首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ago Y  Koyama Y  Baba A  Matsuda T 《Neuropharmacology》2003,45(8):1050-1056
This study examines the effects of serotonin (5-HT)1A receptor ligands on the in vivo release of 5-HT and dopamine (DA) in the prefrontal cortex of mice. Oral MKC-242 and 8-OH-DPAT, selective 5-HT1A receptor agonists, decreased cortical 5-HT release at low and high doses, while the receptor agonists increased cortical DA release only at a high dose. Local application of the selective 5-HT1A receptor antagonist, WAY100635, via a dialysis probe, antagonized oral MKC-242-induced increase in cortical DA release, but did not affect the decrease in cortical 5-HT release. Local application of 8-OH-DPAT at 100 and 300 nM via a dialysis probe increased cortical DA release, but did not affect cortical 5-HT release. The effects of oral MKC-242 and 8-OH-DPAT on 5-HT release were blocked by low and high doses of WAY100635, while blocking the agonist-induced increase in DA release required a high dose of WAY100635. These results suggest that 5-HT release and DA release in the frontal cortex of mice are regulated by pre- and postsynaptic 5-H1A receptors, respectively, and that the presynaptic 5-HT1A receptor-mediated response is more sensitive to inhibition by WAY100635 than the postsynaptic 5-HT1A receptor-mediated response in mice.  相似文献   

2.
Aripiprazole,7-(4-[4-(2,3-dichlorophenyl)-1-piperazinyl]butyloxy)-3,4-dihydro-carbostycil (OPC-14597), a novel atypical antipsychotic drug, is a dopamine D2 receptor partial agonist with functional 5-HT2A receptor antagonist, and 5-HT1A receptor partial agonist properties as well. Other atypical antipsychotic drugs, e.g. clozapine, but not typical antipsychotic drugs, e.g. haloperidol, produce significant increases in dopamine and acetylcholine release in the medial prefrontal cortex in rats, effects believed to be related to the ability to improve cognitive function. The increase in the medial prefrontal cortex dopamine release by the atypical antipsychotic drugs has been shown to be partially inhibited by N-[2[4-)2-methoxyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride (WAY100635), a selective 5-HT1A receptor antagonist. Aripiprazole, 0.1 and 0.3 mg/kg, significantly increased dopamine release in the hippocampus. Moreover, aripiprazole, 0.3 mg/kg, slightly but significantly increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. These increases were significantly inhibited by WAY100635. By contrast, aripiprazole, 3.0 mg/kg and 10 mg/kg, significantly decreased dopamine release in the nucleus accumbens but not the medical prefrontal cortex. However, aripiprazole 10 mg/kg significantly decreased dopamine release in the both regions. Aripiprazole had no effect on acetylcholine release in the medial prefrontal cortex, hippocampus, or nucleus accumbens at any dose, except for 3.0 mg/kg, which decreased acetylcholine release in the nucleus accumbens only. Aripiprazole, 0.3 mg/kg, transiently potentiated haloperidol (0.1 mg/kg)-induced dopamine release in the medial prefrontal cortex but inhibited that in the nucleus accumbens. The present study demonstrated that aripiprazole, at low doses of 0.1 and 0.3 mg/kg, increases dopamine release in the medial prefrontal cortex and hippocampus. It also suggests that the function of both the medial prefrontal cortex and hippocampus may contribute to the ability of aripiprazole to improve negative symptom and cognition.  相似文献   

3.
Most atypical antipsychotic drugs increase acetylcholine release in the prefrontal cortex, but the detailed mechanism is still unknown. The present study examined the role of serotonin (5-HT)1A receptors in risperidone-induced increases in acetylcholine release in rat prefrontal cortex. Systemic administration of risperidone at doses of 1 and 2 mg/kg increased acetylcholine release in the prefrontal cortex in a dose-dependent manner. This increase was antagonized by systemic administration of high doses (1 and 3 mg/kg) of N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridinyl)cyclohexanecarboxamide (WAY100635), a 5-HT1A receptor antagonist/dopamine D4 receptor agonist, but not by a low dose (0.1 mg/kg) of the antagonist which antagonizes preferentially presynaptic 5-HT1A autoreceptors. Furthermore, local application of WAY100635 into the prefrontal cortex also attenuated risperidone-induced increases in acetylcholine release. WAY100635 alone did not affect acetylcholine release in the prefrontal cortex. On the other hand, local application of risperidone (3 and 10 microM), the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (1 and 10 microM), and the dopamine D4 receptor antagonist 3-(4-(4-iodophenyl)piperazine-1-yl)methyl-1H-pyrrolo[2,3-b]pyridine (1 and 10 microM) into the cortex did not affect acetylcholine release in the prefrontal cortex. These results suggest that risperidone increases acetylcholine release in the prefrontal cortex through a complex mechanism which is enhanced by prefrontal 5-HT1A receptor activation.  相似文献   

4.
The anticonvulsant mood stabilizers valproic acid (250, 500 but not 50 mg/kg) and carbamazepine (6, 12.5 but not 3 mg/kg) were found to increase extracellular dopamine levels in rat medial prefrontal cortex, but not nucleus accumbens. Increased prefrontal dopamine was completely abolished by the selective 5-HT1A receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexa necarboxamide (WAY100635, 0.05 mg/kg). Anticonvulsants and clozapine may share a common mood stabilizing mechanism since clozapine is reported to have mood stabilizing effects and increase prefrontal dopamine by 5-HT1A receptor activation.  相似文献   

5.
Two 1,2,4-substituted derivatives of piperazine were tested for their effect on dopamine and serotonin (5-HT) release in rat prefrontal cortex. Both compounds, 1-[4-(4-chinolin-2-yl-piperazin-1yl)-butyl]piperidin-2-on (MM5) and 1-[4-(2-methyl-4-chinolin-2-yl-piperazin-1-yl)-butyl]-8-azaspiro [4.5]decano-7,9-dion (MC1), produced hypothermia in mice and showed affinity for 5-HT1A receptors in-vitro. Like the selective 5-HT1A agonist 8-OH-DPAT (0.1 mg kg(-1)), MM5 given peripherally (30 mg kg(-1)) decreased the extracellular 5-HT level in rat prefrontal cortex, while MC1 suppressed 5-HT release at a higher dose (40 mg kg(-1)), but not at a lower one (30 mg kg(-1)). The effect of both compounds on 5-HT release was abolished by WAY 100635 (0.3 mg kg(-1)). MC1 (30 and 40 mg kg(-1)), but not MM5, raised cortical dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and extracellular homovanillic acid (HVA) levels. The effect of MC1 on dopamine release was reversed by neither WAY 100635 nor the non-selective 5-HT2 antagonist ritanserin (2 mg kg(-1)). However, ritanserin prevented the effect of the higher dose of MC1 on 5-HT release. The results of this study suggest that MM5 exhibits the profile of a 5-HT1A agonist devoid of dopaminergic activity. MC1 seems to possess moderate agonist activity at 5-HT1A and 5-HT2A receptors, while acting on 5-HT release in the rat prefrontal cortex. However, the facilitation of dopamine release by this compound does not seem to be related to its affinity for 5-HT1A and 5-HT2A receptors.  相似文献   

6.
This study examined the effects of the selective 5-HT1A receptor agonist osemozotan on repeated methamphetamine (METH)-induced behavioral sensitization and single METH-induced locomotor stimulant effect in mice, and then the neurochemical mechanisms using in vivo microdialysis. Repeated administration of METH for 7 days enhanced METH challenge-induced locomotor activity, and this sensitization was observed even after its withdrawal for 7-14 days. Administration of osemozotan to METH-sensitized mice inhibited the maintenance of behavioral sensitization. This effect was blocked by a low dose of WAY100635, a selective 5-HT1A receptor antagonist. A METH challenge increased the extracellular levels of dopamine (DA), 5-HT, and noradrenaline in the prefrontal cortex, but only the increase in 5-HT release was enhanced by repeated METH administration. This augmented response of 5-HT release was attenuated by osemozotan in a WAY100635-sensitive way. A single administration of osemozotan to drug na?ve mice inhibited METH-induced locomotor stimulant effect and reduced METH-induced increase in prefrontal 5-HT, but not DA, release. These results suggest that prefrontal 5-HT release is involved at least partly in the effects of osemozotan on single and repeated METH-induced behavioral effects in mice, and imply that the 5-HT1A receptors may have a potential therapeutic value in the remission of schizophrenia.  相似文献   

7.
1. 5-Hydroxytryptamine (5-HT) plays a role in the regulation of noradrenergic neurones in the brain, but the precise mechanism of regulation of noradrenaline (NA) release by 5-HT1A receptors has not been defined. The present study describes the effect of a highly potent and selective 5-HT1A receptor agonist, 5-(3-[[(2S)-1,4-benzodioxan-2-ylmethyl)]amino]propoxy)-1,3-b enzodioxole HC1 (MKC-242), on NA release in the hypothalamus using microdialysis in the freely moving rat. 2. Subcutaneous injection of MKC-242 (0.5 mg kg-1) increased extracellular levels of NA and its metabolite, 3-methoxy-4-hydroxyphenylglycol, in the hypothalamus and hippocampus. 3. The 5-HT1A receptor agonists, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) (0.2 mg kg-1) and buspirone (3 mg kg-1) mimicked the effect of MKC-242 in increasing NA release in the hypothalamus. 4. The effects of MKC-242 and 8-OH-DPAT in the hypothalamus were antagonized by pretreatment with WAY100135 (10 mg kg-1), a silent 5-HT1A receptor antagonist. 5. Local administration of 8-OH-DPAT (10-100 microM), citalopram (1 microM), a 5-HT reuptake inhibitor, and MDL72222 (10 microM), a 5-HT3 receptor antagonist, into the hypothalamus, had no effect on NA release. 6. Intracerebroventricular injection with 5,7-dihydroxytryptamine caused a marked reduction in brain 5-HT content, but the treatment affected neither basal NA levels nor the MKC-242-induced increase in NA release. 7. The effect of MKC-242 in increasing NA release was not attenuated by repeated treatment with the drug (0.5 mg kg-1, once a day for 2 weeks).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Serotonin 5-HT1A and 5-HT1B/1D receptors control serotonin (5-HT) release and are targets for the pharmacological treatment of psychiatric disorders. We investigated effects of the 5-HT1B/1D antagonist GR127935, the 5-HT1A antagonist WAY 100635 and a combination of both in guinea pigs on the behaviour in the forced swimming test and on extracellular 5-HT in the hippocampus and the prefrontal cortex using in vivo microdialysis. Tissue content of 5-HT, 5-HIAA and 5-HT turnover (ratio 5-HIAA/5-HT) were determined in a sample containing i) the median and dorsal raphe nuclei, ii) the frontal cortex, or iii) the ventral hippocampus ex vivo. BEHAVIOUR: Administration of WAY 100635 (0.3-3.0 mg/kg, i.p.) or GR127935 (1.0-10.0 mg/kg, i.p.) or the combination of both delayed immobility in the forced swim test. MICRODIALYSIS: Systemic administration of WAY 100635 (1 mg/kg i.p.), perfusion with GR127935 (10 microM perfused into the frontal cortex) in the medial prefrontal cortex or the combination of both treatments had no significant effect on extracellular 5-HT. 5-HT TISSUE CONTENT AND 5-HT TURNOVER IN THE TISSUE: Compared to controls, WAY 100635, GR127935 and the combination thereof, decreased cortical 5-HT (-30%), increased 5-HIAA and consequently 5-HT turnover in the cortex threefold and the raphe nuclei twofold. WAY 100635 decreased 5-HT in the hippocampus (-40%), too. WAY 100635 and GR127935 and their combination increased hippocampal 5-HIAA and 5-HT turnover twofold, compared to controls. The results suggest that both 5-HT1 antagonists have subtle effects on 5-HT function under resting conditions; combined treatment has no superior effects compared to solitary treatment.  相似文献   

9.
This study was designed to investigate the role of 5-hydroxytryptamine (5-HT)(1B) receptors located in the ventral tegmental area and nucleus accumbens in the modulation of accumbal dopaminergic transmission. The selective 5-HT(1B) receptor agonist CP 93129 [3-(1,2,5,6-tetrahydro-4-pyridyl)pyrrolo[3,2-b]pyrid-5-one] was administered into the ventral tegmental area or nucleus accumbens of freely moving Sprague-Dawley rats via retrograde microdialysis. The effects of intra-accumbal and intra-tegmental CP 93129 on extracellular dopamine levels in the nucleus accumbens were measured using one- and dual-probe microdialysis, respectively. For dual-probe microdialysis, one probe was in the ventral tegmental area for drug administration and the other in the ipsilateral nucleus accumbens for dopamine measurement. The results show that infusion of CP 93129 (2, 5 and 10 microM) into the nucleus accumbens increased local dopamine levels in a concentration-related manner. Infusion of CP 93129 (10 and 20 microM) into the ventral tegmental area also increased dopamine levels in the ipsilateral nucleus accumbens. The increased dopamine release in the nucleus accumbens produced by intra-accumbal or intra-tegmental CP 93129 was antagonized by co-infusion of cyanopindolol (5 microM), a 5-HT(1B/1A) receptor antagonist, but not by WAY-100635 [N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-2-pyridinyl-cyclohexanecarboxamide] (5 microM), a highly selective 5-HT(1A) receptor antagonist. In addition, augmentations of dopamine release in the nucleus accumbens induced by intra-accumbal CP 93129 were sensitive to Na(+) channel blockade with tetrodotoxin. These results are not in opposition to the concept that 5-HT(1B) receptors within the ventral tegmental area and nucleus accumbens are all involved in the modulation of dopamine release in the terminal area of the mesolimbic dopamine system.  相似文献   

10.
The present study examined the effects of social isolation on cortical dopamine (DA) release in vivo and on brain DA receptor functions to study the possible involvement of cortical DA neurons in an antiaggressive effect of the serotonin (5-HT)1A receptor agonist (S)-5-[3-[(1,4-benzodioxan-2-ylmethyl)amino] propoxy]-1,3-benzodioxole HCl (MKC-242). MKC-242 and the DA receptor agonist apomorphine reduced aggressive behavior in isolated mice. MKC-242 increased cortical DA release in vivo in mice, and the effect was antagonized by the 5-HT1A receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide. The basal level of extracellular DA in the frontal cortex was higher in isolated mice than in grouped mice. MKC-242-induced and high K(+)-induced increases in the cortical DA release were less pronounced in isolated mice than in grouped mice. The effect of apomorphine on locomotor activity was more pronounced in isolated mice than in grouped mice. These findings suggest that the isolation stress enhances cortical DA release and the brain DA receptor function and reduces the responses of the dopaminergic terminals to 5-HT1A receptor stimulation and high K(+)-induced depolarization.  相似文献   

11.
The purpose of this study was to further characterize the pharmacological effects of MP349 (trans-1-(2-methoxyphenyl)-4-(4-succinimidocyclohexyl)piperazine), a new serotonin 5-HT(1A) postsynaptic receptor antagonist, using several biochemical and behavioural assays. The silent 5-HT(1A)-receptor antagonist WAY 100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide) was used as a reference compound in in-vivo tests, and diazepam served as standard anxiolytic drug in animal models of anxiety. In this study we showed that MP349 bound with moderate affinity (K(i) = 234 nM) for alpha(1)-adrenoceptors, and with very low affinity (K(i) > 2600 nM) for 5-HT(2A), dopamine D(1), D(2) and benzodiazepine receptors. The effects of MP349 on presynaptic 5-HT(1A) receptors were studied in two models (mice and rats). Like WAY 100635, MP349 antagonized the hypothermia induced by the 5-HT(1A)-receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin(8-OH-DPAT) in mice. Neither MP349 nor WAY 100635 administered alone induced hypothermia. In a rat microdialysis study, MP349 (like WAY 100635) did not affect 5-HT dialysate level in the prefrontal cortex; however, when given before 8-OH-DPAT, it inhibited the decrease in 5-HT release induced by the 5-HT(1A )agonist. The data demonstrated that MP349 behaved like a functional antagonist of presynaptic 5-HT(1A) receptors. The potential anxiolytic activity of MP349 and reference drugs was examined in a conflict drinking test in rats, a plus-maze test in rats and a four-plate test in mice. MP349 and WAY 100635 produced anxiolytic-like effects, though somewhat weaker than those induced by diazepam, and only in the case of diazepam the anxiolytic-like effects were dose-dependent. Moreover, MP349 administered in doses inducing anxiolytic-like effects did not disturb the locomotor activity (open field test) or locomotor coordination (rota-rod test) of rats. These and earlier results indicated that MP349 was an antagonist of 5-HT(1A) receptors which exhibited anxiolytic-like activity in an animal model of anxiety.  相似文献   

12.
Endogenous serotonin (5-hydroxytryptamine, 5-HT)-mediated regulation of dopamine release in the rat prefrontal cortex was pharmacologically characterized using in vivo microdialysis. To increase synaptic 5-HT availability, a selective 5-HT uptake inhibitor fluoxetine was applied via the dialysis probe. Local perfusion of fluoxetine (30 and 100 microM) increased dopamine levels in a concentration-dependent manner. The fluoxetine (100 microM)-induced increases in dopamine release were abolished by pretreatment with the 5-HT(1B/1D) receptor antagonist GR 127935 (N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5- methyl-1,2,4-oxadiazol-3-yl)-[1,1-biphenyl]-4-carboxamide] ) (10 and 100 microM). The facilitation of dopamine release was also prevented by selective inactivation of the mRNA encoding 5-HT(6) receptors using antisense oligonucleotides techniques. These findings suggest that not only 5-HT(1B) receptors but also 5-HT(6) receptors are associated with the endogenous 5-HT-mediated facilitation of dopamine release. In other words, 5-HT(6) receptors may play, in part, a significant role in the functional interaction between the dopaminergic and serotonergic neuronal system in the rat prefrontal cortex.  相似文献   

13.
We have previously reported that 5-{3-[((2S)-1,4-benzodioxan-2-ylmethyl)amino]propoxy}-1,3-benzodioxole (MKC-242), a potent and selective serotonin (5-HT)1A receptor agonist, exerts anxiolytic- and antidepressant-like effects in animal models and that the antidepressant-like effect may be mediated by postsynaptic 5-HT1A receptors. The present study, using a microdialysis technique, was undertaken to characterize in vivo the effect of MKC-242 on cholinergic neurons. Subcutaneous injection of MKC-242 (0.5–1.0 mg/kg), like the typical 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), increased extracellular acetylcholine (ACh) levels in the rat cerebral cortex. The increase in ACh release by MKC-242 was also observed in the hippocampus. The effect of MKC-242 on cortical ACh release was attenuated by pretreatment with the 5-HT1A receptor antagonists (10 mg/kg, s.c.) propranolol and N-tert-butyl-3-(4-(2-methoxyphenyl)piperazin-1-yl)-2-phenylpropanamide. The increase in cortical ACh release by MKC-242 was blocked by lesion of serotonergic neurons with 5,7-dihydroxytryptamine, whereas that by 8-OH-DPAT was not. Lesion of noradrenergic neurons with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine did not affect the MKC-242-induced increase in ACh release. These results suggest that systemic injection of MKC-242 facilitates in vivo ACh release via an activation of somadendritic 5-HT1A autoreceptors, and that MKC-242 and 8-OH-DPAT affect cholinergic neurons in the rat cerebral cortex via different mechanisms.  相似文献   

14.
The aim of the present in vivo study was to determine whether a benzodioxan derivative MKC-242, (S)-5-[3-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3-benzodioxole hydrochloride, possesses an agonistic activity at postsynaptic serotonin (5-HT)1A receptors in the rat hippocampus when administered systemically. We examined the effects of acute administrations of MKC-242 on the firing activities of dorsal hippocampus CA1 pyramidal neurons. In quiet awake rats, s.c. administrations of MKC-242 significantly decreased the spontaneous firing activity in a dose-dependent manner at doses of 0.3-6 mg/kg. In urethane-anaesthetized rats, i.v. injections of MKC-242, at cumulative doses of 0.3-3 mg/kg, also significantly and dose-dependently inhibited the firing activity induced by microiontophoretically applied quisqualate. These decreasing effects were antagonized by the selective 5-HT1A antagonists WAY-100135 (5 mg/kg, s.c.) and WAY-100635 (0.2 mg/kg, s.c. to the awake rats and 0.4 mg/kg, i.v. to the anaesthetized rats), thereby confirming that MKC- 242 decreased the firing activities by stimulating 5-HT1A receptors. The selective depletion of 5-HT produced by the 3-d administration of the 5-HT synthesis inhibitor, parachlorophenylalanine (500 mg/kg.d, i.p.), did not affect the decreasing effect of MKC-242 in the awake animals, indicating that postsynaptic 5-HT1A receptors mediated the decreasing effect. The present results provided the first in vivo electrophysiological evidence that MKC-242, when systemically administered, exerts a 5-HT1A agonistic action at the postsynaptic level.  相似文献   

15.
We investigated the effects of the novel 5-HT1A receptor agonist BAY x 3702 on the serotonergic function in rat brain using single unit recordings in the dorsal raphe nucleus (DR) of anesthetized rats and in vivo microdialysis in freely moving rats. The administration of BAY x 3702 (0.25-4 microg/kg i.v.) suppressed the firing activity of 5-HT neurones. This effect was antagonized by a low dose of the selective 5-HT1A receptor antagonist WAY 100635 (5 microg/kg i.v.). In microdialysis experiments, BAY x 3702 (10-100 microg/ kg s.c.) reduced dose-dependently the 5-HT output in the dorsal and median raphe (MnR) nucleus, dorsal hippocampus (DHPC) and medial prefrontal cortex (mPFC) in a regionally selective manner. Maximal effects were observed in the MnR and mPFC, with reductions to approximately 15% of baseline at a dose of 0.1 mg/kg s.c. The decrease in 5-HT output produced in the DR and DHPC was more moderate, to 45% of baseline at 0.1 mg/kg s.c. BAY x 3702. WAY 100635 (0.3 mg/kg s.c.) completely antagonized the effect of BAY x 3702 (30 microg/kg s.c.). The application of BAY x 3702 in the DR (1-100 microM) reduced the local 5-HT output to 25% of baseline. In rats implanted with two dialysis probes (in DR and mPFC) the application of BAY x 3702 (30 microM) in the DR reduced the 5-HT output in the DR and that in mPFC. These effects were significantly antagonized by the co-perfusion of WAY 100635 (100 microM) in the DR. Overall, these results indicate that the systemic administration of BAY x 3702 reduces the 5-HT release with high potency through the activation of midbrain 5-HT1A receptors.  相似文献   

16.
1. Using brain microdialysis, we compared the relative role of 5-hydroxytryptamine (5-HT; serotonin) blockade and somatodendritic 5-HT(1A) and/or terminal 5-HT(1B) autoreceptor activation in the control of 5-HT output. 2. Fluoxetine (10 mg kg(-1) i.p.) doubled the 5-HT output in frontal cortex and dorsal hippocampus. The 5-HT(1A) receptor antagonist WAY 100635, (0.3 mg kg(-1) s.c.) potentiated the effect of fluoxetine only in frontal cortex (to approximately 500 % of baseline). 3. Methiothepin (10 mg kg(-1) s.c.) further enhanced the 5-HT rise induced by fluoxetine+WAY 100635, to 835+/-179% in frontal cortex and 456+/-24% in dorsal hippocampus. Locally applied, methiothepin potentiated the fluoxetine-induced 5-HT rise more in the former area. 4. The selective 5-HT(1B) receptor antagonist SB-224289 (4 mg kg(-1) i.p.) enhanced the effect of fluoxetine (10 mg kg(-1) i.p.) in both areas. As with methiothepin, SB-224289 (4 mg kg(-1) i.p.) further enhanced the 5-HT increase produced by fluoxetine+WAY 100635 more in frontal cortex (613+/-134%) than in dorsal hippocampus (353+/-59%). 5. Locally applied, fluoxetine (10 - 300 microM; EC(50)=28 - 29 microM) and citalopram (1 - 30 microM; EC(50)=1.0 - 1.4 microM) increased the 5-HT output two to three times more in frontal cortex than in dorsal hippocampus. These data suggest that the comparable 5-HT increase produced by systemic fluoxetine in frontal cortex and dorsal hippocampus results from a greater effect of reuptake blockade in frontal cortex that is offset by a greater autoreceptor-mediated inhibition of 5-HT release. As a result, 5-HT autoreceptor antagonists preferentially potentiate the effect of fluoxetine in frontal cortex.  相似文献   

17.
Coadministration of atypical antipsychotics and selective serotonin reuptake inhibitors (SSRIs) enhances the release of monoamines such as dopamine (DA), norepinephrine (NE), and serotonin (5-HT) in the prefrontal cortex. To clarify the role of DA-D2/3 receptors in the combination effect, we examined the effects of coadministration of the selective DA-D2/3 antagonist sulpiride and the SSRI fluvoxamine on amine neurotransmitter release in rat prefrontal cortex. Sulpiride (10 mg/kg, i.p.) and fluvoxamine (10 mg/kg, i.p.) alone did not affect extracellular DA levels, while their coadministration caused a significant increase in DA levels. Sulpiride alone did not affect extracellular levels of 5-HT and NE in the prefrontal cortex, while fluvoxamine alone caused a marked increase in 5-HT levels and a slight increase in NE levels. Sulpiride did not affect the fluvoxamine-induced increases in extracellular levels of 5-HT and NE. The DA-D2/3 antagonist haloperidol (0.1 mg/kg) in combination with fluvoxamine also caused a selective increase in extracellular DA levels in the cortex. Coadministration of sulpiride and fluvoxamine did not affect extracellular DA levels in the striatum. Combination of systemic sulpiride and local fluvoxamine did not increase the DA levels, but that of systemic fluvoxamine with local sulpiride increased. The combination effect in increasing prefrontal DA levels was antagonized systemically, but not locally, by the 5-HT1A antagonist WAY100635 at a low dose. These findings suggest that the combination of prefrontal DA-D2/3 receptor blockade and 5-HT1A receptor activation in regions other than the cortex plays an important role in sulpiride and fluvoxamine-induced increase in prefrontal DA release.  相似文献   

18.
We have recently reported that coadministration of sulpiride, an antipsychotic drug, and fluvoxamine, a selective serotonin (5-HT) reuptake inhibitor, selectively increases in vivo dopamine release in the prefrontal cortex. This study examined the effects of coadministration of these drugs on duration of immobility in the tail suspension test using mice. Neither sulpiride (3 or 10 mg/kg) nor fluvoxamine (10 or 20 mg/kg) alone affected immobility time, whereas coadministration significantly reduced immobility time. WAY100635, a 5-HT1A receptor antagonist, did not affect the effects of sulpiride and fluvoxamine coadministration, but reduced immobility time in combination with fluvoxamine (20 mg/kg). A high dose of fluvoxamine alone (60 mg/kg) also reduced immobility time. These results suggest that the antidepressant-like effects of fluvoxamine in combination with sulpiride or WAY100635 in the tail suspension test are mediated by the activation of dopamine or 5-HT systems, respectively.  相似文献   

19.
The effects of selective serotonin re-uptake inhibitor (SSRI), paroxetine, and 5-HT1A, 5-HT1B and 5-HT1B/1D receptor antagonists on in vivo extracellular 5-HT levels in the guinea-pig frontal cortex and dorsal hippocampus were investigated using the technique of microdialysis. The aim of the study was to further investigate the autoreceptor roles of the 5-HT1A, 5-HT1B and 5-HT1D receptors in the median vs dorsal raphe nuclei. In the frontal cortex, 5-HT1A (WAY 100635, 1 mg/kg i.p.) or 5-HT1B (SB-224289, 4 mg/kg i.p.) receptor antagonists had no effect on extracellular levels of 5-HT, whilst the mixed 5-HT1B/1D receptor antagonist (GR 127935, 0.3 mg/kg i.p) produced a significant decrease in extracellular 5-HT levels. Paroxetine (10 microM) significantly increased extracellular 5-HT levels when perfused locally into the cortex. Administration of SB-224289, followed 120 min later by WAY 100635, had no effect on extracellular 5-HT levels. In contrast, sequential administration of either WAY 100635 and GR 127935, or SB-224289 and paroxetine significantly increased extracellular 5-HT levels. In the dorsal hippocampus, whilst 5-HT1A receptor antagonism elicited by administration of WAY 100635 had no effect, both 5-HT1B and mixed 5-HT1B/1D receptor blockade significantly increased extracellular 5-HT levels. Administration of SB-224289 followed 120 min later with WAY 100635, or WAY 100635 followed 30 min later with GR 127935, potentiated the effect of the three compounds alone, significantly increasing extracellular 5-HT levels. These data demonstrate that to simultaneously increase extracellular 5-HT in both frontal cortex and dorsal hippocampus of the guinea-pig brain concurrent 5-HTA1A, 5-HT1B and 5-HT1D receptor blockade is required. Whereas in the dorsal hippocampus, 5-HT1B receptor blockade is sufficient to elicit an increase in extracellular 5-HT levels.  相似文献   

20.
Previous studies have shown that sertindole (1-[2-[4-[5-chloro-1-(4-fluorophenyl)-1H-indol-3-yl]-1-piperidinyl]ethyl ]-2 imidazolidinone), an atypical antipsychotic drug that is a potent 5-HT2A and dopamine D2 receptor antagonist, preferentially affects mesocorticolimbic rather than mesostriatal dopamine neurons. Using in vivo microdialysis in conscious rats, we investigated the effects of sertindole on dopamine release and metabolism in the striatum and the medial prefrontal cortex. Systemic administration of sertindole dose dependently enhanced dopamine release in the medial prefrontal cortex and the striatum to the same extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号