.  相似文献   

6.
We recently found that rats' ability to discriminate durations of exteroceptive stimuli is disrupted by the non-selective 5-HT receptor agonist quipazine. Ketanserin reversed this effect, suggesting that the effect may be mediated by 5-HT2A receptors. Here, we report that the 5-HT2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) also disrupts temporal discrimination, and that this effect can be reversed by ketanserin and the highly selective 5-HT2A receptor antagonist (+/-)2,3-dimethoxyphenyl-1-[2-(4-piperidine)-methanol] (MDL-100907). Twenty rats were trained to discriminate durations in a discrete-trials psychophysical procedure. In each 50-s trial, a light was presented for t seconds, following which two levers (A and B) were presented. A response on A was reinforced if t < 25 s, and a response on B if t > 25 s. Logistic psychometric curves were fitted to the proportional choice of B (%B) for derivation of timing indices [T50: time corresponding to %B = 50; Weber fraction: (T75-T25)/2T50, where T75 and T25 are times corresponding to %B = 75 and 25, respectively]. DOI 0.25 mg kg (subcutaneous) significantly increased the Weber fraction and tended to increase T50. Ketanserin 2 mg kg (subcutaneous) did not alter either parameter, but completely antagonized the effects of DOI. Similarly, MDL-100907 0.5 and 1 mg kg (intraperitoneal) did not affect performance, but completely antagonized the effects of DOI. The results indicate that the mixed 5-HT2A/2C receptor agonist DOI disrupts temporal discrimination via stimulation of 5-HT2A receptors.  相似文献   

7.
RATIONALE: Previous experiments have shown that the disruptive effect of central 5-HT depletion on interval timing behaviour is critically dependent upon the particular timing schedule used. However, it is not known how acute disruption of 5-HTergic function brought about by drugs acting at 5-HT receptors affects timing. OBJECTIVE: To examine the effects of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) on performance on two quantitative timing schedules, a free-operant schedule in which rats were trained to distribute their responses differentially between two levers during the course of a 50-s trial (free-operant psychophysical procedure) and a discrete-trials schedule in which rats were trained to discriminate the durations of light stimuli (interval bisection task). METHODS: In experiment 1, rats were trained under the free-operant psychophysical procedure to respond on two levers (A and B) in 50-s trials in which reinforcement was provided intermittently for responding on A in the first half, and B in the second half, of the trial. For one group, repetitive switching between levers was permitted; for another group, it was prevented. In experiment 2, rats were trained to press lever A after a 2-s stimulus and lever B after an 8-s stimulus, and were then tested with stimuli of intermediate durations. For one group, a 'poke response' (depression of a central tray flap) was required after stimulus presentation to effect lever presentation; for the other group this requirement did not operate. In both experiments, quantitative indices of timing were derived from the psychophysical functions (%B responding vs time). RESULTS: In experiment 1, 8-OH-DPAT (25, 50, 100 and 200 microg kg(-1) s.c.) displaced the psychophysical curve to the left in both versions of the schedule. In experiment 2, 8-OH-DPAT increased the Weber fraction in both versions of the task without displacing the curve. CONCLUSIONS: These results show that 8-OH-DPAT disrupts timing behaviour. The results of experiment 1 are consistent with the proposal that 5-HTergic mechanisms help to regulate the period of the hypothetical pacemaker. However, the results of experiment 2 do not support this suggestion. Taken together, the results support the notion that different neural mechanisms may be involved in timing tasks involving temporal distribution of responding and discrimination of the durations of exteroceptive stimuli.  相似文献   

8.
RATIONALE: The dopamine-releasing agent d-amphetamine and the 5-HT(2) receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) have similar effects on free-operant timing behavior. The selective D(1) dopamine receptor antagonist 8-bromo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol (SKF-83566), but not the D(2) dopamine receptor antagonist haloperidol, can antagonize the effect of d-amphetamine, and the selective 5-HT(2A) receptor antagonist (+/-)2,3-dimethoxyphenyl-1-(2-(4-piperidine)-methanol (MDL-100907) can antagonize the effect of DOI. However, it is not known whether the effect of d-amphetamine can be reversed by MDL-100907 and the effect of DOI by dopamine receptor antagonists. OBJECTIVE: The objective of this work is to examine the interactions of d-amphetamine and DOI with MDL-100907, SKF-83566, and haloperidol on timing performance. MATERIALS AND METHODS: Rats (n = 12-15 per experiment) were trained under the free-operant psychophysical procedure to press two levers (A and B) in 50-s trials in which reinforcement was provided intermittently for responding on A in the first half, and B in the second half of the trial. Percent responding on B (%B) was recorded in successive 5-s epochs of the trials; logistic functions were fitted to the data from each rat for the derivation of timing indices [T (50) (time corresponding to %B = 50); Weber fraction]. Rats were treated systemically with d-amphetamine or DOI, alone and in combination with haloperidol, SKF-83566, or MDL-100907. RESULTS: d-Amphetamine (0.4 mg kg(-1)) reduced T (50) compared to vehicle; this effect was antagonized by SKF-83566 (0.03 mg kg(-1)) and MDL-100907 (0.5 mg kg(-1)), but not by haloperidol (0.05, 0.1 mg kg(-1)). DOI (0.25 mg kg(-1)) also reduced T (50); this effect was reversed by MDL-100907 (0.5 mg kg(-1)), but not by SKF-83566 (0.03 mg kg(-1)) or haloperidol (0.05 mg kg(-1)). CONCLUSIONS: The results suggest that both 5-HT(2A) and D(1) receptors, but not D(2) receptors, are involved in d-amphetamine's effect on timing behavior in the free-operant psychophysical procedure. DOI's effect on timing is mediated by 5-HT(2A) receptors, but neither D(1) nor D(2) receptors are involved in this effect.  相似文献   

9.
5-HT1A type serotonin receptors influence the immunomodulating action of the selective preparations 8-OH-DPAT (5-HT1A receptor agonist) and WAY-100635 (5-HT1A receptor antagonist) in CBA mice. The activation of 5HT1A receptors with 8-OH-DPAT (1 mg/kg) decreased, while their blocking with WAY-100635 (1 mg/kg) increased the reaction intensity at the peak of response to immunization with ram erythrocytes. Preliminary blocking of the 5-HT1A receptors with WAY-100635 prevented the inhibiting action of 8-OH-DPAT.  相似文献   

10.
RATIONALE: The psychostimulant d-amphetamine, the D(2/3) dopamine receptor agonist quinpirole and the 5-HT(2) receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) have similar effects on free-operant timing behaviour. There is evidence that tolerance develops to the effects of psychostimulants on timing performance during chronic treatment; this tolerance is generally attributed to behavioural adaptation rather than to pharmacological desensitisation. There have been no previous investigations of tolerance to the effect of DOI on free-operant timing behaviour. OBJECTIVE: To demonstrate tolerance to DOI's effect on timing performance and to examine the nature of this tolerance. MATERIALS AND METHODS: Rats were trained under the free-operant psychophysical procedure to press two levers (A and B) in 80-s trials in which reinforcement was provided intermittently for responding on A in the first half and B in the second half of the trial. Percent responding on B (%B) was recorded in successive 8-s epochs of the trials; logistic functions were fitted to the data from each rat for the derivation of timing indices (T (50) [time corresponding to %B = 50]; Weber fraction). RESULTS: In experiment 1, DOI (0.25 mg kg(-1)) reduced T (50) compared to vehicle; tolerance to this effect was seen after repeated daily treatments with DOI if the rats were exposed to behavioural training during the period of treatment but not if the repeated treatments took place during a 'holiday' from behavioural training. In experiment 2, repeated treatment with DOI resulted in tolerance to the effect of DOI on T (50) and cross-tolerance to the effect of d-amphetamine (0.4 mg kg(-1)), but no cross-tolerance was seen to the effect of quinpirole (0.08 mg kg(-1)). CONCLUSIONS: The results indicate that behavioural adaptation is involved in the development of tolerance to DOI's effect on timing. The finding of cross-tolerance to d-amphetamine but not to quinpirole suggests that the reduction of T (50) in the free-operant psychophysical procedure may be brought about by two distinct pharmacological mechanisms, one activated by DOI and d-amphetamine, and the other by quinpirole.  相似文献   

11.
The selective 5-HT(1A) antagonist WAY-100635 was employed to further clarify the respective contributions of 5-HT(1A) receptors to the effects of the 5-HT(1A) agonist 8-OH-DPAT, the 5-HT(2) agonist DOI, and the mixed 5-HT(1A/2) agonist LSD on exploratory locomotion in rats. In nocturnal studies of well-handled rats during their first exposure to the Behavioral Pattern Monitor, which enables analyses of quantitative and qualitative changes in locomotor activity, locomotor and investigatory responses were reduced by treatment with either 8-OH-DPAT, DOI, or LSD. The hypoactivity produced by 8-OH-DPAT, but not that produced by DOI, was antagonized by pretreatment with WAY-100635. These results substantiate the effectiveness and functional specificity of WAY-100635 as a 5-HT(1A) antagonist. Furthermore, these results are inconsistent with a functional interaction between 5-HT(1A) and 5-HT(2) receptors in the control of locomotor behavior. The decreases in locomotion produced by LSD were attenuated by pretreatment with WAY-100635, indicating that the effects of LSD in this paradigm are due partly to agonist actions at 5-HT(1A) receptors. Therefore, 5-HT(1A) receptors appear to play a direct role in mediating the effects of LSD on rodent locomotion.  相似文献   

12.
As a means of characterizing the role of 5-HT1A and 5-HT2A receptors in learning, 5-hydroxytryptamine (5-HT) agonists and antagonists with selective affinities for each receptor subtype (i.e. 8-hydroxy-dipropylaminotetralin (8-OH-DPAT), (-)-4-(dipropylamino)-1,3,4,5-tetrahydrobenz-(c,d,)indole-6-carboxamide (LY228729), (+/-)-1-(4-iodo-2,5-dimeth-oxyphenyl)-2-aminopropane hydrochloride (DOI), 4-iodo-N-[2- [4-(methoxyphenyl)-1-piperazinyl] ethyl]-N-2-pyridinyl-benzamide hydrochloride (p-MPPI), N-[2- [4- (2-methoxyphenyl)-1-piperazinyl] ethyl] -N-2-pyridinyl-cyclohexanecarboxamide maleate (WAY-100635), 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyllpiperazine hydrobromide (NAN-190) and ritanserin) were administered to monkeys responding under a multiple schedule of repeated acquisition and performance. In addition, a selective 5-HT1A receptor agonist (8-OH-DPAT) was administered in combination with a 5-HT2A receptor antagonist (ritanserin) to examine any potential interactions between the two 5-HT receptor subtypes. When administered alone, 8-OH-DPAT (0.1-3.2mg/kg), LY228729 (0.32-3.2 mg/kg) and DOI (0.018-3.2 mg/kg) dose-dependently decreased overall response rate in both schedule components, and generally increased the percentage of errors in the acquisition components at doses lower than those that increased the percentage of errors in the performance components. At the doses of each drug tested (i.e. 0.1 or 0.32 mg/kg), both p-MPPI and WAY-100635 antagonized the disruptive effects of 8-OH-DPAT, by shifting the dose-effect curves for overall response rate and the percentage of errors to the right. In contrast, ritanserin (0.32 or 1mg/kg) had little or no effect on the disruptions produced by 8-OH-DPAT, but it effectively antagonized the rate-decreasing and error-increasing effects produced by the 5-HT2A agonist DOI. Administration of the 5-HT1A antagonists WAY-100635 and NAN-190 alone produced dose-dependent rate-decreasing effects, but the effects on accuracy of responding in the acquisition components differed from those of the 5-HT1A agonists (8-OH-DPAT and LY228729), in that they did not produce an increase in the percentage of errors. Together, these results suggest that 5-HT is capable of disrupting learning in monkeys through actions at both the 5-HT1A and 5-HT2A receptors, and that 5-HT2A receptor antagonism does not unilaterally modify the effects produced by 5-HTA1A receptor activation.  相似文献   

13.
In urethane-chloralose anesthetized, neuromuscularly blocked, ventilated rats, microinjection of NMDA (12 pmol) into the right fourth thoracic segment (T4) spinal intermediolateral nucleus (IML) immediately increased ipsilateral brown adipose tissue (BAT) sympathetic nerve activity (SNA; peak +492% of control), expired CO2 (+0.1%) heart rate (+48 beats min(-1)) and arterial pressure (+8 mmHg). The increase in BAT SNA evoked by T4 IML microinjection of NMDA was potentiated when it was administered immediately following a T4 IML microinjection of 5-hydroxytryptamine (5-HT, 100 pmol) or the 5-HT1A/5-HT7 receptor agonist, 8-OH-DPAT (600 pmol), (area under the curve: 184%, and 259% of the NMDA-only response, respectively). In contrast, T4 IML microinjection of the 5-HT2 receptor agonist, DOI (28 pmol) did not potentiate the NMDA-evoked increase in BAT SNA (101% of NMDA-only response). Microinjection into the T4 IML of the selective 5-HT1A antagonist, WAY-100635 (500 pmol), plus the 5-HT7 antagonist, SB-269970 (500 pmol), prevented the 5-HT-induced potentiation of the NMDA-evoked increase in BAT SNA. When administered separately, WAY-100635 (800 pmol) and SB-269970 (800 pmol) attenuated the 8-OH-DPAT-induced potentiation of the NMDA-evoked increase in BAT SNA through effects on the amplitude and duration of the response, respectively. The selective 5-HT2 receptor antagonist, ketanserin (100 pmol), did not attenuate the potentiations of the NMDA-evoked increase in BAT SNA induced by either 5-HT or 8-OH-DPAT. These results demonstrate that activation of 5-HT1A/5-HT7 receptors can act synergistically with NMDA receptor activation within the IML to markedly increase BAT SNA.  相似文献   

14.
Involvement of the serotonergic system in tail tremor induced by repeated administration of nicotine was investigated in rats. Tail tremor induced by nicotine (0.5 mg/kg, s.c.) was suppressed by a 5-HT(1A) receptor antagonist, N-?2-[4-(2-methoxyphenyl)-1-piperazinyl-]ethyl?-N-(2-pyridinyl)cycloh exanecarboxamide trihydrochloride (WAY-100635; 0.3-3 mg/kg, i.p.), but not by a 5-HT(2) receptor antagonist, ketanserin (0.1-0.3 mg/kg, i.p). The 5-HT(1A) receptor agonists, buspirone (1-20 mg/kg, i.p.), gepirone (1-10 mg/kg, i.p.), tandospirone (1-10 mg/kg, i.p.) and (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 0.01-0.1 mg/kg, s.c.), enhanced the tail tremor. The enhancement of tail tremor by buspirone (10 mg/kg, i.p.) was blocked by WAY-100635 (0.3-3 mg/kg, i.p.). These findings suggest that nicotine-induced tail tremor is mediated by 5-HT(1A) receptors and that 5-HT(1A) receptor antagonists are effective in the treatment of tremor.  相似文献   

15.
The ability of rats to discriminate durations of exteroceptive stimuli is disrupted by 5-HT(1A) receptor agonists; it is not known whether temporal discrimination is sensitive to stimulation of other 5-HT receptor subtypes. We examined the effect of quipazine, a 5-HT receptor agonist with nanomolar affinity for 5-HT(3) receptors and micromolar affinity for 5-HT(2A) receptors, and m-chlorophenylbiguanide (m-CPBG), a selective 5-HT(3) receptor agonist, on temporal discrimination. Twenty-four rats pressed levers for sucrose reinforcement under a discrete-trials psychophysical procedure. In each 50-s trial, a light was presented for t s, following which two levers (A and B) were presented. A response on A was reinforced if t < 25 s, and a response on B if t > 25 s. Logistic psychometric functions were fitted to the data, and timing parameters estimated (T(50): value of t corresponding to %B = 50; Weber fraction: [T(75)-T(25)]/2T(50), where T(75) and T(25) are values of t corresponding to %B = 75 and %B = 25). Quipazine (0.5-2 mg/kg) displaced the psychometric curve to the right and reduced its slope, reflected in increases in T50 and the Weber fraction; m-CPBG (2.5-10 mg/kg) had no effect. The effects of quipazine were reversed by the 5-HT(2A) receptor antagonist ketanserin (2 mg/kg) but not by the 5-HT3 receptor antagonist topanyl 3,5-dichlorobenzoate (MDL-72222) (1 mg/kg). The results indicate that 5-HT(2A) but not 5-HT(3) receptor stimulation disrupts temporal discrimination.  相似文献   

16.
In the present study we evaluated the role of 5-HT(1A) receptors in mediating the inhibitory action of 8-OH-DPAT, a 5-HT(1A) receptor agonist, in motion sickness in Suncus murinus. 8-OH-DPAT (0.1 mg/kg, i. p) attenuated motion-induced emesis which was associated with an increase in the latency of the onset to the first emetic episode. Pre-treatment with methysergide (a 5-HT(1/2/7) receptor antagonist, 1.0 mg/kg, i. p.), WAY-100635 (a 5-HT(1A) receptor antagonist, 1.0 mg/kg, i. p.), SB269970A (a 5-HT(7) receptor antagonist, 1.0 and 5.0 mg/kg, i. p.), ondansetron (a 5-HT(3) receptor antagonist, 1.0 mg/kg, i. p) or GR13808 (a 5-HT(4) receptor antagonist, 0.5 mg/kg, i. p) failed to modify the inhibitory action of 8-OH-DPAT on motion sickness. Furthermore, the application of either methysergide, WAY-100635, SB269970A, ondansetron or GR13808 alone had no effect on motion sickness in its own right. These data indicate that neither 5-HT(1A) nor any 5-HT(2) receptor subtypes, 5-HT(3), 5-HT(4) and 5-HT(7) receptors are likely to be involved in the inhibition of motion-induced emesis mediated by 8-OH-DPAT.  相似文献   

17.
The effect of serotonergic agents was studied on the adenosine A2 receptor agonist NECA-induced catalepsy in mice. The 5-HT releaser fenfluramine, the 5-HT1A agonist 8-OH-DPAT, the 5-HT2A/1C receptor agonist DOI and the 5-HT2A/1C receptor antagonists ketanserin and mianserin reversed NECA-induced catalepsy. p-MPPI and ketanserin reversed the anticataleptic actions of 8-OH-DPAT and DOI, respectively. Further, the 5-HT reuptake inhibitor fluoxetine, the 5-HT1B/1C receptor agonist TFMPP, the 5-HT synthesis inhibitor p-CPA, the selective 5-HT1A receptor antagonist p-MPPI, the 5-HT1A/1B receptor antagonist pindolol and the 5-HT3 receptor antagonist LY 278, 584 had no effect on NECA-induced catalepsy. The anticataleptic action of fenfluramine was not affected by pretreatment with p-CPA. In p-CPA treated rats, ketanserin did not affect the anticataleptic effect of fenfluramine, whereas p-MPPI partially reversed this effect. It is concluded that modulation of serotonergic neurotransmission at 5-HT1A and 5-HT2A/1C receptors affects the cataleptic action of experimental antipsychotic agents with adenosine A2 receptor agonistic activity. Received: 5 May 1997/Final version: 2 September 1997  相似文献   

18.
The role of 5-HT1A and 5-HT2 receptors in mediating foot-shock-induced ultrasonic vocalisation has been studied in rats. Furthermore, behavioural effects were correlated to receptor reserves in the brain by means of receptor inactivation with N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). The dose-dependent inhibition of ultrasonic vocalisation by the 5-HT precursor, L-5-hydroxy-L-tryptophan (110-450 micromol/kg), was abolished by pretreatment with the 5-HT1A/1B antagonist, (-)-penbutolol (27 micromol/kg), and the 5-HT2A/2C antagonist, ritanserin (10 micromol/kg). The inhibitory actions of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and the 5-HT2A/5-HT2C. agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) were reversed by the 5-HT1A antagonist, (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexanecarboxamide (WAY-100635), and the 5-HT2A antagonist, (+/-)alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorphenyl)ethyl]-4-pipe ridine-methanol (MDL 100151), respectively. Pretreatment with EEDQ (24 h, subcutaneous [s.c.]) inhibited foot-shock-induced ultrasonic vocalisation (effective dose50=0.95 micromol/kg) and decreased [3H]-8-OH-DPAT and [3H]-ketanserin binding in the brain. Pretreatment with WAY-100635 (0.3-20 micromol/kg) 20 min prior to EEDQ administration (1.3 micromol/kg, s.c.) did not reverse the EEDQ-induced inhibition of ultrasonic vocalisation but protected the 5-HT1A receptors against EEDQ inactivation. Pretreatment with MDL 100151 (0.83-54 micromol/kg) 20 min prior to EEDQ administration both reversed the EEDQ-induced inhibition of ultrasonic vocalisation and protected the 5-HT2A receptors against EEDQ inactivation. These findings demonstrate that 5-HT1A and 5-HT2 receptors are involved in the regulation of ultrasonic vocalisation in rats. However, the function of 5-HT1A and 5-HT2 receptors in this model seems to differ as vocalisation was preserved after protection of 5-HT2 but not 5-HT1A receptors.  相似文献   

19.
1. Effects of ionophoretic administration of 5-hydroxytryptamine (5-HT) and selective 5-HT1A receptor agonists and antagonists on identified dorsal vagal preganglionic and dorsal raphe neurones were studied in pentobarbitone sodium or chloral hydrate-anaesthetized rats, respectively. 2. Extracellular recordings were made from 176 preganglionic neurones in the dorsal vagal nucleus (DVN). Application of 5-HT at low currents (< or = 10 nA) increased the activity of these neurones. However, at increased currents (10-60 nA), it had a predominantly depressant effect. Application of selective 5-HT1A receptor antagonists, (+/-)-pindolol or WAY-100635, attenuated the excitatory responses evoked by 5-HT. 3. Ionophoresis of the 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (5-30 nA) increased the firing rate of 19 and decreased that of 67 of the 104 vagal neurones tested. Other 5-HT1A receptor agonists, flesinoxan and N,N-di-n-propyl-5-carboxamidotryptamine (DP-5-CT) also had predominantly depressant effects. 4. (+/-)-Pindolol attenuated excitations but not inhibitions evoked by 8-OH-DPAT. Surprisingly, WAY-100635 and 8-OH-DPAT produced the same effect on these neurones and when applied together, WAY-100635 failed to attenuate the 8-OH-DPAT responses. 5. Dorsal raphe neurones were identified by their low, regular firing rate and their subsequent histological localization. 8-OH-DPAT reversibly reduced the activity in all 7 neurones tested and this was antagonized by WAY-100635 in all 3 neurones tested. 6. In conclusion, 5-HT applied to vagal preganglionic neurones evokes excitatory and inhibitory responses. The excitatory, but not the inhibitory responses may be mediated, at least in part, by activation of 5-HT1A receptors.  相似文献   

20.
The conditioned taste aversion procedure in mice was used to test for blockade of the drug stimulus of the 5-HT1A receptor agonists (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin HBr (8-OH-DPAT), 1-(4-trifluoromethyl-2-pyridinyl)-4- [4-[2-oxo-1-pyrrolidinyl]butyl]piperazine (E)-2-butenedioate (Org 13011) and the 5-HT reuptake inhibitor fluoxetine. The conditioned taste aversion induced by 8-OH-DPAT (0.22 mg/kg) and Org 13011 (0.5 mg/kg) was readily blocked by the 5-HT1A receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexanecarboxamide trihydrochloride (WAY-100635) (0.1 mg/kg). The conditioned taste aversion induced by fluoxetine could not be antagonized by WAY-100635 nor by the 5-HT2 receptor antagonist mianserin. It is concluded that the conditioned taste aversion induced by 8-OH-DPAT or Org 13011 is mediated via 5-HT1A receptors. The results suggest that the conditioned taste aversion induced by fluoxetine is not exclusively mediated by 5-HT1A receptors nor exclusively by 5-HT2 receptors. The results also indicate that the conditioned taste aversion paradigm can be used to test for antagonism of stimulus properties of compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号