首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solitary nuclear complex (NST) consists of a number of subdivisions that differ in their cytoarchitectonic features as well as in the amounts of inputs they receive from lingual afferent axons. In this study horseradish peroxidase (HRP) was injected into the parabrachial nucleus (PBN) of the hamster to determine which of these subdivisions contain cells that project to the pons. In the rostral, gustatory division of the NST, the rostral central subdivision contains the greatest number of labelled pontine-projection neurons. The rostral lateral subdivision contains moderate numbers of labelled cells; progressively fewer labelled cells are in the ventral, medial, and dorsal subdivisions. In the caudal, general viscerosensory division of the NST, the caudal central subdivision contains the majority of labelled cells, although fewer than its rostral counterpart. Progressively fewer cells are labelled in the medial, laminar, ventrolateral, and lateral subdivisions; none in the dorsolateral subdivision. Small horseradish peroxidase injections into the pons revealed that cells of the rostral central and rostral lateral subdivisions of the NST project to the medial subdivision of the PBN, predominantly to caudal and ventral parts of the subdivision. Cells of the caudal central and medial subdivisions of the NST project to the central lateral subdivision of the PBN, predominantly to intermediate and rostral-dorsal parts of the subdivision. Outside the NST, cells in the spinal trigeminal nucleus and parvicellular reticular formation were also labelled after PBN injections. Within the rostral central and rostral lateral (gustatory) subdivisions of the NST at least two types of neurons, distinguished on the basis of dendritic and cell body morphology, were labelled after HRP injections that included the medial PBN. Elongate cells have ovoid-fusiform somata and dendrites oriented in the mediolateral plane parallel to primary afferent axons entering from the solitary tract. Stellate cells have triangular or polygonal cell bodies and three to five dendrites oriented in all directions, although one or two often extend mediolaterally. These results indicate that cytoarchitectonic subdivisions of the NST are distinguished by their efferent ascending connections. For each subdivision within the rostral, gustatory NST there is a correlation between the density of lingual inputs it receives and the density of pontine-projection neurons it contains. Within the rostral central subdivision, which contains the densest lingual inputs and the largest collection of PBN-projection neurons, cell types previously identified in studies with the Golgi method were found to send their axons to the PBN. The presence of two types of pontine-projection cells in the rostral central subdivision provides a structural basis for parallel information processing in the ascending gustatory system. Projections to the PBN from regions outside the NST provide opportunities for convergence, at the level of the pons, between inputs arising from gustatory/general viscerosensory subdivisions of the NST and from trigeminal sensory nuclei and the reticular formation.  相似文献   

2.
The nucleus of the solitary tract (NST) processes gustatory and related somatosensory information rostrally and general viscerosensory information caudally. To compare its connections with those of other rodents, this study in the C57BL/6J mouse provides a subnuclear cytoarchitectonic parcellation (Nissl stain) of the NST into rostral, intermediate, and caudal divisions. Subnuclei are further characterized by NADPH staining and P2X2 immunoreactivity (IR). Cholera toxin subunit B (CTb) labeling revealed those NST subnuclei receiving chorda tympani nerve (CT) afferents, those connecting with the parabrachial nucleus (PBN) and reticular formation (RF), and those interconnecting NST subnuclei. CT terminals are densest in the rostral central (RC) and medial (M) subnuclei; less dense in the rostral lateral (RL) subnucleus; and sparse in the ventral (V), ventral lateral (VL), and central lateral (CL) subnuclei. CTb injection into the PBN retrogradely labels cells in the aforementioned subnuclei; RC and M providing the largest source of PBN projection neurons. Pontine efferent axons terminate mainly in V and rostral medial (RM) subnuclei. CTb injection into the medullary RF labels cells and axonal endings predominantly in V at rostral and intermediate NST levels. Small CTb injections within the NST label extensive projections from the rostral division to caudal subnuclei. Projections from the caudal division primarily interconnect subnuclei confined to the caudal division of the NST; they also connect with the area postrema. P2X2‐IR identifies probable vagal nerve terminals in the central (Ce) subnucleus in the intermediate/caudal NST. Ce also shows intense NADPH staining and does not project to the PBN. J. Comp. Neurol. 522:1565–1596, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Previous cytoarchitectural and electron micrographic studies have indicated that the gustatory zone of the nucleus of the solitary tract (NST) may contain local circuit neurons. It is known that neurons of the caudal "visceroceptive" NST contain GABA, glutamic acid decarboxylase (EC 4.1.1.15), and GABA-transaminase (GABA-T; 4-aminobutyrate: 2-oxoglutarate aminotransferase; EC 2.6.1.19). The present study was conducted to determine whether or not neurons in the gustatory zone of the NST of rat contain GABA and the principle degradative enzyme of GABA, GABA-T. Transganglionic transport of horseradish peroxidase (HRP) was used to identify chorda tympani (CT) nerve terminal fields. Immunohistochemical studies were combined with transport experiments to evaluate the organization of GABA immunoreactive neurons in CT terminal fields. Results show that GABA immunoreactive neurons and puncta are located within CT terminal fields. These neurons evince small ovoid morphologies resembling Golgi interneurons, and comprise an average of 18% of total neurons in CT terminal fields. Independent histochemical studies reveal that approximately 82% of GABA immunoreactive neurons within CT terminal fields exhibit GABA-T activity. Retrograde transport of HRP was used in additional studies to evaluate whether or not axons of putative GABAergic neurons project to the second-order central gustatory relay located in the caudal parabrachial nucleus (PBNc), to the caudal NST, or to regions surrounding the rostral or caudal NST. Combined studies indicate that GABA immunoreactive neurons in the gustatory NST do not project axons to the PBNc, to the caudal NST, or to regions adjacent to the rostral or caudal NST.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Central projections of gustatory nerves in the rat   总被引:18,自引:0,他引:18  
The central distributions of gustatory and non-gustatory branches of cranial nerves V, VII, IX, and X were examined after application of horseradish peroxidase to the cut nerve. The nerves conveying gustatory information, chorda tympani (CT), greater superficial petrosal (GSP), lingual-tonsilar branch of IX (LT-IX), superior laryngeal branch of X (SL), distributed primarily to the lateral division of the nucleus of the solitary tract (NST) from its rostral pole to the obex. The CT and GSP distributions were coextensive and terminated most densely in the rostral pole of NST. The LT-IX distribution concentrated between this major CT/GSP distribution and the area postrema with a caudal extension into the interstitial nucleus of NST. This nerve also had a substantial projection, not found in other gustatory nerves, into the dorsolateral aspect of the medial NST. The SL distribution overlapped LT-IX in the caudal medulla. The lingual and inferior alveolar nerves, two oral trigeminal branches, projected to regions of NST innervated by the gustatory nerves. The cervical vagus nerve distributed primarily to the medial NST in the caudal half of the nucleus and exhibited only minimal overlap with gustatory nerve distributions. The nucleus of the solitary tract appears to have two major functional divisions--an anterior-lateral oral-gustatory half, and a posterior-medial visceral afferent half.  相似文献   

5.
B J Davis  H M Smith 《Neuroreport》1999,10(5):1003-1006
Substance P (SP) modulates the activity of taste-responsive neurons in the gustatory zone of the nucleus of the solitary tract (NST) in the hamster. The distribution of the neurokinin-1 (NK1) receptor (i.e. the SP receptor) was mapped and compared with the distribution of SP immunoreactivity to identify the sites of ligand-receptor interactions. NK1-immunoreactive puncta and somata were located mostly in the rostral lateral, upper half of the rostral central and medial NST subnuclei. These subnuclei also contained intense SP-immunoreactive puncta, and are known to receive substantial inputs via gustatory and somatosensory afferent fibers. The ventral subnucleus, which is involved in visceromotor reflexes accompanying ingestion, contained little NK1 or lighter SP-immunoreactivity. These findings suggest that SP modulates taste activity destined for the ascending gustatory pathway at the level of the first central synapse in the gustatory pathway.  相似文献   

6.
Taste responsivity and organization of fungiform papillae, geniculate ganglion neurons and gustatory recipient zones of the nucleus of the solitary tract (NST) were examined in C57BL/6NCrlBR (C57) mice, BALB/c6NCrlBR (BALB/c) mice and CB6F1/CrlBr (CB6) mice, an F1 hybrid cross between BALB/c and C57 mice. Results from behavioral studies confirm that C57 and CB6 mice exhibit higher preferences to sucrose and lower preferences to NaCl, as compared to BALB/c mice. No strain differences were confirmed for aversion responses to citric acid or quinine HCl taste stimuli. Anatomical analyses show that the number and organization of fungiform papillae do not reliably differ between C57, BALB/c, and CB6 mice, nor do volumes of glossopharyngeal terminal fields in the NST. However, strain-specific differences exist in the number of neurons contained in the geniculate ganglion, volume of chorda tympani (CT) terminal fields in the rostral NST, and number of NST neurons contained in CT terminal fields. BALB/c and CB6 mice possess a greater number of geniculate ganglion neurons and larger CT terminal fields, as compared to C57 mice. However, strain differences in the number of geniculate ganglion neurons and terminal field volume are not obviously correlated with strain differences in gustatory responsivity. The only reliable relationship confirmed between taste responsivity and neuroanatomical organization of the rostral NST relates to the absolute number of neurons contained in CT terminal fields, and corresponding neuronal density within CT terminal fields. Chorda tympani terminal fields of C57 and CB6 mice contain an average of 379 neurons, whereas CT terminal fields of BALB/c mice contain an average of 531 neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Extranuclear projections of rNST neurons expressing gustatory-elicited Fos   总被引:5,自引:0,他引:5  
Previous studies have demonstrated that gustatory stimulation evokes expression of the immediate-early gene, c-fos in the rostral division of the nucleus of the solitary tract (rNST) (Harrer and Travers [1996] Brain Res. 711:125-137; DiNardo and Travers [1997] J. Neurosci. 17:3826-3839; King et al. [1999] J. Neurosci. 19:3107-3121). The present investigation further defined the phenotype of those neurons by determining their projections, by using immunohistochemistry for the Fos protein and retrograde tracing with Fluoro-Gold. Tracer injections were made into the two major extranuclear targets of rNST, the parabrachial nucleus (PBN) and medullary reticular formation (RF). These structures are thought to play differential roles in higher-order discriminative and homeostatic (PBN) versus reflexive function (RF). After PBN injections, approximately 18% of the Fos-like immunoreactive (FLI) neurons were double-labeled; after RF injections the proportion was 9%. Because only a minority of FLI neurons appear to project to targets outside NST, this suggests that most of these cells have local, intranuclear projections. Comparable proportions of cells were double-labeled after sucrose or quinine, consistent with roles for both tastants in higher-order and reflexive function. On the other hand, regardless of stimulus, twice as many FLI neurons projected to the PBN as to the RF. This could suggest that more FLI neurons contribute to functions mediated by the ascending pathway. However, the results of a recent study prompted a different hypothesis: Because glossopharyngeal nerve section similarly devastates quinine-induced FLI and oral rejection but leaves discriminative function unimpaired, it was proposed that FLI neurons are more important in driving oral motor behavior than discrimination (King et al. [1999] J. Neurosci. 19:3107-3121). A plausible hypothesis for reconciling this apparent discrepancy is that many FLI neurons make local projections in rNST, that in turn give rise to RF connections.  相似文献   

8.
The rostral nucleus of the solitary tract (NST) figures prominently in the gustatory system, giving rise to ascending taste pathways that are well documented. Less is known of the local connections of the rostral NST with sites in the medulla. This study defines the intramedullary connections of the rostral NST in the hamster. Small iontophoretic injections of horseradish peroxidase (HRP), confined to the rostral NST, resulted in Golgi-like filling of axons that exited the NST or that interconnected cytoarchitectonic subdivisions within the NST complex. The NST efferent axons terminated sparsely in the trigeminal, facial and hypoglossal motor nuclei, but axons and endings were heavily distributed in the parvicellular reticular formation ventral to the NST. HRP injections centered in this part of the reticular formation resulted in heavy projections to the orofacial motor nuclei. Intranuclear connections, labelled after NST injections, linked NST subdivisions that receive primary afferent taste inputs to subdivisions involved in (1) projections to the preoromotor reticular formation, (2) projections to swallowing motor neurons, (3) activation of preganglionic parasympathetic neurons, and (4) general viscerosensation. In general, the connections defined in the present study provide anatomical details about the substrate for gustatory-motor and gustatory-visceral interactions.  相似文献   

9.
The temporal correspondence between neuroanatomical and neurophysiological development of peripheral and central gustatory neurons has suggested that morphological development of the first-order central gustatory relay, located in the rostral nucleus of the solitary tract (NST), may be dependent on afferent input from peripheral gustatory pathways. The objective of the present study was to determine the effects of perinatal receptor damage on development of gustatory recipient zones within the rostral and intermediate NST. Results show that damage induced to fungiform receptors of the anterior tongue at postnatal day 2 (P2) alters normal development of NST terminal fields associated with the chorda tympani nerve (CT) and greater superficial nerve (GSP), and that alterations in the CT/GSP terminal field persist in adulthood after peripheral gustatory receptors have regenerated. Damage induced to fungiform receptors at P2 does not alter the normal development of glossopharyngeal terminal fields in the intermediate NST. Receptor damage produced at P10 and P20 is without effect on normal development of the CT/GSP terminal field. Thus, fungiform receptor damage at P2 produces specific alterations in the development of NST terminal fields that receive projections from the facial-intermediate nerve, and receptor damage effects are only obtained during a critical period of postnatal development. P2 receptor damage has the overall effect of eliminating caudally directed migration of CT/GSP axons to additional projection neurons that establish connections with the second-order central gustatory relay located in the parabrachial nucleus (PBN). Behavioral studies were conducted to determine the functional consequences of early receptor damage. Results from behavioral studies show that bilateral damage to fungiform papillae at P2 alters normal adult preferences to low and intermediate concentrations of NaCl and sucrose tastes, yet aversions to citric acid and quinine HCl are not obviously affected. Therefore, anatomical alterations in the CT/GSP terminal field produced by P2 receptor damage are accompanied by specific changes in adult taste preference responses.  相似文献   

10.
Opioid modulation of taste responses in the nucleus of the solitary tract   总被引:4,自引:0,他引:4  
Li CS  Davis BJ  Smith DV 《Brain research》2003,965(1-2):21-34
Gustatory processing within the medulla is modulated by a number of physiologic and experiential factors. Several neurotransmitters, including excitatory amino acids, GABA, and substance P, are involved in synaptic processing within the rostral portion of the nucleus of the solitary tract (NST). Endogenous opiates have been implicated in the regulation of feeding behavior and in taste palatability and gustatory responses in the parabrachial nuclei are reduced by systemic morphine. In the present experiments, extracellular recording of neuronal activity within the NST in response to taste input was combined with local microinjection of met-enkephalin (Met-ENK) and naltrexone (NLTX) to determine the effect of these agents on gustatory activity. The anterior tongue was stimulated with anodal current pulses to determine the time course of drug action (n=85 cells) and with prototypical taste stimuli (0.032 M sucrose, NaCl, and quinine hydrochloride, and 0.0032 M citric acid) to investigate the effects of these opioid compounds on taste-evoked responses (n=80 cells). Among these 165 taste-responsive neurons in the NST, the activity of 39 (23.6%) was suppressed by Met-ENK. These effects were dose-dependent and blockable by NLTX, which alone was without effect, suggesting that opiates do not maintain a tonic inhibitory influence. Immunohistochemical experiments demonstrated both micro - and delta-opioid receptors within the gustatory portion of the NST; previous studies had shown numerous fiber terminals containing Met-ENK. These data suggest that endogenous opiates play an inhibitory role in gustatory processing within the medulla.  相似文献   

11.
Smith DV  Li CS 《Brain research》2000,858(2):408-415
The nucleus of the solitary tract (NST) receives descending connections from several forebrain targets of the gustatory system, including the insular cortex. Many taste-responsive cells in the NST are inhibited by gamma-aminobutyric acid (GABA). In the present study, we investigated the effects of cortical stimulation on the activity of gustatory neurons in the NST. Multibarrel glass micropipettes were used to record the activity of NST neurons extracellularly and to apply the GABA(A) antagonist bicuculline methiodide (BICM) into the vicinity of the cell. Taste stimuli were 0.032 M sucrose (S), 0.032 M NaCl (N), 0.00032 M citric acid (H), and 0.032 M quinine hydrochloride (Q), presented to the anterior tongue. Each of 50 NST cells was classified as S-, N-, H-, or Q-best on the basis of its response to chemical stimulation of the tongue. The ipsilateral insular cortex was stimulated both electrically (0.5 mA, 100 Hz, 0.2 ms) and chemically (10 mM DL-homocysteic acid, DLH), while the spontaneous activity of each NST cell was recorded. The baseline activity of 34% of the cells (n=17) was modulated by cortical stimulation: eight cells were inhibited and nine were excited. BICM microinjected into the NST blocked the cortical-induced inhibition but had no effect on the excitatory response. Although the excitatory effects were distributed across S-, N-, and H-best neurons, the inhibitory effects of cortical stimulation were significantly more common in N-best cells. These data suggest that corticofugal input to the NST may differentially inhibit gustatory afferent activity through GABAergic mechanisms.  相似文献   

12.
Our previous anatomical and electrophysiological studies demonstrated that first-order hepatic and gustatory afferents project to separate regions of the solitary nucleus (NST) and no intra-NST interaction of these two sensory systems could be demonstrated. However, iontophoretic injections of horseradish peroxidase into physiologically identified zones of the NST revealed that both of these regions send overlapping projections to the immediately subjacent parvocellular reticular formation as well as the postero-medial parabrachial nucleus (PBN). The present electrophysiological studies demonstrate that an interstitial zone of neurons in the caudal, medial PBN, indeed, receive convergent input from second-order gustatory and vagal afferents. Co-activation of these PBN units by the simultaneous arrival of both input sources frequently resulted in an additive interaction of evoked activity. PBN units lateral and caudal to this zone responded to vagal stimulation only, while units in the anterior and extreme medial portion of the PBN only responded to gustatory stimulation. By virtue of the efferent projections of the PBN, one might speculate that the convergence of information at this locus may, eventually, play a role in directing long term feeding behavior patterns such as learned taste aversion as well as the more transient changes in taste preference with visceral loading.  相似文献   

13.
Morphological and metabolic development of the gustatory zone of the rostral nucleus of the solitary tract (NST) was examined in rat. Transganglionic transport of horseradish peroxidase (HRP) was used to visualize the organization of gustatory projections to the rostral gustatory NST in rats aged postnatal day 1 (P1) to P34. Golgi impregnation studies were performed to analyze morphological development of dendrites in regions of the rostral NST that were identified as anterior tongue terminal fields. Results demonstrate that afferent fibers of the anterior tongue project to the rostral NST in rats as young as P1. The volume of NST terminal fields increased from P1 to approximately P16-P20, and was adult-like after approximately P20. Developmental increases in terminal field volume resulted from a preferential expansion in the rostrocaudal plane. Planar length of first-order dendrites associated with fusiform, multipolar, and ovoid neurons, and second-order dendrites of fusiform and ovoid neurons, increased approximately three-fold between P4 and P16-20. First-order dendritic length for all morphological types was adult-like after approximately 20-25 days of age, whereas second-order dendritic length of multipolar neurons increased significantly between P30 and P60-70. Histochemical studies confirmed that activity of the mitochondrial respiratory enzymes cytochrome c oxidase (EC 1.9.3.1), succinate dehydrogenase (EC 1.3.99.1), and NADH-dehydrogenase (EC 1.6.99.3) increased monotonically during the developmental period in which planar growth of first-order dendrites was observed. The present results, in combination with results from previous studies, indicate that morphological and metabolic development fo the NST occurs concomitantly with morphological development of taste receptors and peripheral gustatory nerves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Afferents to the abducens nucleus in the monkey and cat   总被引:1,自引:0,他引:1  
The abducens nucleus is a central coordinating element in the generation of conjugate horizontal eye movements. As such, it should receive and combine information relevant to visual fixation, saccadic eye movements, and smooth eye movements evoked by vestibular and visual stimuli. To reveal possible sources of these signals, we retrogradely labeled the afferents to the abducens nucleus by electrophoretically injecting horseradish peroxidase into an abducens nucleus in four monkeys and two cats. The histologic material was processed by the tetramethyl benzidine (TMB) method of Mesulam. In both species the largest source of afferents to the abducens nucleus was bilateral projections from the ventrolateral vestibular nucleus and the rostral pole of the medial vestibular nucleus. Scattered neurons were also labeled in the middle and caudal levels of the medial vestibular nucleus. Large numbers of neurons were labeled in the ventral margin of the nucleus prepositus hypoglossi in the cat and in the common margin of the nucleus prepositus and the medial vestibular nucleus in the monkey, a region we call the marginal zone. Substantial numbers of retrogradely labeled neurons were found in the dorsomedial pontine reticular formation both caudal and rostral to the abducens nuclei. In the monkey, large numbers of labeled neurons were present in the contralateral medial rectus subdivision of the oculomotor complex, while smaller numbers occurred in the ipsilateral medial rectus subdivision and elsewhere in the oculomotor complex. In the cat, large numbers of retrogradely labeled cells were present in a small periaqueductal gray nucleus immediately dorsal to the caudal pole of the oculomotor complex, and a few labeled neurons were also dispersed through the caudal part of the oculomotor complex. Occasional labeled neurons were present in the contralateral superior colliculus in both species. The size and distribution of the labeled neurons within the intermediate gray differed dramatically in the two species. In the cat, the retrogradely labeled neurons were very large and occurred predominantly in the central region of the colliculus, while in the monkey, they were small to intermediate in size and were distributed more uniformly within the middle gray. Among the afferent populations present in the monkey, but not in the cat, was a group of scattered neurons in the ipsilateral rostral interstitial nucleus of the medial longitudinal fasciculus and a denser, bilateral population in the interstitial nucleus of Cajal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The rostral gustatory zone of the nucleus of the solitary tract (NST) exhibits extensive anatomical development during the first 3 weeks of postnatal life, and this development requires the presence of intact gustatory receptors during a critical period. We have previously shown that unilateral damage induced to fungiform papillae of the anterior tongue at postnatal day 2 (P2) alters normal migration and ramification of chorda tympani (CT) axons in the rostral NST. In addition to alterations of axonal development, P2 receptor damage decreases the intraneuronal distance between neurons that project axons to the second-order central gustatory relay, located in the caudal parabrachial nucleus (PBN). This observation suggested that P2 receptor damage may alter both axonal development and dendritic development in the rostral gustatory NST. The present study evaluated potential changes in dendritic development of PBN projection neurons following either P2 or P10 receptor damage. Morphological studies were first conducted to quantitatively define somatic characteristics of neurons that project axons to the PBN. Independent experiments used fluorescent labeling combined with subsequent Golgi-impregnation to study dendritic architecture of identified PBN projection neurons. Results confirmed that P2 receptor damage alters dendritic development of PBN projection neurons located in CT terminal fields. Anterior tongue receptor damage at P2 (1) reduces planar length of first- and second-order dendritic branches, (2) reduces the mean number of second-order branches per neuron, and (3) reduces the density of spine processes on second-order dendritic branches. A critical period exists for these effects, similar to that reported for axonal development, insofar as P2 receptor damage alters dendritic development of PBN projection neurons, whereas P10 receptor damage does not. Dendrites of identified PBN projection neurons located in regions of the NST that receive primary afferent axons from the glossopharyngeal nerve are not affected by anterior tongue damage at P2. These results show that early postnatal receptor damage influences both pre- and postsynaptic development in the rostral gustatory NST. These anatomical changes are undoubtedly related to alterations in taste-guided behaviors that are observed following P2 receptor damage.  相似文献   

16.
Previous studies have examined pre- and postsynaptic development of the first-order central gustatory relay, located in the rostral nucleus of the solitary tract (NST). This region of the NST is innervated by primary gustatory axons arising from the facial-intermediate nerve. However, a large portion of the gustatory NST is innervated by axons arising from the glossopharyngeal nerve, and although the time course for development of N.VII recipient zones has been defined development of glossopharyngeal afferent terminal fields has not been examined. Moreover, the time course for development of projection neurons located postsynaptic to gustatory afferent axons has not been examined in any portion of the NST. The objectives of the present study were to 1) define the time course for development of N.VII and N.IX terminal fields and 2) examine temporal relationships between development of afferent terminal fields and development of projection neurons located postsynaptic to gustatory afferent axons. To this end, triple fluorescent labeling procedures were used to simultaneously visualize developing axons and projection neurons. Results show that afferent terminal fields develop along the rostrocaudal axis of the NST. Axons of the N.VII terminal field are present in the rostral NST at P1 and develop to approximately P25. Axons and terminal endings of N.IX do not enter the NST until approximately P9-P10, and these terminal fields develop within the intermediate NST until approximately P45. Many NST neurons destined to project axons to the second-order central gustatory relay, located in the caudal parabrachial nucleus (PBN), do not possess axonal connections with the PBN during the first 2-3 weeks of postnatal life. As afferent terminal fields develop, these neurons establish connections with the PBN between the ages of approximately P7 and P45-P60. The delay between afferent terminal field development and development of PBN projection neurons in the N.VII terminal field is approximately 3 weeks. The delay between pre- and postsynaptic development in the N.IX terminal field is approximately 1 week. Potential relationships between pre- and postsynaptic development are discussed, in addition to relationships between anatomical development in the NST and the emergence of taste-guided behaviors.  相似文献   

17.
Yamamoto T  Sawa K 《Brain research》2000,866(1-2):144-151
To examine whether the activation of brainstem neurons during ingestion is due to orosensory afferents or post-ingestive factors, neuronal activation in response to intraoral and intragastric infusions of taste stimuli was compared in the area postrema (AP), nucleus tractus solitarius (NTS) and parabrachial nucleus (PBN) by the c-fos immunohistochemical method. An aliquot (7.5 ml) of 0.5 M sucrose, 5 mM sodium saccharin, 1 mM quinine hydrochloride and distilled water was delivered into the oral cavity or the stomach in each rat, which had been deprived of water and food overnight. Water induced little c-Fos-like immunoreactivity (c-FLI), but both intraoral and intragastric infusions of sucrose, but not non-caloric saccharin, induced strong c-FLI in the AP, caudal NTS and the external lateral subnucleus of the rostral PBN, suggesting that these areas receive general visceral inputs. Other areas in the NTS and PBN may receive gustatory inputs since more dominant c-FLI was detected by intraoral rather than intragastric infusions of the stimuli. Functional segregation of neurons reflecting qualitative and hedonic aspects of sweeteners (sucrose and saccharin) and bitter-tasting substance (quinine) was suggested in the PBN, but less evident in the NTS. These results indicate that c-fos induction in brainstem neurons during ingestion reflects gustatory inputs and postingestional factors depending on the kind of food ingested.  相似文献   

18.
The location of neurons projecting by axonal collaterals to the rostral and caudal ventral respiratory group (VRG) regions was determined after discrete injections of Fast blue and Diamidino yellow into the physiologically identified rostral inspiratory VRG and the caudal expiratory VRG areas, respectively. In contrast with single fluorochrome labeled neurons found throughout the rostro-caudal extent of the medulla and pons (in a variety of areas known to have cardiorespiratory function), double-labeled neurons were located in discrete pontomedullary regions. The largest number of the double-labeled neurons was counted within the peripheral facial area, lateral paragigantocellular nucleus, and the VRG region, ipsi- and contralaterally to the injected side. Only a few double-labeled neurons were found within the ventrolateral and intermediate subnuclei of the solitary tract, medial parabrachial, and Kölliker-Fuse nuclei. The possible physiological implications of this neuronal network have also been emphasized.  相似文献   

19.
We have investigated connections between the thalamic reticular nucleus (TRN) and the anterior thalamic nuclei (ATN) in the rat, following injections of horseradish peroxidase (HRP) into subnuclei of the ATN and different regions of the rostral TRN. Three nonoverlapping groups of neurons in the dorsal part of the ipsilateral rostral TRN project to, and receive reciprocal projections from, specific subnuclei of the ATN. A vertical sheet of neurons in the most dorsal part of the rostral TRN projects to the dorsal half of the posterior subdivision of the anteroventral thalamic nucleus (AVp), the dorsal region of the medial subdivision of the anteroventral thalamic nucleus (AVm), and the dorsolateral part of the rostral anterodorsal thalamic nucleus (AD). Immediately ventral to this part of TRN, but still within its dorsal portion, are a lateral cluster of neurons and a medially located vertical sheet of neurons. The lateral cluster projects to the ventral part of AVp and to the dorsomedial part of rostral AD. The medial sheet projects to the ventral part of AVm, the ventral part of rostral AD, and to the caudal portions of both AV and AD. There appears to be no input to the anteromedial thalamic nucleus (AM) from the TRN. These findings shed new light on the anatomy of the rostral TRN, the ATN, and the connections between the two, and are relevant to emerging hypotheses about the functional organization of the TRN and reticulo-thalamic projections.  相似文献   

20.
In the medulla oblongata of plethodontid salamanders, GABA-, glycine-, and glutamate-like immunoreactivity (ir) of neurons was studied. Combined tracing and immunohistochemical experiments were performed to analyze the transmitter content of medullary nuclei with reciprocal connections with the tectum mesencephali. The distribution of transmitters differed significantly between rostral and caudal medulla; dual or triple localization of transmitters was present in somata throughout the rostrocaudal extent of the medulla. Regarding the rostral medulla, the largest number of GABA- and gly-ir neurons was found in the medial zone. Neurons of the nucleus reticularis medius (NRM) retrogradely labeled by tracer application into the tectum revealed predominantly gly-ir, often colocalized with glu-ir. The NRM appears to be homologous to the mammalian gigantocellular reticular nucleus, and its glycinergic projection is most likely part of a negative feedback loop between medulla and tectum. Neurons of the dorsal and vestibular nucleus projecting to the tectum were glu-ir and often revealed additional GABA- and/or gly-ir in the vestibular nucleus. Regarding the caudal medulla, the highest density of GABA- and gly-ir cells was found in the lateral zone. Differences in the neurochemistry of the rostral versus caudal medulla appear to result from the transmitter content of projection nuclei in the rostral medulla and support the idea that the rostral medulla is involved in tecto-reticular interaction. Our results likewise underline the role of the NRM in visual object selection and orientation as suggested by behavioral studies and recordings from tectal neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号