首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Operative monitoring of short-latency auditory evoked potentials during posterior fossa surgery requires audio transducers of small physical size so as to not interfere with the operative field. There are many relatively inexpensive transducers in the commercial audio hifi market of appropriate size. Some produce suitable biological responses and tolerate long term use without failure. The authors describe factors to consider and methods used in testing such transducers.  相似文献   

3.
4.
The relative prognostic value of short-latency somatosensory evoked potentials (SEPs) and brain-stem auditory evoked potentials (BAEPs) was assessed in 35 patients with post-traumatic coma. Analysis of the evoked potentials was restricted to those recorded within the first 4 days following head injury. Abnormal SEPs were defined as an increase in central somatosensory conduction time or an absence of the initial cortical potential following stimulation of either median nerve. Abnormal BAEPs were classified as an increase in the wave I-V interval or the loss of any or all of its 3 most stable components (waves I, III and V) following stimulation of either ear. SEPs reliably predicted both good and bad outcomes. All 17 patients in whom SEPs were graded as normal had a favourable outcome and 15 of 18 patients in whom SEPs were abnormal had an unfavourable outcome. Although abnormal BAEPs were associated with an unfavourable outcome in almost all patients (6 of 7), only 19 of 28 patients with normal BAEPs had a favourable outcome. The finding of normal BAEPs was therefore of little prognostic significance. These results confirm the superiority and greater sensitivity of the SEP in detecting abnormalities of brain function shortly after severe head trauma.  相似文献   

5.
Binaural interaction was evaluated by determination of the curve of difference between the algebraic sum of brainstem evoked potentials which had been registered under monaural stimulation of right and left ear and potentials which had been registered under binaural stimulation. The curve of difference is characterized by three peaks: N1, P1, N2 with peak latency IV-IV' without any masking noise, and during masking with the signal-to-noise ratio of +20-0 dB additional peaks N0P0 are registered in III-III' latency regions on the difference curve. With an increase of the sound pressure level from 47 to 107 dB the P1N2 amplitude grows and relation of the P1N2 amplitude to wave amplitude IV of the sum of potentials registered during monaural right and left ear stimulation remains constant. Under masking conditions the above relation increases with worsening of the signal-to-noise ratio and the P1N2 amplitude decreases. Binaural interaction pattern is not supposed to alter with an increase in the click intensity level, and during masking with the signal-to-noise ratio of +20-0 dB specific features of neurophysiological mechanisms of binaural interaction are observed.  相似文献   

6.
Barker D  Plack CJ  Hall DA 《Neuroreport》2011,22(3):111-115
Pitch is a fundamental auditory sensation, underlying both music and speech perception. This study was designed to explore pitch coding in human auditory cortex by testing whether activity in pitch-responsive regions covaries as a function of pitch salience (pitch strength). A psychophysical paradigm was used to confirm three levels of pitch salience for two different pitch-evoking stimuli. The location and magnitude of the response to these stimuli were measured using functional magnetic resonance imaging. A pitch response was found in planum temporale, close to the posterolateral border of Heschl's gyrus. However, the response was not sensitive to pitch salience. One interpretation is that pitch-sensitive regions are maximally responsive to the presence or absence of pitch and not to pitch salience.  相似文献   

7.
Cortical signals associated with infrequent tone omissions were recorded from 9 healthy adults with a whole-head 122-channel neuromagnetometer. The stimulus sequence consisted of monaural (left or right) 50-ms 1-kHz tones repeated every 0.2 or 0.5 s, with 7% of the tones randomly omitted. Tones elicited typical responses in the supratemporal auditory cortices. Omissions evoked strong responses over temporal and frontal areas, independently of the side of stimulation, with peak amplitudes at 145–195 ms. Response amplitudes were 60% weaker when the subject was not attending to the stimuli. Omission responses originated in supratemporal auditory cortices bilaterally, indicating that auditory cortex plays an important role in the brain's modelling of temporal characteristics of the auditory environment. Additional activity was observed in the posterolateral frontal cortex and in the superior temporal sulcus, more often in the right than in the left hemisphere.  相似文献   

8.
OBJECTIVE: Binaural beat sensations depend upon a central combination of two different temporally encoded tones, separately presented to the two ears. We tested the feasibility to record an auditory steady state evoked response (ASSR) at the binaural beat frequency in order to find a measure for temporal coding of sound in the human EEG. METHODS: We stimulated each ear with a distinct tone, both differing in frequency by 40Hz, to record a binaural beat ASSR. As control, we evoked a beat ASSR in response to both tones in the same ear. We band-pass filtered the EEG at 40Hz, averaged with respect to stimulus onset and compared ASSR amplitudes and phases, extracted from a sinusoidal non-linear regression fit to a 40Hz period average. RESULTS: A 40Hz binaural beat ASSR was evoked at a low mean stimulus frequency (400Hz) but became undetectable beyond 3kHz. Its amplitude was smaller than that of the acoustic beat ASSR, which was evoked at low and high frequencies. Both ASSR types had maxima at fronto-central leads and displayed a fronto-occipital phase delay of several ms. CONCLUSIONS: The dependence of the 40Hz binaural beat ASSR on stimuli at low, temporally coded tone frequencies suggests that it may objectively assess temporal sound coding ability. The phase shift across the electrode array is evidence for more than one origin of the 40Hz oscillations. SIGNIFICANCE: The binaural beat ASSR is an evoked response, with novel diagnostic potential, to a signal that is not present in the stimulus, but generated within the brain.  相似文献   

9.
10.
Recordings of unit activity showing 4-6 ms latency responses to a click stimulus provided evidence that the dentate nucleus could function as a short-latency auditory relay. On the basis of these findings, plus fiber fillings from injections of phaseolus leucoagglutinin into the dentate, a new auditory pathway between dorsal and ventral cochlear nuclei, dentate nucleus, and rostral thalamus is proposed. The pathway could provide direct, short-latency transmissions to the motor cortex that bypass the classical auditory receptive cortex.  相似文献   

11.
Cerebral neuromagnetic responses evoked by short auditory stimuli   总被引:2,自引:0,他引:2  
We presented 30 msec sinusoidal tone bursts to the subject's left ear once every 1300 msec. The number of standard tones (1000 Hz) between deviants (1030 Hz) varied randomly from 3 to 15 (even distribution) so that the probability of the standards was 0.9 and that of the deviants 0.1. During stimulation the subject was reading a book. Magnetic responses to the standards and deviants were measured at the estimated ends of the sylvian fissure and electrical responses at Fpz, Fz and Cz. In addition, extensive field maps over the right hemisphere were made from 60 to 75 points in 3 subjects. A least-squares fit was performed to find out the parameters of the equivalent current dipole in a spherically symmetrical head model. Field maps suggested that the source of magnetic response at 100 msec (N100m) can be approximated by a current dipole at the supratemporal plane, possibly at the primary auditory cortex. In two subjects the location and/or the orientation of the equivalent dipole changed during N100m, possibly due to change in the size of the activated cortical area. The deviant stimuli elicited in addition to N100m a second deflection, MMNm, peaking at about 200 msec. This response was regarded as specific to stimulus change. On the basis of field maps it was also concluded that MMNm got a contribution from activity at the supratemporal plane.  相似文献   

12.
OBJECTIVE: To describe vestibulocollic responses in sternocleidomastoid (SCM) evoked by transmastoid galvanic (DC) stimulation. METHODS: We studied the averaged responses in the unrectified EMG of SCM to transmastoid galvanic stimulation (5 mA/2 ms) and also to 100 dB clicks. Two patients with Meniere's disease were studied both before and after unilateral selective vestibular nerve section. RESULTS: Transmastoid galvanic stimulation produced a positive-negative biphasic EMG response at short latency in the SCM ipsilateral to the side of cathode placement, which resembled that which followed vestibular activation by loud clicks (p13/n23). Selective unilateral vestibular nerve section abolished this galvanic-evoked response. CONCLUSIONS: Galvanic-evoked vestibulocollic responses can be recorded in SCM. This is a new method of studying vestibular reflex function which may have application in the clinical assessment of vestibular disorders.  相似文献   

13.
A deficit in inhibitory gating of auditory evoked responses was examined in 15 schizophrenic patients, their first-degree relatives, and normal subjects, using a conditioning-testing paradigm with the P50 wave of the auditory evoked response. This paradigm demonstrates inhibition by presenting paired stimuli to the subject; the P50 wave evoked by the second stimulus is reduced because of inhibitory mechanisms activated during the response to the first stimulus. In normal subjects, the mean amplitude of the second P50 response was reduced to less than 20%. In the schizophrenics, the mean amplitude of the second response was more than 85% of the first, a result that replicates our previous finding of a deficit in inhibition in schizophrenia. Approximately half the first-degree relatives, generally including at least one parent, had a similar deficit. Presence of this deficit in the parents was associated with a family history of schizophrenia. Family members with this deficit also had significantly higher scores on several scales of the Minnesota Multiphasic Personality Inventory than did family members without the deficit. Despite the deficit in inhibition, other characteristics of the P50 wave were normal in the relatives, in contrast to unmedicated schizophrenics, who showed additional abnormalities in wave latency and amplitude.  相似文献   

14.
OBJECTIVE: Transtympanic electrocochleography (ECochG) was recorded bilaterally in children and adults with auditory neuropathy (AN) to evaluate receptor and neural generators. METHODS: Test stimuli were clicks from 60 to 120dB p.e. SPL. Measures obtained from eight AN subjects were compared to 16 normally hearing children. RESULTS: Receptor cochlear microphonics (CMs) in AN were of normal or enhanced amplitude. Neural compound action potentials (CAPs) and receptor summating potentials (SPs) were identified in five AN ears. ECochG potentials in those ears without CAPs were of negative polarity and of normal or prolonged duration. We used adaptation to rapid stimulus rates to distinguish whether the generators of the negative potentials were of neural or receptor origin. Adaptation in controls resulted in amplitude reduction of CAP twice that of SP without affecting the duration of ECochG potentials. In seven AN ears without CAP and with prolonged negative potential, adaptation was accompanied by reduction of both amplitude and duration of the negative potential to control values consistent with neural generation. In four ears without CAP and with normal duration potentials, adaptation was without effect consistent with receptor generation. In five AN ears with CAP, there was reduction in amplitude of CAP and SP as controls but with a significant decrease in response duration. CONCLUSIONS: Three patterns of cochlear potentials were identified in AN: (1) presence of receptor SP without CAP consistent with pre-synaptic disorder of inner hair cells; (2) presence of both SP and CAP consistent with post-synaptic disorder of proximal auditory nerve; (3) presence of prolonged neural potentials without a CAP consistent with post-synaptic disorder of nerve terminals. SIGNIFICANCE: Cochlear potential measures may identify pre- and post-synaptic disorders of inner hair cells and auditory nerves in AN.  相似文献   

15.
Measurements were made from the human first dorsal interosseous and extensor digitorum communis muscles of the surface electromyographic activity reflexly produced by brief stretch of the muscle. For the first dorsal interosseous muscle, reflex EMG activity was also produced by electrical stimulation of the ulnar nerve at the wrist. The procedures were carried out before, during, and after 25 min of nonspecific, low-frequency electrical stimulation to the contralateral arm delivered through intramuscular electrodes. Control stimulation was delivered subcutaneously. The EMG recorded during a maintained contraction was rectified, filtered, and averaged. Two reflex components (M1 and M2) of the EMG response to muscle stretch or ulnar nerve stimulation were investigated. During nonspecific intramuscular stimulation to the contralateral arm, M1 responses of the extensor digitorum communis were depressed, initially by 37%. The effect began to fade during stimulation but extended beyond it. Reflex responses were elicited alternately by brief stretch of the first dorsal interosseus muscle and by electrical stimulation of the ulnar nerve in the same experiment. Nonspecific intramuscular stimulation to the contralateral arm depressed the M1 response to stretch, but had no effect on the M1 response to electrical stimulation. It is concluded that nonspecific intramuscular electrical stimulation reduces the amplitude of the M1 component of the response to brief stretch of contralateral muscle, either through depression of fusimotor activity or inhibition of oligosynaptic pathways that contribute to the early reflex response.  相似文献   

16.
《Neural networks》1999,12(1):31-42
The barn owl is a nocturnal predator that is able to capture mice in complete darkness using only sound to localize prey. Two binaural cues are used by the barn owl to determine the spatial position of a sound source: differences in the time of arrival of sounds at the two ears for the azimuth (interaural time differences (ITDs)) and differences in their amplitude for the elevation (interaural level differences (ILDs)). Neurophysiological investigations have revealed that two different neural pathways starting from the cochlea seem to be specialized for processing ITDs and ILDs. Much evidence suggests that in the barn owl the localization of the azimuth is based on a cross-correlation-like treatment of the auditory inputs at the two ears. In particular, in the external nucleus of the inferior colliculus (ICx), where cells are activated by specific values of ITD, neural activation has been recently observed to be dependent on some measure of the level of cross-correlation between the input auditory signals. However, it has also been observed that these neurons are less sensitive to noise than predicted by direct binaural cross-correlation. The mechanisms underlying such signal-to-noise improvement are not known. In this paper, by focusing on a model of the barn owl's neural pathway to the optic tectum dedicated to the localization of the azimuth, we study the mechanisms by which the ITD tuning of ICx units is achieved. By means of analytical examinations and computer simulations, we show that strong analogies exist between the process by which the barn owl evaluates the azimuth of a sound source and the generalized cross-correlation algorithm, one of the most robust methods for the estimate of time delays.  相似文献   

17.
MagnetoEncephaloGraphy (MEG) is proposed as a non-invasive technique to detect the physiological activity of fetal brain, due to its ability to record brain activity without direct contact with the head and the transparency of magnetic signals in passing through extracerebral fetal layers and the mother's abdomen. Healthy women with uncomplicated pregnancies and fetuses in breech presentation were examined; gestational ages at time of study ranged between 36 and 40 weeks. In order to evaluate fetal well-being, ultrasound and cardiotocographic data were assessed a few days before and after MEG recording sessions. The participating women were placed in a semi-reclining position in a magnetically shielded room; here the presentation of the fetus and precise region of the mother's abdomen corresponding to the fetal head were determined by ultrasound investigation in order to place the MEG detecting system as near as possible to the fetal brain. MEG recordings were performed by means of a 28-channel neuromagnetic system. Every MEG recording session was performed during the acoustic stimulation of fetuses, in order to detect the cerebral events evoked by peripheral stimuli. The auditory stimuli were delivered from a plastic tube placed on mother's abdomen, near the fetal head, and consisted of a 300 ms 103 dB pure tone at 500 and 1000 Hz, presented at a 0.4 c/s repetition rate. In six cases following accurate digital subtraction of maternal and fetal electrocardiographic (EKG) signals we remained with a stimulus-related response peaking at about 250 ms; this was considered to originate from the fetal brain. In favour of this in three cases a clear dipolar distribution was evident at the peak of brain response centered on the fetal head and consistent with a brain generator. Despite several technical problems requiring solution before a possible routine clinical application, MEG has been found to be suitable for the non-invasive exploration of the fetal brain.  相似文献   

18.
We measured N1m and P2m components of the magnetic field responses that were elicited by random series of a tone burst given to the left ear and a monosyllabic speech sound given to the right ear. The magnetic responses had smaller amplitudes and/or longer peak latencies of the N1m and the P2m when the stimulus was preceded by a stimulus at the same ear than when preceded by a stimulus at the different ear. This reduction of the response by preceding stimulation of the same ear was significant over the hemisphere contralateral, but not ipsilateral, to the ear stimulated. The peak latencies of N1m and P2m were significantly longer in the response over the hemisphere contralateral than ipsilateral to the stimulated ear.  相似文献   

19.
Auditory evoked brain-stem responses (ABRs) were recorded from the surfaces of the brain of lightly anesthetized newborn (1-7 days old) and adult (7-9 weeks old) chickens as a measure of the development of auditory processing. One-day-old and older chickens showed a series of waves within 5 msec after the stimulus onset. This precocity of the ABR in chickens contrasts with the first appearance of the ABR in cats at 4 days of age. The ABR onset latency was shorter in adult chickens than in newborns. This indicates that developmental modifications of mechanical transmission in the external and middle ear or cytodifferentiation of the sensory hair cells of the basillar papilla and the neurons of the acoustic nerve continue postnatally. Within the complex wave form of the response, most of the inter-wave latencies decreased with maturation, indicating that development of the central auditory pathway also continues postnatally. One inter-wave latency (N1 to P3-4) was significantly shorter (P less than 0.05) in adults than in newborns for intense click stimuli, and even among newborns, this inter-wave latency was significantly shorter in 6- and 7-day-old specimens than in 1-3-day-old specimens. It seems likely that changes in the N1 to P3-4 inter-wave latency reflect changes in evoked activity of second order auditory neurons that are located in the nucleus angularis and nucleus magnocellularis, and that intensive developmental changes occur in these neurons during the first postnatal week. The ABR recorded in chickens is a reliable measure of functional activity in the auditory system which is reproducible between individuals and capable of demonstrating developmental changes in specific segments of the wave form.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号